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An improved fractal sea surface model, which can describe the capillary waves very well, is introduced to simulate the one-
dimension rough sea surface. In thismodel, the propagation of electromagnetic waves (EWs) is computed by the parabolic equation
(PE) method using the finite-difference (FD) algorithm. The numerical simulation results of the introduced model are compared
with those of the Miller-Brown model and the Elfouhaily spectrum inversion model. It has been shown that the effects of the fine
structure of the sea surface on the EWs propagation in the introducedmodel are more apparent than those in the other twomodels.

1. Introduction

Modeling the EWs propagation in marine environment is of
great significance in the fields of the wireless communication,
radar detection, GPS, and so on. In marine environment,
to accurately simulate the actual sea surface is an essential
task. At present, the existing sea surface models universally
applied in electromagnetic computing include the Miller-
Brown model [1, 2], the spectrum inversion model, and the
fractal model [3]. The Miller-Brown sea surface model is
commonly used to simulate the EWs propagation on the
sea surface [4]. The spectrum inversion method is applied
to study the electromagnetic scattering on the sea surface
at the first [5]. Then Benhmammouch applies the Elfouhaily
spectrum [6] inversion model to study the influence of the
rough sea surface on the EWs propagation in maritime
environment [7, 8]. Up to now, just the twomodels have been
used to compute the EWs propagation. However, the Miller-
Brown model does not take the influence of the geometric
sea surface on the EWs propagation into account.Though the
Elfouhaily spectrum inversion model can show the influence
of the structure of the sea surface on the EWs propagation, it
cannot simulate the capillary waves finely. And furthermore,

the expression of the Elfouhaily spectrum is miscellaneous.
In fact, the fractal sea surface model can depict the sea
surface finely and is also widely applied in electromagnetic
computing [9, 10]. Besides, the fractal geometry has been
useful in antenna engineering to design small and multiband
antennas as well [11]. Later, the improved fractal sea surface
model [12, 13] is proposed. But this type of model is mainly
used to study the electromagnetic scattering. So in order
to simulate the fine structure of the sea surface efficiently
and study the influence of the fine structure on the EWs
propagation, the improved fractal sea surface model (one-
dimension) is introduced to study the EW propagation.
Besides, the FD based PE method [14, 15] is applied to
simulate the propagation of the EWs in this model because
it is good at dealing with the complicated boundary.

This paper is mainly divided into three parts. In Sec-
tion 2, the PE method and the finite-difference algorithm are
described. In Section 3, the threemodels of the sea surface are
discussed. The sea surface profiles depicted by the improved
fractal model are shown and compared with those obtained
by the Elfouhaily spectrum inversionmodel. In Section 4, the
EWs propagation losses in the three models are computed
and compared, which have demonstrated the validity of the
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Figure 1: Finite-difference grid model.

introduced model and its ability of reflecting the effect of the
capillary waves of the sea surface on the EWs propagation.

2. Computing Method for Electromagnetic
Wave Propagation

2.1. Parabolic Equation and Finite-Difference Method. PE is
derived from the wave equation under certain assumptions
[14]. The equation itself automatically includes the effects of
the refraction and diffraction of the EWs. It is a full wave
analysis method. The expression of the parabolic equation is
[15]

( 𝜕𝜕𝑥 + 𝑖𝑘 (1 − 𝑄)) 𝑢 = 0, (1)

where

𝑄 = √ 1𝑘2 𝜕2𝜕𝑧2 + 𝑛2 (𝑥, 𝑧) = √1 + 𝑍
𝑍 = 1𝑘2 𝜕2𝜕𝑧2 + 𝑛2 (𝑥, 𝑧) − 1,

(2)

where 𝑘 is the EWwave number and 𝑛 is the refractive index.
By applying the Padé approximation, (1) results in the so-
called Claerbout equation with the form

𝜕3𝑢𝜕𝑥𝜕𝑧2 − 2𝑖𝑘𝜕2𝑢𝜕𝑧2 + 𝑘2 (𝑛2 + 3) 𝜕𝑢𝜕𝑥 − 2𝑖𝑘3 (𝑛2 − 1) 𝑢
= 0.

(3)

The finite-difference method is adopted to solve the
parabolic equation. In order to implement the equidistant
rectangular finite difference, the region of the electromag-
netic propagation field points is established as shown in
Figure 1.The relation between the field points is shown by (4).
The detailed solving process of the Claerbout equation can be
found in [15].

𝜉𝑚 = 12 (𝑥𝑚−1 + 𝑥𝑚)
𝑢 (𝜉𝑚, 𝑧𝑗) = 12 [𝑢 (𝑥𝑚−1, 𝑧𝑗) + 𝑢 (𝑥𝑚, 𝑧𝑗)] .

(4)

2.2. Boundary Condition. In order to solve the parabolic
equation, the boundary condition should be considered
properly. Here, we adopt the Leontovich impedance bound-
ary condition expressed as [16]

𝜕𝑢𝜕𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0 + 𝛽𝑢󵄨󵄨󵄨󵄨𝑧=0 = 0

𝛽 = 𝑖𝑘 sin 𝜃 (1 − Γ1 + Γ) ,
(5)

where Γ is the Fresnel reflection coefficient and 𝜃 is the
grazing angle.

2.3. Refractive Index. The refraction index 𝑛 is usually used
to describe the information of the atmospheric environment.
In this paper, the modified refractive index of Battaglia [17]
is applied.The relation between the refraction index 𝑛(𝑧) and
the modified refractive index𝑀(𝑧) is defined as [18]

𝑛 (𝑧) = 1 − 𝑧𝑅 + 𝑀(𝑧) × 10−6. (6)

3. Simulation of Sea Surface

3.1. Miller-Brown Sea SurfaceModel. In theMiller-Brown sea
surface model, the sea surface is approximated into a flat one.
The influence of the rough sea surface on the propagation
is reflected by the effective reflection coefficient Γ𝑒 [1, 2]; the
expression is

Γ𝑒 = 𝜌Γ0, (7)

where Γ0 is the reflection coefficient for a flat sea surface and𝜌 is the roughness reduction factor, which is expressed as

𝜌 = ∫∞
−∞

exp (2𝑖𝑘𝜍 sin 𝜃) 𝑃 (𝜍) 𝑑𝜍, (8)

where

𝑃 (𝜍) = 1𝜋3/2ℎexp(− 𝜍28ℎ2)𝐾0 ( 𝜍28ℎ2) , (9)

where 𝐾0 is the modified Bessel function of the second kind
of order 0 and ℎ is the random mean square (rms) deviation
of the sea surface height.
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Figure 2: The sea surface profiles generated by the Elfouhaily spectrum inversion method with the wind speed: (a) 5m/s, (b) 10m/s, and (c)
15m/s.

3.2. Elfouhaily Spectrum Inversion Sea Surface Model. The
Elfouhaily spectrum is an omnidirectional and wind-
dependent spectrum, and it is first proposed by Elfouhaily.
This spectrum is valid over all wavenumbers and is amenable
to electromagnetic models, and it is expressed as a sum of
two spectrum regimes (long-wave curvature spectrum𝐵𝑙 and
short-wave curvature spectrum 𝐵ℎ) [6]:

𝑆 (𝑘) = 𝑘−3 (𝐵𝑙 + 𝐵ℎ) . (10)

With regard to the Elfouhaily spectrum, the sea surface is
generated by the Monte-Carlo method. The introduction of
the Monte-Carlo method can be seen in [19]. The sea surface
profiles with different wind speeds are shown in Figure 2.

3.3. Improved Fractal Sea Surface Model. Since the fractal
model can depict the structure of the sea surface more finely,
it has been widely used in simulating the electromagnetic
scattering on the sea surface [9, 10]. But the power spectrum
of the typical fractalmodel can only satisfy the negative power
law index spectrum and cannot indicate the entire spectrum
of the sea surface. So we adopt the following one-dimensional
improved fractal model to simulate the sea surface [12, 13],
and the improved model satisfies the global PM spectrum.
The function of the sea surface height is defined as

𝑓 (𝑥, 𝑡)
= 𝜎𝜂𝑀−1∑
𝑚=0

𝑎−(𝐷−𝜉)𝑚 cos [𝑘0𝑎𝑚 (𝑥 + V𝑥𝑡) + 𝜔𝑚𝑡 + 𝛽𝑚]

+ 𝜎𝜂𝑁−1∑
𝑛=0

𝑏(𝐷−2)𝑛 cos [𝑘0𝑏𝑛 (𝑥 + V𝑥𝑡) + 𝜔𝑛𝑡 + 𝛽𝑛] ,
(11)

where 𝑡 is the time, V𝑥 is the speed of the receiving platform
(the receiving platform is supposed to be immobile here, so
V𝑥 is set to 0), 𝜂 is the normalized factor, 𝐷 is the fractal
dimension, 𝑎 and 𝑏 are the scale factors, 𝜔𝑚 and 𝜔𝑛 are the
angular frequencies of the waves, and 𝛽𝑚 and 𝛽𝑛 are the
uniformly distributed random phases in [−𝜋, 𝜋]. The wind
speed at 19.5 meters above the sea surface (𝑈19.5), the square
root of sea surface height (𝜎), and the fundamental wave
number (𝑘0) of the sea surface satisfy the following relation
[13, 20]:

𝜎 = 0.0212𝜁𝑈19.54
𝑘0 = 𝜔20𝑔 = 0.8772𝑔𝑈219.5 ,

(12)

where 𝜉 = 2.9, 𝜁 = 1.65, 𝑏 = 1.015, 𝑎 = 1/𝑏, 𝑔 = 9.81m/s2,𝐷 = 1.62, and𝑀 = 𝑁 = 400.
According to the above expressions, the sea surface

profiles with different wind speeds are simulated, as shown in
Figure 3. From Figures 2 and 3, we can see that the structure
of the sea surface generated by the improved fractal method
is more fine.

4. The Propagation Results and Discussion

In this paper, the Gaussian source [14] is applied, in which
beam-width is 3∘, the elevation angle is 0∘, and the antenna
(horizontal polarization) is at height 25m above the surface.
Now combining the contents of Sections 2 and 3, the EW
propagation model is built, as shown in Figure 4, and the
staircase terrain approximation method is used to deal with
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Figure 3: The sea surface profiles generated by the improved fractal method with the wind speed: (a) 5m/s, (b) 10m/s, and (c) 15m/s.
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Figure 4: The EWs propagation model on the sea surface.

the irregular sea surface. According to the fineness of the sea
surface structure in the improved fractal model, in the case
of the mesh length longer than one meter, the finer meshing
in the FDM and the finer structures of the sea surface will be
taken into consideration. But when themesh length is shorter
than one meter, the mesh length will have little influence on
the fineness of the sea surface in the propagation model. So
considering the simulation efficiency, the mesh length of the
FDM is set to double wavelengths of the EW in this paper.

Here the propagation loss (PL) is computed to represent
the EWspropagation characteristics.ThePLs in the improved
fractal propagation model versus range (0–5 km) and height
(0–100m) with wind speed (𝑈19.5) 5m/s, 10m/s, and 15m/s
are computed and shown in Figure 5. As shown in Figure 3,
the height of the sea wave increases with the wind speed,
and from Figure 5, we notice that the influence of the rough
sea surface on the EWs propagation increases with the wind
speed.

In order to show the effects of the fine structure of the sea
surface on the EWs propagation, we study this issue mainly
from two aspects. First, the effect of the rough sea surfacewith
different wind speeds on the EWs propagation is researched.
The PLs at a distance of 3000m with different wind speeds
are simulated and shown in Figure 6. For comparison, the
height of the sea surface in the Miller-Brown model is set to
be the same as that of the other twomodels (which is got from
experiments). As shown in Figure 6, the fluctuation of the
PL curves of the three models is almost consistent when the
wind speed is low (5m/s, e.g., Figure 6(a)). When the wind
speed increases (from 5m/s to 15m/s), the deviation of the
PL curves in the three models also increases. Therefore, on
the one hand, it demonstrates the validity of the improved
fractal sea surface propagation model. On the other hand, it
indicates that the structure of the rough sea surface has a great
influence on the propagation. In addition, we can also notice
that the change rates of the PL at the height in the improved
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Figure 5: Propagation in the improved fractal model with the wind
speed: (a) 5m/s. (b) 10m/s, and (c) 15m/s.

fractal propagation model are much faster than those in the
other two models, and the variation scope of the PL in the
improved fractal model is greater than that in the other two
models at the same height. This is because more details of
the sea surface in this model are depicted. So in theory, the
improved fractal sea surface model is closer to the realistic
sea surface.
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Figure 6: PLs in the three propagation models at a horizontal
distance of 3000m with the wind speeds: (a) 5m/s, (b) 10m/s, and
(c) 15m/s.

Then, the effect of the fine structure of the sea surface
on the different frequencies EWs propagation is studied.
The frequencies of the EWs in UHF of IEEE (0.5GHz), L-
band (1.5 GHz), S-band (3GHz), and C-band (6GHz) are
used to study the propagation in the sea surface models. The
PLs of different frequencies EWs propagation at a distance
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Figure 7: PLs in the three propagation models at a horizontal distance of 3000m, when the frequencies of the EWs are (a) 0.5 GHz, (b)
1.5 GHz, (c) 3GHz, and (d) 6GHz.

of 3000m with the same wind speed (10m/s) in the three
models are simulated and shown in Figure 7. From Figure 7,
it is not difficult to see that the influence of the sea surface
structure on the propagation of high frequency EWs is greater
than that of the low frequency EWs, and the effects of the
improved fractal sea surface model on the PLs are greater
than that of the other twomodels. When the frequency of the
EWs increases to 6GHz, the effect of the fine structure of the
sea surface on the PL is great and it should not be ignored. So
in this case, using theMiller-Brownmodel and the Elfouhaily
spectrum inversion model to simulate the EWs propagation
on the sea surface will cause a relatively large error, especially
the Miller-Brown model.

In fact, when the wind speed increases, the deviations
between the three sea surface models and the realistic sea
surface also increase. This is because the foams are generated
on the realistic sea surface, but we do not take it into con-
sideration in our models. In addition, according to the wind
scale, thewave rolls will appearwhen thewind speed is higher
than 20m/s. Under this situation, all of the three models are
not suitable for simulating the sea surface anymore and it
should be simulated by the more matched models, such as
the Fournier model [21].

5. Conclusions

By computing the EWs propagation losses in the three
models, it is clear that the fine structure of the sea surface has
a significant influence on the propagation, and the influence
increases with the wind speed and the frequency of the EWs.
From the comparison between the improved fractal model
and the Elfouhaily spectrum inversion model, we can find
that there is more detailed information of the sea surface in
the improved fractal sea surface model. It indicates that the
simulation of the EWs propagation in the improved fractal
sea surface model is more close to the actual situation on
the sea surface. Besides, in the process of simulating, we find
that the expressions of the improved fractalmodel are simpler
than the Elfouhaily spectrum inversionmodel, whichmake it
easier to establishmodel.Therefore, in theory, the introduced
model in this paper is more suitable to be applied to study the
EWs propagation over the sea surface.

Furthermore, the one-dimension improved fractal sea
surface model could also be extended to the two-dimension
model, which can be applied to predict the 3D EWs
propagation. In addition, this sea surface model could be
combined with the other models (such as the Fournier
model) to simulate the sea surface under different conditions.
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