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This paper presents a computationally efficient angle and polarization estimationmethod for amixture of uncorrelated and coherent
sources using a dual-polarization vector sensor array.The uncorrelated sources are separated from the coherent sources on the basis
of themodulus property of eigenvalues.The angles of the uncorrelated sources are estimated by employing rotational invariance and
the associated polarization is obtained from the estimate of the uncorrelated array response matrix through elementwise division.
For the distinguished coherent sources, two Hankel matrices are constructed from the elements of the estimated coherent array
response matrix of each coherent group, from which two rotational-invariant submatrix pairs are extracted for estimating the
coherent angles with a high precision. The least-square solution to the coherent polarization equation is derived for estimating the
coherent polarization parameters. For each uncorrelated source and coherent group, the proposedmethod estimates the associated
angle and polarization parameters separately, which avoids the need of 3D spectral search. In comparisonwith the existingmethods,
the simulation results show that the proposed method yields favorable performance in terms of computational efficiency and
estimation accuracy.

1. Introduction

Direction of arrival (DOA) estimation has been a key issue in
many practical applications such as radar, wireless communi-
cation system, and seismology [1, 2]. The vector sensor array,
which offers advantages such as good robustness towards
channel fading and strong immunity to interference, has
been introduced for DOA estimation [3–6]. Typically, the
subspace-basedmethods such asmultiple signal classification
(MUSIC) [7] and estimation of signal parameters via rotation
invariance techniques (ESPRIT) [8] can be extended for the
vector sensor array. More specifically, the polarized MUSIC-
basedmethods [9–12] and the polarized ESPRIT-basedmeth-
ods [13–16] were demonstrated to have enhanced estimation
performance as compared to the traditional MUSIC and
ESPRIT methods with scalar sensor arrays. However, all the
aforementioned methods operate under the assumption that
the impinging sources are uncorrelated, while this assump-
tion is often not true in practical scenarios due to multipath
propagation. In such scenarios, the sources from the identical

target may undergo reflection from various surfaces, and
then the received sources may be a mixture of uncorrelated
and coherent sources. Therefore, the performance of these
methods would critically degrade because the existence of
coherent sources directly causes the rank deficiency of the
array covariance matrix.

To solve the aforementioned problem, several “decorrela-
tion” methods have been reported in [17–21]. A polarization
smoothing (PS) technique was first developed in [17] to han-
dle the coherent sources by using a vector sensor array. Subse-
quently, a modified polarization difference smoothing (PDS)
method [18] was proposed in conjunction with the propaga-
tor method. Theoretically, the maximum number of resolv-
able coherent sources of the PDS method was limited to six.
Gu et al. [19] introduced a propagator-based angle and polar-
ization estimation method with an extra isolated vector sen-
sor. In practice, a major limitation of these methods is their
focus on addressing the coherent sources, while the coexis-
tence of both uncorrelated and coherent sources is a common
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scenario for many practical applications owing to multipath
propagation [22]. Another method for coherent sources,
called polarization angular smoothing algorithm (PAS) [20],
utilizes the cross-correlations among six subarrays and can
be extended for scenarios of coexistent uncorrelated and
coherent sources. Unfortunately, the simultaneous estimation
of the uncorrelated and coherent sources using this method
results in mutual interference between uncorrelated and
coherent sources and poor utilization of the array aperture.
Following the technique of [20], an improved polarization
angular smoothing algorithm (IPAS) [21] was developed with
an extended array aperture, which takes special consideration
of the coexistence of uncorrelated and coherent sources.
However, a loss of power may occur at the coherent sources
due to the utilization of spatial differencing technique. All of
these aforementioned “decorrelation” methods operate with
spatially collocated six-component vector sensor arrays that
are easily subjected to mutual coupling across the collocated
antennas, and the utilization of the six-component vector
sensor array results in an increase in hardware costs for
antenna arrays. Moreover, these methods are unable to esti-
mate the polarization parameters that are useful for angular
resolution, target classification, and recognition [23].

To address these issues, we present a novel method in this
paper for jointly estimating the angle and the polarization
under the coexistence of the uncorrelated and coherent
sources in this paper using a dual-polarization uniform
linear array (ULA). On the basis of the modulus property
of eigenvalues and rotational invariance, the uncorrelated
sources are firstly distinguished from the coherent sources,
and their corresponding angles are estimated. Subsequently,
the uncorrelated array responsematrix corresponding to each
uncorrelated source is obtained from the estimated source
subspace and the associated eigenvector matrix. The associ-
ated polarization parameters are obtained by exploiting the
inherent relationship between the odd and even rows of the
uncorrelated array response matrix using elementwise divi-
sion operation. For the remaining coherent sources, the array
response matrix of each coherent group is estimated in a way
similar to that followed for the uncorrelated array response
matrix, with which two Hankel matrices are constructed
for “decorrelation.” The angles of each coherent group are
estimated via construction of twopairs of rotational-invariant
submatrices. Finally, the least-square solution to the coherent
polarization equation is derived, and the associated coherent
polarization parameters are obtained accordingly. To bemore
specific, the main contributions of this paper are as follows:

(1) The proposed method considers the joint angle and
polarization estimation for a mixture of uncorrelated
and coherent sources, unlike most of the existing
“decorrelation” methods that focus only on the angle
estimation of coherent sources.

(2) By utilizing a dual-polarization vector sensor array,
the problem of mutual coupling across the collo-
cated antennas is alleviated. In addition, the costs of
antenna hardware are also reduced.

(3) By employing the modulus property of eigenvalues,
the uncorrelated sources are distinguished from the
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Figure 1: Uniform linear array of dual-polarization vector sensor.

coherent sources without a loss of power at coherent
sources. Based on estimated array response matrix
of each uncorrelated source and that of each coher-
ent group, the corresponding angle and polarization
parameters are estimated separately, which avoids the
need of three-dimensional (3D) spectral search.

(4) The identifiability and computational complexity of
the proposed method are discussed.

The mathematical notations used throughout this paper
are as follows. Vectors andmatrices are, respectively, denoted
by lowercase and uppercase bold-faced italicized letters. (⋅)𝑇,
(⋅)

∗, (⋅)𝐻, (⋅)−1, (⋅)†,⊗, and𝐸{⋅} represent transpose, conjugate,
conjugate transpose, inverse, Moore-Penrose inverse, Kro-
necker product, and the statistical expectation, respectively.
0
𝑚×𝑛

represents 𝑚 × 𝑛 null matrix, I
𝑚
𝑚 × 𝑚 identity matrix,

‖ ⋅ ‖
𝐹
the Frobenius norm, and ./ the elementwise division.

Besides, 𝜕𝑓(F)/𝜕F denotes the derivative of 𝑓(F)with respect
to the matrix F; diag{⋅} and blkdiag{⋅} denote a diagonal
matrix and a block diagonal matrix, respectively. F(𝑎 : 𝑏, 𝑐 :

𝑑) denotes a submatrix constructed by the elements from
rows 𝑎 to 𝑏 and columns 𝑐 to 𝑑 of F.

The rest of the paper is organized as follows. The
angle and polarization estimation model in the presence of
multipath propagation is formulated in Section 2. Section 3
presents the details of the proposed angle and polarization
estimationmethod under the coexistence of uncorrelated and
coherent sources.The identifiability and computational com-
plexity of the proposed method are discussed in Section 4.
Section 5 discusses the simulation performance of the pro-
posed method. Conclusions are drawn in Section 6.

2. Problem Formulation

Consider a ULA consisting of 𝑀 dual-polarization sensors
(i.e., crossed dipoles) placed along the 𝑦-axis with interele-
ment spacing 𝑑, as depicted in Figure 1. 𝜃 ∈ [0, 𝜋) and
𝜑 ∈ [0, 2𝜋) signify the elevation angle and the azimuth
angle measured from the positive 𝑧- and 𝑥-axes, respectively.
For simplicity, it is assumed that the impinging source is in
the 𝑦-𝑧 plane; that is, 𝜑 = 0. Assume that a total of 𝐾

completely polarized narrowband transverse electromagnetic
(TEM) waves impinge on the ULA, and the electric field is
described in Cartesian coordinate as

E = −𝐸
𝜑
e
𝑥
+ 𝐸

𝜃
cos 𝜃e

𝑦
− 𝐸

𝜃
sin 𝜃e

𝑧
, (1)
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where e
𝑥
, e

𝑦
, and e

𝑧
are the unit vectors along the 𝑥-, 𝑦-, and

𝑧-axes; 𝐸
𝜑
= 𝐸

𝑜
cos 𝛾 and 𝐸

𝜃
= 𝐸

𝑜
sin 𝛾𝑒𝑗𝜂 are, respectively,

the horizontal and the vertical components of a polarization
ellipse. 𝐸

𝑜
represents the source amplitude (an arbitrary

nonzero complex constant) and 𝛾 ∈ [0, 𝜋/2) refers to the
auxiliary polarization angle and 𝜂 ∈ [−𝜋, 𝜋) refers to the
polarization phase difference. The dual-polarization ULA
configured in Figure 1 is known to only receive the electric
field components of the waves along the 𝑥- and 𝑦-axes.
Therefore, the source vectors collected by the 𝑚th vector
sensor for polarization 𝑥 and polarization 𝑦 are, respectively,
expressed as

𝑥
[𝑥]

𝑚
(𝑡) = −

𝐾

∑
𝑘=1

𝑠
𝑘 (𝑡) cos 𝛾𝑘𝑒

−𝑗2𝜋(𝑚−1)𝑑sin𝜃𝑘/𝜆 + 𝑛
[𝑥]

𝑚
(𝑡) , (2)

𝑥
[𝑦]

𝑚
(𝑡) = −

𝐾

∑
𝑘=1

𝑠
𝑘 (𝑡) cos 𝜃𝑘

sin 𝛾
𝑘
𝑒
𝑗𝜂𝑘𝑒

−𝑗2𝜋(𝑚−1)𝑑sin𝜃𝑘/𝜆

+ 𝑛
[𝑦]

𝑚
(𝑡) ,

(3)

where 𝑚 ∈ [1,𝑀], 𝑛[𝑥]

𝑚
(𝑡), and 𝑛[𝑦]

𝑚
(𝑡) denote the noise com-

ponents of polarization𝑥 andpolarization𝑦, respectively, and
𝜆 is the carrier wavelength. Combining (2) and (3), we have

x
𝑚 (𝑡) = [(𝑥

[𝑥]

𝑚
(𝑡))

𝑇

, (𝑥
[𝑦]

𝑚
(𝑡))

𝑇

]
𝑇

(4)

with n
𝑚
(𝑡) = [(𝑛[𝑥]

𝑚
(𝑡))𝑇, (𝑛[𝑦]

𝑚
(𝑡))𝑇]𝑇 being the received noise

vector. In realistic cases, the coherent sources are often sus-
ceptible to multipath propagation. The𝐾 impinging sources,
parameterized by {𝜃

1
, 𝛾

1
, 𝜂

1
}, {𝜃

2
, 𝛾

2
, 𝜂

2
}, . . . , {𝜃

𝐾
, 𝛾

𝐾
, 𝜂

𝐾
}, are

composed of 𝐷 groups (each group having 𝑝
𝑘
coherent

sources) of 𝐾
𝑐
coherent and 𝐾

𝑢
uncorrelated sources, where

𝐾
𝑐
= 𝐾−𝐾

𝑢
= ∑

𝐷

𝑘=1
𝑝

𝑘
.The entire 2𝑀×1 array output vector

of the ULA at time 𝑡 is written as

X (𝑡) =

𝐾𝑢

∑
𝑘=1

a (𝜃
𝑘
) 𝑠

𝑘 (𝑡) +

𝐾𝑢+𝐷

∑
𝑘=𝐾𝑢+1

𝑃𝐷

∑
𝑝=1

a (𝜃
𝑘,𝑝

) 𝜍
𝑘,𝑝

𝑠
𝑘 (𝑡)

+ N (𝑡)

(5)

which can further be rewritten in a matrix form as

X (𝑡) = A
𝑢
(𝜃, 𝛾, 𝜂) S

𝑢 (𝑡) + A
𝑐
(𝜃, 𝛾, 𝜂) ΓS

𝑐 (𝑡) + N (𝑡)

= A (𝜃, 𝛾, 𝜂)ES (𝑡) + N (𝑡) ,
(6)

where X(𝑡) = [x
1
(𝑡), x

2
(𝑡), . . . , x

𝑀
(𝑡)]𝑇, S(𝑡) = [𝑠

1
(𝑡), 𝑠

2
(𝑡),

. . . , 𝑠
𝐾
(𝑡)]𝑇, andN(𝑡) = [n

1
(𝑡),n

2
(𝑡), . . . ,n

𝑀
(𝑡)]𝑇. For brevity,

the (𝐾
𝑢
+ 𝐷) × 1 source vector can be described as S(𝑡) =

[S𝑇

𝑢
(𝑡), S𝑇

𝑐
(𝑡)]𝑇with S

𝑢
(𝑡)=[𝑠

1
(𝑡), 𝑠

2
(𝑡), . . . , 𝑠

𝐾𝑢
(𝑡)]𝑇 and S

𝑐
(𝑡)=

[𝑠
𝐾𝑢+1

(𝑡), 𝑠
𝐾𝑢+2

(𝑡), . . . , 𝑠
𝐾𝑢+𝐷

(𝑡)]𝑇 being the source vectors
associated with the uncorrelated and coherent sources,
respectively. E is a 𝐾 × (𝐾

𝑢
+ 𝐷) block diagonal matrix

defined as E = blkdiag{I
𝐾𝑢

, Γ}, where Γ is the fading
coefficient matrix whose 𝑘th column is 𝜍

𝑘
= [𝜍

𝑘,1
, 𝜍

𝑘,2
, . . . ,

𝜍
𝑘,𝑝𝑘

]𝑇 for 𝑘 = 𝐾
𝑢
+1, . . . , 𝐾

𝑢
+𝐷. The 2𝑀×𝐾 array response

matrix A(𝜃, 𝛾, 𝜂) is defined as A(𝜃, 𝛾, 𝜂) = [A
𝑢
(𝜃, 𝛾, 𝜂),A

𝑐
(𝜃,

𝛾, 𝜂)], where A
𝑢
(𝜃, 𝛾, 𝜂)=[a(𝜃

1
, 𝛾

1
, 𝜂

1
), a(𝜃

2
, 𝛾

2
, 𝜂

2
), . . . , a(𝜃

𝐾𝑢
,

𝛾
𝐾𝑢
, 𝜂

𝐾𝑢
)] corresponds to the 𝐾

𝑢
uncorrelated sources and

A
𝑐
(𝜃, 𝛾, 𝜂) = [A

𝑐,𝐾𝑢+1
(𝜃, 𝛾, 𝜂),A

𝑐,𝐾𝑢+2
(𝜃, 𝛾, 𝜂), . . . ,A

𝑐,𝐾𝑢+𝐷
(𝜃,

𝛾, 𝜂)] corresponds to the 𝐾
𝑐

coherent sources with
A

𝑐,𝑘
(𝜃, 𝛾, 𝜂) = [a(𝜃

𝑘,1
, 𝛾

𝑘,1
, 𝜂

𝑘,1
), a(𝜃

𝑘,2
, 𝛾

𝑘,2
, 𝜂

𝑘,2
), . . . , a(𝜃

𝑘,𝑝𝑘
,

𝛾
𝑘,𝑝𝑘

, 𝜂
𝑘,𝑝𝑘

)] being the array response matrix with respect to
the 𝑘th group of coherent sources. The 𝑘th column vector of
the array response matrix A(𝜃, 𝛾, 𝜂) is defined as

a (𝜃
𝑘
, 𝛾

𝑘
, 𝜂

𝑘
) = q (𝜃

𝑘
) ⊗ c (𝜃

𝑘
, 𝛾

𝑘
, 𝜂

𝑘
) , (7)

where the source steering vector q(𝜃
𝑘
) and polarization

steering vector c(𝜃
𝑘
, 𝜑

𝑘
, 𝛾

𝑘
) are, respectively, defined as

q (𝜃
𝑘
) = [1, 𝑒

−𝑗2𝜋𝑑sin𝜃𝑘/𝜆, . . . , 𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝑘/𝜆]
𝑇

, (8)

c (𝜃
𝑘
, 𝛾

𝑘
, 𝜂

𝑘
) = [− cos 𝛾

𝑘
, cos 𝜃

𝑘
sin 𝛾

𝑘
𝑒
𝑗𝜂𝑘]

𝑇

. (9)

The objective of the proposed method is to determine the
angle and polarization parameters {𝜃

𝑘
, 𝛾

𝑘
, 𝜂

𝑘
, 𝑘 = 1, 2, . . . , 𝐾}

under the condition of coexisting uncorrelated and coherent
sources. For notational convenience, A(𝜃, 𝛾, 𝜂), A

𝑢
(𝜃, 𝛾, 𝜂),

A
𝑐
(𝜃, 𝛾, 𝜂), and c(𝜃

𝑘
, 𝛾

𝑘
, 𝜂

𝑘
) are, respectively, substituted byA,

A
𝑢
, A

𝑐
, and c

𝑘
in the following analysis.

The basic assumptions followed throughout this paper are
as follows:

(A1) S(𝑡) andN(𝑡) are the zero-mean uncorrelated station-
ary Gaussian random processes that are uncorrelated
with each other. Coherent sources {𝑠

𝑘
(𝑡)}

𝐾𝑢+𝐷

𝑘=𝐾𝑢+1
in

different coherent groups are mutually uncorrelated,
and they are also uncorrelated with the uncorrelated
sources {𝑠

𝑘
(𝑡)}

𝐾𝑢

𝑘=1
.

(A2) The number of uncorrelated and coherent sources,
coherent groups, and fading coefficients (i.e., the
values of 𝐾

𝑢
, 𝐾

𝑐
, 𝐷, and 𝜍

𝑘,𝑝
) can be estimated by

using the source number estimation [24] and the
fading coefficients estimation [25].

(A3) To obviate the problem of phase ambiguity, the
interelement spacing of the dual-polarization ULA
satisfies 𝑑 ≤ 𝜆/2, and the number of sources is less
than the number of sensors; that is,𝐾

𝑢
+ 𝐷 < 𝑀.

3. Parameter Estimation

In this section, the angle and polarization estimation method
is derived for a mixture of uncorrelated and coherent
sources by using a dual-polarization ULA. Based on the
modulus property of eigenvalues, the uncorrelated sources
are distinguished from the coherent sources. This reduces
the mutual interference between uncorrelated and coherent
sources and enlarges the effective array aperture. The angle
and polarization parameters of each uncorrelated source
and that of each coherent group are estimated separately
by estimating the corresponding array response matrix, thus
eliminating the need of computationally intensive 3D spectral
search.
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3.1. Parameter Estimation for Uncorrelated Sources. The cova-
riance matrix of X(𝑡) with the size 2𝑀 × 2𝑀 is expressed as

R = 𝐸 {X (𝑡)X𝐻
(𝑡)} = AER

𝑠
E𝐻A𝐻

+ 𝜎
2

𝑛
I

= A
𝑢
R

𝑢
A𝐻

𝑢
+ A

𝑐
ΓR

𝑐
Γ

𝐻A𝐻

𝑐
+ 𝜎

2

𝑛
I,

(10)

where the source covariance matrix R
𝑠

= 𝐸{S(𝑡)S𝐻(𝑡)} is
segmented into two parts R

𝑠
= [R

𝑢
,R

𝑐
], where R

𝑢
=

𝐸{S
𝑢
(𝑡)S𝐻

𝑢
(𝑡)} and R

𝑐
= 𝐸{S

𝑐
(𝑡)S𝐻

𝑐
(𝑡)} are the uncorrelated

and coherent source covariance matrices and 𝜎2

𝑛
denotes

the noise variance. In the case of 𝐾 sources comprising 𝐾
𝑢

uncorrelated and 𝐷 groups of 𝐾
𝑐
coherent sources, R

𝑠
is of

rank 𝐾
𝑢
+ 𝐷. By applying eigenvalue decomposition (EVD)

toR, the source subspaceE
𝑠
is obtained from the eigenvectors

corresponding to the𝐾
𝑢
+ 𝐷 largest eigenvalues.

It is noted that the columns of E
𝑠
and AE span the same

subspace, such that

E
𝑠
= AET = [A

𝑢
,A

𝑐
Γ]T =

[
[
[
[
[
[
[

[

C
𝑢

C
𝑐
Γ

C
𝑢
Δ

𝑢
C

𝑐
Δ

𝑐
Γ

...
...

C
𝑢
Δ

𝑀−1

𝑢
C

𝑐
Δ

𝑀−1

𝑐
Γ

]
]
]
]
]
]
]

]

T, (11)

where T is a unique (𝐾
𝑢
+ 𝐷) × (𝐾

𝑢
+ 𝐷) full rank matrix

and Δ
𝑢
= diag{𝑒−𝑗2𝜋𝑑sin𝜃1/𝜆, 𝑒−𝑗2𝜋𝑑sin𝜃2/𝜆, . . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢 /𝜆} ∈

C𝐾𝑢×𝐾𝑢 and Δ
𝑐
= diag{𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢+1,1/𝜆, . . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢+1,𝑝1 /𝜆,

. . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢+𝐷,1/𝜆, . . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢+𝐷,𝑝𝐷/𝜆} ∈ C𝐾𝑐×𝐾𝑐 are the
two diagonal matrices that depend only on the arrival-angles.
C

𝑢
and C

𝑐
are, respectively, called the uncorrelated and

coherent polarization factor matrices defined by

C
𝑢
= [c

1
, c

2
, . . . , c

𝐾𝑢
] = [

− cos 𝛾
1

− cos 𝛾
2

⋅ ⋅ ⋅ − cos 𝛾
𝐾𝑢

cos 𝜃
1
sin 𝛾

1
𝑒𝑗𝜂1 cos 𝜃

2
sin 𝛾

2
𝑒𝑗𝜂2 ⋅ ⋅ ⋅ cos 𝜃

𝐾𝑢
sin 𝛾

𝐾𝑢
𝑒𝑗𝜂𝐾𝑢

] , (12)

C
𝑐
= [c

𝐾𝑢+1,1
, . . . , c

𝐾𝑢+1,𝑝1
, . . . , c

𝐾𝑢+𝐷,𝑝𝐷
]

= [
− cos 𝛾

𝐾𝑢+1,1
⋅ ⋅ ⋅ − cos 𝛾

𝐾𝑢+1,𝑝1
⋅ ⋅ ⋅ − cos 𝛾

𝐾𝑢+𝐷,𝑝𝐷

cos 𝜃
𝐾𝑢+1,1

sin 𝛾
𝐾𝑢+1,1

𝑒𝑗𝜂𝐾𝑢+1,1 ⋅ ⋅ ⋅ cos 𝜃
𝐾𝑢+1,𝑝1

sin 𝛾
𝐾𝑢+1,𝑝1

𝑒𝑗𝜂𝐾𝑢+1,𝑝1 ⋅ ⋅ ⋅ cos 𝜃
𝐾𝑢+𝐷,𝑝𝐷

sin 𝛾
𝐾𝑢+𝐷,𝑝𝐷

𝑒𝑗𝜂𝐾𝑢+𝐷,𝑝𝐷
] .

(13)

According to the inherent rotational invariance, E
𝑠
can be

divided into two 2(𝑀−1)×(𝐾
𝑢
+𝐷) overlapped submatrices,

where the 𝑙th submatrix can be expressed as

E
𝑠,𝑙

= J
𝑙
E

𝑠 (14)

with the selection matrix J
𝑙

defined as J
𝑙

=

[02(𝑀−1)×2(𝑙−1)
I
2(𝑀−1)

0
2(𝑀−1)×(4−2𝑙)] for 𝑙 = 1, 2. According

to (11) and (14), we have

E†

𝑠,1
E

𝑠,2
= T−1
ΔT, (15)

where the block diagonal matrix Δ, comprising both uncor-
related and coherent angle information, is expressed as Δ =

blkdiag{Δ
𝑢
, Γ†Δ

𝑐
Γ}. As can be seen in (15), the diagonal

matrix Δ is composed of 𝐾
𝑢
+ 𝐷 eigenvalues of the matrix

E†

𝑠,1
E

𝑠,2
, and the full rank matrix T−1 is composed of the

corresponding eigenvectors of matrix E†

𝑠,1
E

𝑠,2
. Based on

the modulus property outlined in [26], the moduli of the
elements in Δ, corresponding to uncorrelated sources, are
approximately equivalent to 1 in the case of noise disturbance,
while those corresponding to coherent groups are signifi-
cantly away from 1. As a result, the uncorrelated sources
are distinguished from coherent sources, and the angles of
uncorrelated sources are thereby resolved.

𝐾
𝑢
columns of T−1 corresponding to 𝐾

𝑢
uncorrelated

sources are extracted in order to construct the matrix T−1

𝑢
.

Similarly, the remaining 𝐷 columns, corresponding to 𝐷

coherent groups, are chosen from T−1 to construct matrix
T−1

𝑐
. According to (11), the estimation of A

𝑢
is defined as

Â
𝑢
= E

𝑠
T−1

𝑢
=

[
[
[
[
[
[
[

[

C
𝑢

C
𝑢
Δ

𝑢

...

C
𝑢
Δ

𝑀−1

𝑢

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

− cos 𝛾
1

⋅ ⋅ ⋅ − cos 𝛾
𝐾𝑢

cos 𝜃
1
sin 𝛾

1
𝑒𝑗𝜂1 ⋅ ⋅ ⋅ cos 𝜃

𝐾𝑢
sin 𝛾

𝐾𝑢
𝑒𝑗𝜂𝐾𝑢

− cos 𝛾
1
𝑒−𝑗2𝜋𝑑sin𝜃1/𝜆 ⋅ ⋅ ⋅ − cos 𝛾

𝐾𝑢
𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢 /𝜆

cos 𝜃
1
sin 𝛾

1
𝑒−𝑗2𝜋𝑑sin𝜃1/𝜆 ⋅ ⋅ ⋅ cos 𝜃

𝐾𝑢
sin 𝛾

𝐾𝑢
𝑒𝑗𝜂𝐾𝑢 𝑒−𝑗2𝜋𝑑sin𝜃𝐾𝑢 /𝜆

... d
...

− cos 𝛾
1
𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃1/𝜆 ⋅ ⋅ ⋅ − cos 𝛾

𝐾𝑢
𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝐾𝑢 /𝜆

cos 𝜃
1
sin 𝛾

1
𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃1/𝜆 ⋅ ⋅ ⋅ cos 𝜃

𝐾𝑢
sin 𝛾

𝐾𝑢
𝑒𝑗𝜂𝐾𝑢 𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝐾𝑢 /𝜆

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (16)
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For the 𝑘th (𝑘 = 1, 2, . . . , 𝐾
𝑢
) uncorrelated source, the

relevant array response matrix Â
𝑢,𝑘

is formulated on similar
lines as for (16); that is, Â

𝑢,𝑘
= E

𝑠
T−1

𝑢,𝑘
, where T−1

𝑢,𝑘
is the eigen-

vector of the 𝑘th uncorrelated source extracted from T−1

𝑢
.

Further, the corresponding auxiliary polarization angle �̂�
𝑘

and the polarization phase difference �̂�
𝑘
of the 𝑘th uncorre-

lated source are, respectively, obtained as

�̂�
𝑘
=

1

𝑀

⋅

𝑀

∑
𝑖=1

tan−1
(

Â

𝑢,𝑘 (2𝑖, 𝑘)

./ (


Â

𝑢,𝑘 (2𝑖 − 1, 𝑘)

cos 𝜃

𝑘
)) ,

(17)

�̂�
𝑘
=

1

𝑀

𝑀

∑
𝑖=1

arg (Â
𝑢,𝑘 (2𝑖, 𝑘) ./Â𝑢,𝑘 (2𝑖 − 1, 𝑘)) . (18)

It can be observed from (17) and (18) that the polarization
parameters of the uncorrelated sources are estimated by

taking advantages of the inherent structure of Â
𝑢,𝑘
, which is

easy to implement by using elementwise division operation.
In addition, the proposed method accomplishes the estima-
tion of angle and polarization parameters for the uncorrelated
sources effectively without resorting to parameter matching.

3.2. Parameter Estimation for Coherent Sources. Similar to the
estimation of A

𝑢
outlined in Section 3.1, the array response

matrix of the 𝑘th (𝑘 = 𝐾
𝑢
+ 1,𝐾

𝑢
+ 2, . . . , 𝐾

𝑢
+ 𝐷) coherent

group A
𝑐,𝑘

can be estimated as

Â
𝑐,𝑘

= E
𝑠
T−1

𝑐,𝑘
=

[
[
[
[
[
[
[

[

C
𝑐,𝑘
𝜍
𝑘

C
𝑐,𝑘
Δ

𝑐,𝑘
𝜍
𝑘

...

C
𝑐,𝑘
Δ

𝑀−1

𝑐,𝑘
𝜍
𝑘

]
]
]
]
]
]
]

]

. (19)

This can further be rewritten in an extensive form as

Â
𝑐,𝑘

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜍
𝑘,1

cos 𝛾
𝑘,1

− ⋅ ⋅ ⋅ − 𝜍
𝑘,𝑝𝑘

cos 𝛾
𝑘,𝑝𝑘

𝜍
𝑘,1

cos 𝜃
𝑘,1

sin 𝛾
𝑘,1

𝑒𝑗𝜂𝑘,1 + ⋅ ⋅ ⋅ + 𝜍
𝑘,𝑝𝑘

cos 𝜃
𝑘,𝑝𝑘

sin 𝛾
𝑘,𝑝𝑘

𝑒
𝑗𝜂𝑘,𝑝𝑘

−𝜍
𝑘,1

cos 𝛾
𝑘,1

𝑒−𝑗2𝜋𝑑sin𝜃𝑘,1/𝜆 − ⋅ ⋅ ⋅ − 𝜍
𝑘,𝑝𝑘

cos 𝛾
𝑘,𝑝𝑘

𝑒
−𝑗2𝜋𝑑sin𝜃𝑘,𝑝𝑘 /𝜆

𝜍
𝑘,1

cos 𝜃
𝑘,1

sin 𝛾
𝑘,1

𝑒−𝑗2𝜋𝑑sin𝜃𝑘,1/𝜆 + ⋅ ⋅ ⋅ + 𝜍
𝑘,𝑝𝑘

cos 𝜃
𝑘,𝑝𝑘

sin 𝛾
𝑘,𝑝𝑘

𝑒
𝑗𝜂𝑘,𝑝𝑘 𝑒

−𝑗2𝜋𝑑sin𝜃𝑘,𝑝𝑘 /𝜆

...

−𝜍
𝑘,1

cos 𝛾
𝑘,1

𝑒−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝑘,1/𝜆 − ⋅ ⋅ ⋅ − 𝜍
𝑘,𝑝𝑘

cos 𝛾
𝑘,𝑝𝑘

𝑒
−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝑘,𝑝𝑘 /𝜆

𝜍
𝑘,1

cos 𝜃
𝑘,1

sin 𝛾
𝑘,1

𝑒
−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝑘,1/𝜆 + ⋅ ⋅ ⋅ + 𝜍

𝑘,𝑝𝑘
cos 𝜃

𝑘,𝑝𝑘
sin 𝛾

𝑘,𝑝𝑘
𝑒
𝑗𝜂𝑘,𝑝𝑘 𝑒

−𝑗2𝜋(𝑀−1)𝑑sin𝜃𝑘,𝑝𝑘 /𝜆

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (20)

where C
𝑐,𝑘

= [c
𝑘,1

, c
𝑘,2

, . . . , c
𝑘,𝑝𝑘

] and Δ
𝑐,𝑘

=

diag{𝑒−𝑗2𝜋𝑑sin𝜃𝑘,1/𝜆, . . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝑘,𝑝𝑘 /𝜆}. Note that the odd and
even rows of Â

𝑐,𝑘
characterize the array response submatrix

of 𝑥- and 𝑦-axes components of the dual-polarization vector
sensor array, respectively. Thus, we divide Â

𝑐,𝑘
of size 2𝑀× 1

into two𝑀 × 1 submatrices using the following equation:

Â(𝑖)

𝑐,𝑘
= G𝑇

𝑖
Â

𝑐,𝑘
, 𝑖 = 1, 2 (21)

such that G
1
and G

2
are two exchange matrices, defined as

G
1
= [g

1
, g

3
, . . . , g

2𝑀−1
] ,

G
2
= [g

2
, g

4
, . . . , g

2𝑀
] ,

(22)

where g
𝑖
is a 2𝑀×1 vector having the element on the 𝑖th row

as one and the remaining elements as zeros. For the purpose
of “decorrelation,” the two Hankel matrices constructed by
the array response matrices of 𝑥- and 𝑦-axes components
with respect to the 𝑘th coherent group are given as

B(1)

𝑘

=

[
[
[
[
[
[
[
[
[
[

[

Â(1)

𝑐,𝑘
(1) Â(1)

𝑐,𝑘
(2) ⋅ ⋅ ⋅ Â(1)

𝑐,𝑘
(𝑝

𝑘
+ 1)

Â(1)

𝑐,𝑘
(2) Â(1)

𝑐,𝑘
(3) ⋅ ⋅ ⋅ Â(1)

𝑐,𝑘
(𝑝

𝑘
+ 2)

...
... d

...

Â(1)

𝑐,𝑘
(𝑀 − 𝑝

𝑘
) Â(1)

𝑐,𝑘
(𝑀 − 𝑝

𝑘
+ 1) ⋅ ⋅ ⋅ Â(1)

𝑐,𝑘
(𝑀)

]
]
]
]
]
]
]
]
]
]

]

,

(23)

B(2)

𝑘

=

[
[
[
[
[
[
[
[
[
[

[

Â(2)

𝑐,𝑘
(1) Â(2)

𝑐,𝑘
(2) ⋅ ⋅ ⋅ Â(2)

𝑐,𝑘
(𝑝

𝑘
+ 1)

Â(2)

𝑐,𝑘
(2) Â(2)

𝑐,𝑘
(3) ⋅ ⋅ ⋅ Â(2)

𝑐,𝑘
(𝑝

𝑘
+ 2)

...
... d

...

Â(2)

𝑐,𝑘
(𝑀 − 𝑝

𝑘
) Â(2)

𝑐,𝑘
(𝑀 − 𝑝

𝑘
+ 1) ⋅ ⋅ ⋅ Â(2)

𝑐,𝑘
(𝑀)

]
]
]
]
]
]
]
]
]
]

]

,

(24)

where 𝑀 − 𝑝
𝑘
> 𝑝

𝑘
. It is easily proven that the two matrices

B(1)

𝑘
and B(2)

𝑘
have a full rank and can be further expressed as



6 International Journal of Antennas and Propagation

B(1)

𝑘

=

[
[
[
[
[
[
[

[

C
𝑐𝑘,1
𝜍
𝑘

C
𝑐𝑘,1
Δ

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,1
Δ

𝑝𝑘

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,1
Δ

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,1
Δ

2

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,1
Δ

𝑝𝑘+1

𝑐,𝑘
𝜍
𝑘

...
... d

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,1
Δ

𝑀−1

𝑐,𝑘
𝜍
𝑘

]
]
]
]
]
]
]

]

,

(25)

B(2)

𝑘

=

[
[
[
[
[
[
[

[

C
𝑐𝑘,2
𝜍
𝑘

C
𝑐𝑘,2
Δ

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,2
Δ

𝑝𝑘

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,2
Δ

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,2
Δ

2

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,2
Δ

𝑝𝑘+1

𝑐,𝑘
𝜍
𝑘

...
... d

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘
𝜍
𝑘

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘

𝑐,𝑘
𝜍
𝑘

⋅ ⋅ ⋅ C
𝑐𝑘,2
Δ

𝑀−1

𝑐,𝑘
𝜍
𝑘

]
]
]
]
]
]
]

]

,

(26)

where C
𝑐𝑘,1

and C
𝑐𝑘,2

are, respectively, composed of the
first and the second rows of C

𝑐,𝑘
. The matrix Δ

𝑐,𝑘
=

diag{𝑒−𝑗2𝜋𝑑sin𝜃𝑘,1/𝜆, . . . , 𝑒−𝑗2𝜋𝑑sin𝜃𝑘,𝑝𝑘 /𝜆} corresponding to the
𝑘th (𝑘 = 𝐾

𝑢
+1, . . . , 𝐾

𝑢
+𝐷) coherent group can be extracted

from Δ
𝑐
. In view of the fact that B(1)

𝑘
and B(2)

𝑘
have the same

rotational-invariant structures, either of them can be utilized
for the estimation of coherent angles. In this study, B(1)

𝑘
is

taken as an example. First, two rotational-invariant submatrix
pairs are constructed: the first pair is B(1)

𝑘,𝑟1
= B(1)

𝑘
(1 : 𝑀 −

𝑝
𝑘
− 1, :) and B(1)

𝑘,𝑟2
= B(1)

𝑘
(2 : 𝑀 − 𝑝

𝑘
, :); the second pair is

B(1)

𝑘,𝑙1
= B(1)

𝑘
(:, 1 : 𝑀 − 𝑝

𝑘
− 1) and B(1)

𝑘,𝑙2
= B(1)

𝑘
(:, 2 : 𝑀 −

𝑝
𝑘
). Subsequently, the rotational invariance can be applied to

the two submatrix pairs twice, which results in two groups
of coherent angle estimation results {�̂�

1

𝑘,1
, �̂�

1

𝑘,2
, . . . , �̂�

1

𝑘,𝑝𝑘
} and

{�̂�
2

𝑘,1
, �̂�

2

𝑘,2
, . . . , �̂�

2

𝑘,𝑝𝑘
}. The final coherent angle estimation is

then achieved as {�̂�
𝑘,1

, �̂�
𝑘,2

, . . . , �̂�
𝑘,𝑝𝑘

} = {(�̂�
1

𝑘,1
+ �̂�

2

𝑘,1
)/2, (�̂�

1

𝑘,2
+

�̂�
2

𝑘,2
)/2, . . . , (�̂�

1

𝑘,𝑝𝑘
+ �̂�

2

𝑘,𝑝𝑘
)/2} that allows more accurate angle

estimation than the conventional ESPRITmethod along with
a slight computational gain.

For further coherent polarization estimation, B(1)

𝑘
and

B(2)

𝑘
can be rewritten as

B(1)

𝑘
=

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘] , (27)

B(2)

𝑘
=

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘] . (28)

In order to determine the polarization parameters of the
coherent sources, the theory of least-squares is adopted such
that

ΔQ
𝑘
= min 

B(1)

𝑘
Q

𝑘
− B(2)

𝑘



2

𝐹
, (29)

where (29) is referred to as the coherent polarization equa-
tion. The derivative of ΔQ

𝑘
with respect to the coherent

polarization matrixQ
𝑘
is defined as

𝜕ΔQ
𝑘

𝜕Q
𝑘

= − (B(2)

𝑘
)
𝑇

B(1)

𝑘
− (B(1)

𝑘
)
𝑇

B(2)

𝑘

+ (B(1)

𝑘
)
𝑇

B(1)

𝑘
Q

𝑘
+Q𝑇

𝑘
(B(1)

𝑘
)
𝑇

B(1)

𝑘
.

(30)

The solution to (29) is acquired by setting the equality in
(30) to be zero. Thus, we have

Q
𝑘
= ((B(1)

𝑘
)
𝑇

B(1)

𝑘
)

−1

(B(1)

𝑘
)
𝑇

B(2)

𝑘
= (B(1)

𝑘
)
†

B(2)

𝑘
. (31)

By substituting (27) and (28) into (31), Q
𝑘
can be further

reformulated as (see Appendix for details)

Q
𝑘

= (

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]
)

)

†

⋅ (

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]
)

)

= [𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

†

⋅

[
[
[
[
[

[

𝜇
𝑘,1

𝜇
𝑘,2

d

𝜇
𝑘,𝑝𝑘

]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘] ,

(32)

where 𝜇
𝑘,𝑖

= − tan 𝛾
𝑘,𝑖
cos 𝜃

𝑘,𝑖
𝑒𝑗𝜂𝑘,𝑖 , 𝑖 = 1, 2, . . . , 𝑝

𝑘
. Equation

(32) indicates that the polarization information related to
the 𝑘th group coherent source can be obtained from the
eigenvalues ofQ

𝑘
.Thus, the estimations of polarization phase

difference are given by

�̂�
𝑘,𝑖

= − arg (𝜇
𝑘,𝑖
) ,

𝑘 = 𝐾
𝑢
+ 1,𝐾

𝑢
+ 2, . . . , 𝐾

𝑢
+ 𝐷, 𝑖 = 1, 2, . . . , 𝑝

𝑘
.
(33)

To achieve the estimation of coherent auxiliary polar-
ization angles, the associated angle and polarization phase
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differencesmust obey a one-to-one relationship. For this pur-
pose, we resort to a simple pair-matching method outlined
in [14]. The matching method is implemented via a simple
eigenvalue-matching operation, which is effective at the cost
of a negligible increase in computational cost. The estimated
auxiliary polarization angles are obtained as

�̂�
𝑘,𝑖

= tan−1
(

𝜇𝑘,𝑖



cos 𝜃
𝑘,𝑖

) ,

𝑘 = 𝐾
𝑢
+ 1,𝐾

𝑢
+ 2, . . . , 𝐾

𝑢
+ 𝐷, 𝑖 = 1, 2, . . . , 𝑝

𝑘
.

(34)

The estimation of joint angle and polarization is therefore
accomplished using the proposed method under the coexis-
tence of both uncorrelated and coherent sources. The major
steps are summarized as follows.

(1) Calculate the array covariancematrixR in (10) via the
sample estimation R̂ = ∑

𝑁

𝑛=1
X(𝑡

𝑛
)X𝐻(𝑡

𝑛
)/𝑁, where

𝑁 is the snapshot number.
(2) Based on the moduli property of the eigenvalues, the

uncorrelated sources are firstly separated from the
coherent sources, and the uncorrelated angle param-
eters are then estimated by exploiting the rotational-
invariance properties according to (11), (14), and (15).
Subsequently, the associated auxiliary polarization
angle and the polarization phase difference are esti-
mated by (17) and (18).

(3) The coherent array response matrix is estimated
according to (19)–(22) and is then divided into two
submatrices Â(1)

𝑐,𝑘
and Â(2)

𝑐,𝑘
. Further, twoHankelmatri-

ces B(1)

𝑘
and B(2)

𝑘
are constructed for “decorrelating”

via (23)–(26), and the estimation of coherent angles is
obtained by utilizing two rotational-invariant subma-
trix pairs. On the basis of the least-square theory, the
estimations of coherent auxiliary polarization angle
and the polarization phase difference are obtained
from (29)–(34).

4. Discussion

To provide insights into the proposed method, its identifia-
bility and the computational complexity are discussed in this
section.

4.1. Identifiability. Consider 𝐾 far-field completely polarized
narrowband sources composed of 𝐾

𝑢
uncorrelated sources

and 𝐷 groups of 𝐾
𝑐
coherent sources impinging upon the

dual-polarization ULA, as described in Section 2. For the
parameter estimation of the uncorrelated sources mentioned
in Section 3.1, the inequality𝑀− 1 > 𝐾

𝑢
+ 𝐷must hold true

in the light of (15), thus requiring at least 𝐾
𝑢
+ 𝐷 + 2 dual-

polarization sensors. In addition, to estimate the angle and
polarization parameters of the coherent sources according to
Section 3.2, the dimensions of the Hankel matrices B(1)

𝑘
and

B(2)

𝑘
defined in (23) and (24) determine theminimumnumber

of dual-polarization sensors required for the coherent param-
eter estimation. Note that the inequality 𝑀 − 𝑝

𝑘
> 𝑝

𝑘
+ 1

must be satisfied, such that the minimum number of the
dual-polarization sensors required for the coherent sources
is max{2𝑝

1
+ 1, 2𝑝

2
+ 1, . . . , 2𝑝

𝐷
+ 1}. Based on the above

analysis, it is clear that the proposed method necessitates at
least𝑀 = max{𝐾

𝑢
+𝐷+2,max{2𝑝

1
+1, 2𝑝

2
+1, . . . , 2𝑝

𝐷
+1}}

dual-polarization sensors to resolve all the incident sources,
which implies that the proposedmethod displays potential to
estimate more sources than the number of sensors.

4.2. Computational Complexity. Unlike the IPAS method
[21], the proposed method distinguishes the uncorrelated
sources from the coherent sources by directly utilizing the
modulus property of eigenvalues without resorting to the
extra operations, such as use of oblique projection and spatial
differencematrices; thus the computational complexity of the
proposed method is reduced. The major computational load
of the proposed method and the IPAS method is to perform
the EVD. The EVD requires about 𝑂(𝑀

3) computations for
the uncorrelated sources and 𝑂((𝑝

𝑘
+ 1)3) for the coherent

sources, which is relatively low as compared with the require-
ment for IPAS method (𝑂(𝑀3) for uncorrelated sources
and 𝑂(𝑀3) for coherent sources). For the existing “decor-
relation” methods, such as PS-MUSIC, PDS-MUSIC, and
PAS methods, a computationally intensive spectral search
is involved; thus the computational complexities of these
methods are relative high, especially for the finer spectral
search. In summary, the proposedmethod offers a significant
advantage in terms of computational efficiency.

5. Simulation Results

In this section, several simulations are presented to illustrate
the performance of the proposed method in terms of angle
and polarization estimation, where the PAS [20], IPAS [21],
PS-MUSIC [17], PDS-MUSIC [18], and the well-known
polarized MUSIC methods [9] are selected for comparative
characterization.

In the first simulation, we illustrate the effectiveness of the
proposed method in distinguishing the uncorrelated sources
from the coherent sources and in estimating the joint angle
and polarization. A 12-sensor dual-polarization ULA is uti-
lized to this effect. Assume that five far-field completely polar-
ized narrowband electromagnetic wave sources, comprising
the two uncorrelated sources and a group of three coherent
sources, impinge on this ULA. The uncorrelated sources are
parameterized by {67.3

∘, 27∘, 14∘} and {42.9∘, 19∘, 50∘}, and
the coherent sources are parameterized by {25.7

∘
, 40

∘
, 16

∘
},

{−10.1
∘
, 13

∘
, 30

∘
}, and {15.4

∘
, 23

∘
, 82

∘
} with the fading coef-

ficients [1, −0.5280 + 0.6010𝑗, 0.9335 − 0.3585𝑗]. The SNR
and the snapshot number are, respectively, set to be 20 dB
and 500. Figure 2 depicts the moduli of eigenvalues for both
uncorrelated and coherent sources. The scatter plots of the
uncorrelated and coherent estimations with 100 independent
trials are, respectively, shown in Figures 3 and 4.

It can be clearly observed in Figure 2 that the moduli
of the eigenvalues associated with the uncorrelated sources
are close to 1, while that associated with the coherent group
is significantly away from 1. Thus, uncorrelated sources can
be effectively distinguished from the coherent sources on
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Figure 2: Moduli of the eigenvalues.
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Figure 3: Scatter plot of the uncorrelated sources: (a) global figure; (b) enlarged local scatter plot for the uncorrelated source 1; (c) enlarged
local scatter plot for uncorrelated source 2.
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Figure 4: Scatter plot of the coherent sources. (a) Global figure; (b), (c), and (d) display the enlarged local scatter plots for coherent sources
1, 2, and 3, respectively.

the basis of this modulus property. The results in Figures 3
and 4 demonstrate that the proposed method can accurately
estimate the angle and polarization parameters for a mixture
of uncorrelated and coherent sources.

In order to evaluate the angle and polarization estimation
performance of the proposed method, 200 independent
Monte Carlo trials are performed, and the root mean squared
error (RMSE) is chosen as a performance index, which is
defined as

RMSE = √
1

200�̃�

200

∑
𝑛=1

�̃�

∑
𝑘=1

(�̂�
𝑛,𝑘

− 𝜔
𝑛,𝑘

)
2
, (35)

where �̂�
𝑛,𝑘

is the estimate of angle or polarization parameter
𝜔

𝑛,𝑘
for the 𝑘th Monte Carlo trial and �̃� denotes the number

of uncorrelated or coherent sources.

The second simulation studies the performance of the
proposed method in estimating the angle and polariza-
tion parameters for both the uncorrelated and coherent
sources using an 8-sensor dual-polarizationULA.The uncor-
related sources are parameterized by {82.8

∘, 27∘, 40∘} and
{56.4∘, 9∘, 78∘}, and the two coherent sources are parameter-
ized by {31.7∘, 30∘, 16∘} and {8.0∘, 13∘, 30∘} with the fading
coefficients [1, 0.4469 − 0.7696𝑗]. Figure 5 shows that the
proposed method can effectively estimate the parameters of
the uncorrelated and the coherent sources, and the accuracy
of the proposed method tends to improve with an increase of
SNR or number of snapshots.

The third simulation compares the estimation perfor-
mance of the proposed method with that of the PAS and
the IPAS methods. An 8-sensor dual-polarization ULA is
utilized for the proposed method, and an L-shape array
composed of eight 6-component electromagnetic vector
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Figure 5: RMSE of angle and polarization parameter estimation versus SNR and snapshot number: (a) RMSE of 𝜃 versus SNR with the fixed
snapshot number 500; (b) RMSE of 𝜃 versus snapshot number with the fixed SNR 20 dB; (c) RMSE of 𝛾 versus SNR with the fixed snapshot
number 500; (d) RMSE of 𝛾 versus snapshot number with the fixed SNR 20 dB; (e) RMSE of 𝜂 versus SNR with the fixed snapshot number
500; (f) RMSE of 𝜂 versus snapshot number with the fixed SNR 20 dB.

sensors is used for the comparative study. The antenna
hardware cost of the proposed method is less than that of the
comparativemethods. One uncorrelated source is parameter-
ized by {70.1

∘, 15∘, −20∘}, and the two coherent sources are
parameterized by {20.7∘, 30∘, 16∘} and {41.6∘, 13∘, 50∘} with

the fading coefficients [1, −0.3358 − 0.7261𝑗]. Due to the
fact that the PAS and the IPAS methods fail to provide an
estimation of polarization parameters, only the RMSE of
the angle estimates are considered in this simulation. It can
be observed from Figure 6 that the proposed and the IPAS
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Figure 6: Comparison of RMSE of angle estimation of the proposed method, PAS method, and IPAS method versus SNR and snapshot
number: (a) RMSE of uncorrelated angle estimation versus SNR with the fixed snapshot number 500; (b) RMSE of coherent angle estimation
versus SNR with the fixed snapshot number 500; (c) RMSE of uncorrelated angle estimation versus snapshot number with the fixed SNR
20 dB; (d) RMSE of coherent angle estimation versus snapshot number with the fixed SNR 20 dB.

methods outperform the PAS method significantly for both
the uncorrelated and the coherent sources. Moreover, the
performance of the proposed method is superior for the
uncorrelated angle estimation and slightly inferior for the
coherent angle estimation as compared to the IPAS method.
The reason for this superiority is that both the proposed
method and the IPAS method estimate the uncorrelated
and coherent sources separately. This allows full utilization
of the effective array aperture and improves the estimation
accuracy accordingly, while the PAS method estimates the
uncorrelated and the coherent sources simultaneously with

the whole arrays. In addition, the IPAS method estimates the
coherent sources by taking an average of the received data
from the 6-component vector sensor array, thus acquiring a
high accuracy of coherent angle estimations at the expense
of the increasing antenna hardware costs in comparison with
the dual-polarization vector sensor.

The fourth simulation compares the estimation perfor-
mance of the proposed method, the PS-MUSIC method, and
the PDS-MUSIC method. The arrays used in this simulation
are the same as that in the third simulation. Since the PS-
MUSIC and the PDS-MUSIC methods cannot address the
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Figure 7: Comparison of RMSE of angle estimation of the proposed, PS-MUSIC, and PDS-MUSIC methods versus SNR and snapshot
number: (a) RMSE versus SNR with the fixed snapshot number 500; (b) RMSE versus snapshot number with the fixed SNR 20 dB.

coexistence of the uncorrelated and coherent sources, only
the RMSE of coherent angle estimates are considered in
this simulation. Two coherent sources are parameterized by
{15.7

∘, 30∘, 16∘} and {65.1∘, 13∘, 30∘} with the fading coeffi-
cients [1, 0.4956 + 0.4944𝑗] considered in this simulation.
It can be seen from Figure 7 that the proposed method
outperforms PS-MUSIC and the PDS-MUSIC methods,
especially when the SNR is low or the snapshot number is
small. The reason is that two rotational-invariant submatrix
pairs are extracted from two Hankel matrices, which can
provide accurate coherent angle estimates. Restricted by the
array model and the method itself, the PDS-MUSIC can
estimate at most 3 sources. Moreover, the two comparative
methods are coupled with MUSIC method that requires the
computationally demanding spectral search.

In the last simulation, we investigate the angular reso-
lution of the proposed method as compared to that of the
well-known polarized MUSIC (P-MUSIC) method [9]. The
angular resolution is defined as

Δ𝜃min = min (Δ𝜃)

s.t. 
�̂�
1
− 𝜃

1


≤

Δ𝜃

2


�̂�
2
− 𝜃

2


≤

Δ𝜃

2
,

(36)

where Δ𝜃 denotes the angular separation between the two
incident sources. Consider two uncorrelated sources parame-
terized by {57.0∘, 15∘, 45∘} and {57.0∘ +Δ𝜃, 85∘, −68∘} imping-
ing on the 8-sensor dual-polarization ULA. Figure 8 shows
the angular resolution versus SNR and snapshot num-
ber, respectively. As observed from Figure 8, the proposed

method has a higher angular resolution than the well-known
P-MUSIC method. Note that the P-MUSIC requires compu-
tationally intensive 3D spectral search, and the angular reso-
lution of the P-MUSIC method is limited by the search step.
This means that if the angular separation between the two
sources is less than the search step, these two sources cannot
be resolved. In summary, the proposedmethod offers a higher
angular resolution as well as lower computational complexity
than the P-MUSIC method.

6. Conclusion

In this paper, a computationally efficient angle and polariza-
tion estimation method is proposed under the coexistence
of uncorrelated and coherent sources by using a dual-
polarization vector sensor array.The uncorrelated sources are
first distinguished from the coherent sources according to
themodulus property of eigenvalues.The uncorrelated angles
are then estimated by exploiting the rotational invariance
and the associated polarization parameters are obtained from
the estimated uncorrelated array response matrix. Finally,
two Hankel matrices, constructed from the elements of the
estimated coherent array response matrix, are used for the
coherent angle estimation, and the corresponding polariza-
tion parameters are estimated by solving the least-squares
solution to the coherent polarization matrix. In addition,
the identifiability and the computational complexity of the
proposedmethod are also discussed. Simulation results show
that the proposed method achieves the joint estimation of
angle and polarizationwith a high accuracy as comparedwith
the PS, PDS, PAS, and IPAS methods. Further, the proposed
method is found to be computationally efficient and has a
higher angular resolution. In the future, research will be
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Figure 8: Angular resolution versus SNR and snapshot number: (a) RMSE versus SNRwith the fixed snapshot number, 500; (b) RMSE versus
snapshot number with the fixed SNR 10 dB.

extended to the joint 2D angle and polarization estimation
with the interelement spacing beyond a half-wavelength.

Appendix

In this appendix, we prove that (32) holds true:
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𝜍
𝑘]
)

)

𝐻

⋅ (

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]
)

)

= [𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

† (
(

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

𝐻

⋅

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

)
)

)

−1

([𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

𝐻

)
†

⋅ ([𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

𝐻

)
(
(

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

𝐻
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⋅

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

)
)

)

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

= [𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘]

† (
(

(

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

†

⋅

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

)
)

)

[𝜍𝑘 Δ𝑐,𝑘𝜍𝑘 ⋅ ⋅ ⋅ Δ
𝑝𝑘

𝑐,𝑘
𝜍
𝑘] .

(A.1)

Note that

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

†

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

(A.2)

can be simplified to a 𝑝
𝑘
× 𝑝

𝑘
diagonal matrix as

[
[
[
[
[
[
[

[

C
𝑐𝑘,1

C
𝑐𝑘,1
Δ

𝑐,𝑘

...

C
𝑐𝑘,1
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

†

[
[
[
[
[
[
[

[

C
𝑐𝑘,2

C
𝑐𝑘,2
Δ

𝑐,𝑘

...

C
𝑐𝑘,2
Δ

𝑀−𝑝𝑘−1

𝑐,𝑘

]
]
]
]
]
]
]

]

=

[
[
[
[
[

[

𝜇
𝐾𝑢+𝑘,1

𝜇
𝐾𝑢+𝑘,2

d

𝜇
𝐾𝑢+𝑘,𝑝𝑘

]
]
]
]
]

]

,

(A.3)

where 𝜇
𝐾𝑢+𝑘,𝑖

= − tan 𝛾
𝐾𝑢+𝑘,𝑖

cos 𝜃
𝐾𝑢+𝑘,𝑖

𝑒𝑗𝜂𝐾𝑢+𝑘,𝑖 , 𝑖 = 1, 2, . . . ,

𝑝
𝑘
. Combiningwith (A.1) and (A.3), the equality in (32) holds.
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