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An unconditionally stable one-step leapfrog locally one-dimensional finite-difference time-domain (LOD-FDTD) algorithm
towards body of revolution (BOR) is presented.The equations of the proposed algorithm are obtained by the algebraicmanipulation
of those used in the conventional LOD-BOR-FDTD algorithm. The equations for 𝑧-direction electric and magnetic fields in the
proposed algorithm should be treated specially. The new algorithm obtains a higher computational efficiency while preserving
the properties of the conventional LOD-BOR-FDTD algorithm. Moreover, the convolutional perfectly matched layer (CPML)
is introduced into the one-step leapfrog LOD-BOR-FDTD algorithm. The equation of the one-step leapfrog CPML is concise.
Numerical results show that its reflection error is small. It can be concluded that the similar CPML scheme can also be easily
applied to the one-step leapfrog LOD-FDTD algorithm in the Cartesian coordinate system.

1. Introduction

The body of revolution finite-difference time-domain (BOR-
FDTD) algorithm is very efficient in analyzing electromag-
netic problems towards rotationally symmetric structures [1,
2]. It has been widely used inmodeling electromagnetic pulse
effects, electromagnetic wave scattering, subsurface interface
radar, optical lenses, guided waves, and so on [1]. However,
the time step size of the conventional BOR-FDTD algorithm
is strictly limited by the Courant-Friedrichs-Lewy (CFL)
condition [1]. To remove the stability limit on the time step
size of the BOR-FDTD algorithm and improve the efficiency,
some unconditionally stable schemes such as the alternating-
direction implicit (ADI) BOR-FDTD [3], the locally one-
dimensional (LOD) BOR-FDTD [4], and the weighted
Laguerre polynomials (WLP) BOR-FDTD [5] algorithms
have been proposed. TheWLP-BOR-FDTD algorithm needs
to solve a large sparse matrix, so it is not so applicable for
large computational domain [5].The LOD-BOR-FDTD algo-
rithm and the ADI-BOR-FDTD algorithm show comparable
accuracy, and the LOD-BOR-FDTD algorithm shows a little

higher computational efficiency [4]. In the conventionalADI-
BOR-FDTDandLOD-BOR-FDTDalgorithms, the equations
for one full time step are split into two subtime steps; as a
result, their computational expenditures are increased [3, 4].
Recently, the one-step leapfrog ADI-FDTD algorithm which
eliminates the midtime step successfully has been proposed
and developed [6–11]. It makes the simulation with the ADI-
FDTD algorithm more efficient. The application of the one-
step leapfrog ADI-FDTD algorithm to BOR has also been
proposed [12]. In fact, the parallel improvement can also be
made for the conventional LOD-BOR-FDTD algorithm.

Recently, an unconditionally stable one-step leapfrog
LOD-FDTD algorithm was proposed [13]. In the algorithm,
the equations are obtained by the manipulation of those used
in the conventional LOD-FDTD algorithm. The resultant
electric and magnetic field equations are interlaced half a
time step apart and no subtime steps are involved. The new
algorithm obtains a higher computational efficiency while
preserving the properties of the conventional LOD-FDTD
algorithm [13].
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In this work, the one-step leapfrog LOD-FDTDalgorithm
for BOR is developed, called one-step leapfrog LOD-BOR-
FDTD algorithm. In the proposed algorithm, the 𝑧-direction
electric and magnetic field components are dealt with
differently. Moreover, the convolutional perfectly matched
layer (CPML) [14] is introduced to the one-step leapfrog
LOD-BOR-FDTD algorithm. The equations of the one-step
leapfrog CPML are concise.

The remainder of the paper is organized as follows. In
Section 2, the equations of the one-step leapfrog LOD-BOR-
FDTD algorithm are presented and some discussions about
the algorithm are made. In Section 3, the CPML is developed
for the proposed algorithm. To assess the proposed algorithm
and its CPML, numerical examples are given in Section 4.
Finally, conclusions are made in Section 5.

2. Formulations and Discussions

2.1. Equations for Off-Axis Cells. The equations for the con-
ventional LOD-BOR-FDTD algorithm can be expressed as
[4]
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are thematrices that contain the spatial differential operators,
E = [𝐸

𝜌
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]

𝑇 are the electric
and magnetic field vectors, 𝑚 is the mode number, 𝜀 is the
permittivity, and 𝜇 is the permeability.

Following the similar procedure used in [13, 15, 16], one
can obtain the following electric field equations for the one-
step leapfrog LOD-BOR-FDTDalgorithmwith only algebraic
manipulations of (1a), (1b), (2a), and (2b):
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where I is a 3 × 3 unit matrix, Ẽ𝑛−1/2 and e𝑛+1/2 are auxiliary
variables, and e𝑛+1/2 = E𝑛+1/2 + E𝑛.

Similarly, one can obtain the equations for the magnetic
fields
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where H̃𝑛 and h𝑛+1 are auxiliary variables and h𝑛+1 = H𝑛+1 +
H𝑛+1/2.

2.2. Equations for On-Axis 𝐸
𝑧
Field. The on-axis 𝐸
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component cannot be obtained by using (4a), (4b), and (4c)
directly. Note that the on-axis 𝐸
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field component is zero for

𝑚 ̸= 0, so one should only deal with it for𝑚 = 0.The equation
for the on-axis 𝐸
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field component in the conventional LOD-

BOR-FDTD algorithm is [4]
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for the second subtime step. Moreover, one can obtain the
equation for 𝐻𝑛+1/2

𝜙
(1/2, 𝑘 + 1/2) in the conventional LOD-

BOR-FDTD algorithm from (1b)
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Applying the similar procedure used in Section 2.1, one
can obtain the following equations for the on-axis 𝐸

𝑧
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component by using (6a), (6b), and (7):
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Unlike the equations for the off-axis 𝐸
𝑧
field components, no

auxiliary variable 𝐸̃
𝑧
is involved here.

2.3. Equations for 𝐻
𝑛+1

𝑧
(1/2, 𝑘). The equations for

𝐻
𝑛+1

𝑧
(1/2, 𝑘) should also be treated specially. With the

algebraic manipulation of the relative difference equations
used in the conventional LOD-BOR-FDTD algorithm [4],
one can obtain the following equations for𝐻𝑛+1
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2.4. Some Discussions about the Proposed Algorithm. It can
be seen that all the equations used in the proposed algorithm
are obtained from those used in the conventional LOD-BOR-
FDTD algorithm and only algebraic manipulations are made.
Therefore, one can conclude that the proposed algorithm

preserves the properties of the conventional LOD-BOR-
FDTD algorithm.

In terms of memory, the variables used in the conven-
tional LOD-BOR-FDTD algorithm are E𝑛+1/2, H𝑛+1/2, and
E𝑛 in the first subtime step, which can also be reused in
the second subtime step. In the proposed algorithm, Ẽ𝑛−1/2,
E𝑛−1/2, and E𝑛+1/2 can occupy the same memory space. There
are similar situations to H̃𝑛, H𝑛, and H𝑛+1 and e𝑛+1/2 and
h𝑛+1. As a result, the proposed algorithm consumes the same
amount of memory as the conventional LOD-BOR-FDTD
algorithm.

There are four tridiagonal equations in one full time step,
for both the conventional LOD-BOR-FDTD algorithm and
the proposed algorithm. So the floating point operations at
the left-hand sides of the equations are the same for the
two algorithms. However, the numbers of the multiplica-
tions/divisions (M/D) and the additions/subtractions (A/S)
at the right-hand sides of the equations are different. Table 1
shows the count of the M/D and A/S at the right-hand sides
of the equations in two algorithms for modes 𝑚 = 0 and
𝑚 ̸= 0, respectively. Obviously, the proposed algorithm needs
less floating point operations, so one can conclude that it has a
higher computational efficiency. Note that all the coefficients
of the equations are precomputed and stored here, and special
treatments for the components that lie on or near the axis are
not considered.

In the proposed algorithm, tridiagonal implicit equations
for themagnetic field components are involved, so one should
pay special attention to handling the perfectly electrically
conducting (PEC) boundary, since there will be out-of-
domainmagnetic field components. To address this issue, one
can resort to the image theory [17]. Such treatments are often
used in handling the PEC resonator, PEC scatterer, PEC wall
of the perfectly matched layer (PML), and so on.

3. CPML Implementation for
the Proposed Algorithm

To solve open region problems efficiently, the CPML for the
proposed one-step leapfrog LOD-BOR-FDTD algorithm is
developed.The coordinate-stretching variables for the CPML
are defined as
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represents the interface between FDTD and PML domains
[18].

For simplicity, the CPML equations for the 𝐸
𝑧
field

component are given here. In fact, the CPML equations for
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Table 1: The floating point operations at the right-hand sides of the equations for two algorithms.

Mode Conventional LOD-BOR-FDTD One-step leapfrog
LOD-BOR-FDTD

𝑚 = 0 𝑚 ̸= 0 𝑚 = 0 𝑚 ̸= 0

M/D 20 26 12 16
A/S 32 38 22 26
M/D + A/S 52 64 34 42

the other field components can be obtained in a similar
manner. According to the definition in (10) and (11), one can
write the CPML equations of the conventional LOD-BOR-
FDTD algorithm in the following form:
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Then (13a) can be rewritten as

𝑒
𝑛+1

𝑧
+

Δ𝑡 (±𝑚)

2𝜀

(

1

𝜅
𝜙

ℎ
𝑛+1

𝜌

𝜌

+ 𝜑
𝑛+1

𝑒𝑧𝜙
) = 2𝐸

𝑛+1/2

𝑧
. (17)

The former time steps of (16a) and (17) are

𝑒
𝑛

𝑧
= 𝐸
𝑛

𝑧
+ 𝐸
𝑛−1/2

𝑧
(18)

𝑒
𝑛

𝑧
+

Δ𝑡 (±𝑚)

2𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
) = 2𝐸

𝑛−1/2

𝑧
. (19)

Substituting (19) into (18), one can obtain

𝐸
𝑛−1/2

𝑧
−

Δ𝑡 (±𝑚)

2𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
) = 𝐸

𝑛

𝑧
. (20)



International Journal of Antennas and Propagation 5

Substituting (15b) into (15a), one can obtain

𝑒
𝑛+1/2

𝑧
−

Δ𝑡

𝜀

1

𝜅
𝜙

1

𝜌

𝐻
𝑛

𝜙

−

Δ𝑡

2𝜀

1

𝜅
𝜙

1

𝜌

Δ𝑡

2𝜇

(

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧
+ 𝜑
𝑛+1/2

ℎ𝜙𝜌
)

−

Δ𝑡

𝜀

1

𝜅
𝜌

𝐷
𝜌
𝐻
𝑛

𝜙

−

Δ𝑡

2𝜀

1

𝜅
𝜌

𝐷
𝜌

Δ𝑡

2𝜇

(

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧
+ 𝜑
𝑛+1/2

ℎ𝜙𝜌
)

−

Δ𝑡

2𝜀

(𝜑
𝑛+1/2

𝑒𝑧𝜌𝜙
+ 𝜑
𝑛+1/2

𝑒𝑧𝜌
) = 2𝐸

𝑛

𝑧
.

(21)

Substituting (20) into (21), the following equation can be
obtained:

𝑒
𝑛+1/2

𝑧
−

Δ𝑡

2𝜀

1

𝜅
𝜙

1

𝜌

Δ𝑡

2𝜇

(

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧
+ 𝜑
𝑛+1/2

ℎ𝜙𝜌
)

−

Δ𝑡

2𝜀

1

𝜅
𝜌

𝐷
𝜌

Δ𝑡

2𝜇

(

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧
+ 𝜑
𝑛+1/2

ℎ𝜙𝜌
)

= 2𝐸
𝑛−1/2

𝑧
−

Δ𝑡 (±𝑚)

𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
)

+

Δ𝑡

𝜀

1

𝜅
𝜙

1

𝜌

𝐻
𝑛

𝜙
+

Δ𝑡

𝜀

1

𝜅
𝜌

𝐷
𝜌
𝐻
𝑛

𝜙

+

Δ𝑡

2𝜀

(𝜑
𝑛+1/2

𝑒𝑧𝜌𝜙
+ 𝜑
𝑛+1/2

𝑒𝑧𝜌
) .

(22)

Some of the auxiliary variables in (22) are approximated as

𝜑
𝑛+1/2

ℎ𝜙𝜌
= 𝜑
𝑛−1/2

ℎ𝜙𝜌
+ 𝑂 (Δ𝑡) (23a)

𝜑
𝑛+1/2

𝑒𝑧𝜌𝜙
= 𝜓
𝑛+1/2

𝑒𝑧𝜌𝜙
+ 𝜓
𝑛

𝑒𝑧𝜌𝜙
= 2𝜓
𝑛

𝑒𝑧𝜌𝜙
+ 𝑂 (Δ𝑡) (23b)

𝜑
𝑛+1/2

𝑒𝑧𝜌
= 𝜓
𝑛+1/2

𝑒𝑧𝜌
+ 𝜓
𝑛

𝑒𝑧𝜌
= 2𝜓
𝑛

𝑒𝑧𝜌
+ 𝑂 (Δ𝑡) . (23c)

Ignoring the high order terms ofΔ𝑡 in (23a), (23b), and (23c),
then (22) can be approximated as

𝑒
𝑛+1/2

𝑧
−

Δ𝑡

2𝜀

1

𝜅
𝜙

1

𝜌

Δ𝑡

2𝜇

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧

−

Δ𝑡

2𝜀

1

𝜅
𝜌

𝐷
𝜌

Δ𝑡

2𝜇

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧

= 2𝐸
𝑛−1/2

𝑧
−

Δ𝑡 (±𝑚)

𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
)

+

Δ𝑡

𝜀

(

1

𝜅
𝜙

1

𝜌

𝐻
𝑛

𝜙
+ 𝜓
𝑛

𝑒𝑧𝜌𝜙
)

+

Δ𝑡

𝜀

(

1

𝜅
𝜌

𝐷
𝜌
𝐻
𝑛

𝜙
+ 𝜓
𝑛

𝑒𝑧𝜌
) +

Δ𝑡

2𝜀

1

𝜅
𝜙

1

𝜌

Δ𝑡

2𝜇

𝜑
𝑛−1/2

ℎ𝜙𝜌

+

Δ𝑡

2𝜀

1

𝜅
𝜌

𝐷
𝜌

Δ𝑡

2𝜇

𝜑
𝑛−1/2

ℎ𝜙𝜌
.

(24)

The following equation can be obtained from (14a) and (20):

𝐸
𝑛+1/2

𝑧
= 𝑒
𝑛+1/2

𝑧
− 𝐸
𝑛−1/2

𝑧
+

Δ𝑡 (±𝑚)

2𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
) . (25)

To simplify the equations further, one can introduce an
auxiliary variable 𝐸̃𝑛−1/2

𝑧
. As a result, the final equations for

𝐸
𝑧
can be reformulated as

𝐸̃

𝑛−1/2

𝑧
= 𝐸
𝑛−1/2

𝑧
−

Δ𝑡 (±𝑚)

2𝜀

(

1

𝜅
𝜙

ℎ
𝑛

𝜌

𝜌

+ 𝜑
𝑛

𝑒𝑧𝜙
) (26a)

1

2

𝑒
𝑛+1/2

𝑧
−

Δ𝑡
2

8𝜀𝜇

1

𝜅
𝜙

1

𝜌

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧

−

Δ𝑡
2

8𝜀𝜇

1

𝜅
𝜌

𝐷
𝜌

1

𝜅
𝜌

𝐷
𝜌
𝑒
𝑛+1/2

𝑧
= 𝐸̃

𝑛−1/2

𝑧

+

Δ𝑡

2𝜀

(

1

𝜅
𝜙

1

𝜌

𝐻
𝑛

𝜙
+ 𝜓
𝑛

𝑒𝑧𝜌𝜙
)

+

Δ𝑡

2𝜀

(

1

𝜅
𝜌

𝐷
𝜌
𝐻
𝑛

𝜙
+ 𝜓
𝑛

𝑒𝑧𝜌
) +

Δ𝑡
2

8𝜀𝜇

1

𝜅
𝜙

1

𝜌

𝜑
𝑛−1/2

ℎ𝜙𝜌

+

Δ𝑡
2

8𝜀𝜇

1

𝜅
𝜌

𝐷
𝜌
𝜑
𝑛−1/2

ℎ𝜙𝜌

(26b)

𝐸
𝑛+1/2

𝑧
= 𝑒
𝑛+1/2

𝑧
− 𝐸̃

𝑛−1/2

𝑧
. (26c)

Some of the auxiliary variables in (26a), (26b), and (26c) can
be solved by

𝜑
𝑛

𝑒𝑧𝜙
= 𝑏
𝜙
𝜑
𝑛−1

𝑒𝑧𝜙
+ 𝑎
𝜙
(

ℎ
𝜌

𝜌

)

𝑛

(27a)

𝜓
𝑛

𝑒𝑧𝜌𝜙
= 𝑏
𝜙
𝜓
𝑛−1

𝑒𝑧𝜌𝜙
+ 𝑎
𝜙
(

𝐻
𝜙

𝜌

)

𝑛

(27b)

𝜓
𝑛

𝑒𝑧𝜌
= 𝑏
𝜌
𝜓
𝑛−1

𝑒𝑧𝜌
+ 𝑎
𝜌
(

𝜕𝐻
𝜙

𝜕𝜌

)

𝑛

, (27c)

where 𝑏
𝜍
= 𝑒
−(𝜎𝜍/𝜅𝜍+𝛼𝜍)Δ𝑡/𝜀 and 𝑎

𝜍
= (𝜎
𝜍
/(𝜅
𝜍
(𝜎
𝜍
+𝜅
𝜍
𝛼
𝜍
)))(𝑏
𝜍
−1),

𝜍 = 𝜌, 𝜙, 𝑧.
In addition, the auxiliary variable 𝜑𝑛−1/2

ℎ𝜙𝜌
in (26b) has

been solved in updating 𝐻
𝑛

𝜙
, so it can be used directly

here. It is obvious that the number of the convolutional
auxiliary variables for the proposed CPML is the same as that
of the CPML for the conventional BOR-FDTD algorithm.
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Table 2: Comparison of the computational results with different algorithms.

BOR-FDTD Conventional LOD-BOR-FDTD One-step leapfrog
ADI-BOR-FDTD

One-step leapfrog
LOD-BOR-FDTD

CFLN 1 1 4 8 1 4 8 1 4 8
Iterations 40000 40000 10000 5000 40000 10000 5000 40000 10000 5000
Results, GHz 4.954 4.954 4.943 4.907 4.954 4.943 4.907 4.954 4.943 4.907
Relative error 0.08% 0.08% −0.14% −0.87% 0.08% −0.14% −0.87% 0.08% −0.14% −0.87%
Time, s 13.2 52.8 13.2 6.4 43.2 10.9 5.5 38.8 9.8 4.8

Consequently, one can say that the equations of proposed
CPML are concise.

When 𝜅 = 1 and 𝜎 = 0, the equations of the proposed
CPML can be simplified to be the normal equations of the
proposed LOD-BOR-FDTD algorithm. Similarly, since the
coordinate stretching along the 𝜌-direction only exists in the
radial outer boundary, that is, 𝜅

𝜌
= 𝜅
𝜙
= 1 and𝜎

𝜌
= 𝜎
𝜙
= 0 on

(or near) the axis, the CPML equations for 𝐸𝑛+1/2
𝑧

(0, 𝑘 + 1/2)

and𝐻𝑛+1
𝑧

(1/2, 𝑘) are still (8a), (8b), (9a), (9b), and (9c).
In the Cartesian coordinate system, the coordinate

stretching along each axis is similar to that along the 𝑧-
direction in the cylindrical coordinate system. So it can be
concluded that the CPML for the LOD-FDTD algorithm in
the Cartesian coordinate system [13] can be implemented by
applying the similar procedure.

4. Numerical Results and Discussions

A resonant cavity and a scattering example are provided to
validate the one-step leapfrog LOD-BOR-FDTD algorithm
and its CPML.

4.1. Cavity Resonator. The TE
011

mode of a PEC cylindrical
cavity resonator is computed, which is frequently used as a
benchmark [3, 4]. The radius and height of the cavity are
3.995 cm and 7.910 cm, respectively. Its theoretical resonant
frequency is 4.950GHz [3, 4]. The computational domain
is divided into 50(𝜌) × 100(𝑧) cells, with Δ𝜌 = 0.0799 cm
and Δ𝑧 = 0.0791 cm. The cavity is computed with the
conventional BOR-FDTD algorithm, the conventional LOD-
BOR-FDTD algorithm, the one-step leapfrog ADI-BOR-
FDTD algorithm, and the proposed algorithm, respectively.
A time history of 52.73 ns is simulated.

Table 2 shows the computational results with different
algorithms. Note that CFLN = Δ𝑡/Δ𝑡CFL and Δ𝑡CFL is the
maximum time step size that satisfies the CFL condition for
the conventional BOR-FDTD algorithm [1], which is Δ𝑡CFL =
1.318 × 10

−12 s here. It can be seen from Table 2 that the
one-step leapfrog LOD-BOR-FDTD algorithm obtains the
samenumerical results as the conventional LOD-BOR-FDTD
algorithm. Moreover, the numerical errors of two algorithms
increase as the time step sizes increase. In terms of the
computational time, the proposed algorithm consumes about
26.5%, 25.8%, and 25.0% less time than the conventional
LOD-BOR-FDTD algorithmwhen CFLN is chosen to be 1, 4,

and 8, respectively.The two unconditionally stable algorithms
use the same amount ofmemory, which is 1.06MB.Therefore,
one can say that the proposed algorithm preserves the
properties of the conventional LOD-BOR-FDTD algorithm
and obtains a higher computational efficiency. The proposed
algorithm also shows the same accuracy as that of the one-
step leapfrog ADI-BOR-FDTD algorithm but obtains a little
higher computational efficiency, as shown in Table 2. Note
that the comparison among the conventional LOD-BOR-
FDTD algorithm, the one-step leapfrog ADI-BOR-FDTD
algorithm, and the proposed algorithm was performed only
in the case of the resonant cavity and that further analysis
could be performed on other situations to rule out the
possibility that the results could be linked to the particular
case considered. Since the TE

011
mode is computed, the

terms including multiplicative factor 𝑚 (mode number) in
the equations are all zero. In the simulation, these terms are
not computed. All of the calculations are performed on an
Intel� Core� 2 Quad CPU Q6600 @ 2.40GHz machine and
the Fortran codes are used.

4.2. Scattering Example. To validate the proposed CPML
for the one-step leapfrog LOD-BOR-FDTD algorithm, the
scattered field from a PEC cylinder is computed. The radius
and height of the cylinder are 20 cm and 40 cm, respectively.
The oblique incident plane wave with incident angle 𝜃

𝑖
= 45
∘

is introduced by the TF/SF boundary conditions, which are
placed at 𝜌 = 25 cm and 𝑧 = ±25 cm. The incident plane
wave is parallel polarized, as shown in Figure 1. The gray
domain in Figure 1 denotes the PEC cylinder. The Gaussian
pulse 𝐸

0
cos(2𝜋𝑓

0
𝑡)𝑒
−4𝜋((𝑡−𝑡0)/𝜏)

2

with 𝐸
0
= 1000V/m, 𝑓

0
=

0.3GHz, 𝜏 = 2.2 ns, and 𝑡
0

= 1.25/𝑓
0
is used as the

incident electric field 𝐸
𝑖
. The small computational domain is

composed of 40(𝜌)×80(𝑧) cells, containing the 10 PML layers
in the outer boundary, which are denoted by the oblique-line-
domain as shown in Figure 1. According to the characteristic
of the problem, the mode number ranges from 0 to 11. The
uniform grids are chosen to be Δ𝜌 = Δ𝑧 = 1 cm. Therefore,
themaximum time step size for the conventional BOR-FDTD
[1] is Δ𝑡CFL = 2.778 × 10

−12 s in the example. The observation
point is placed at grid point 𝑄(29, −29), which is near the
corner of the scattered field domain.

The scattered field is computed with the conventional
BOR-FDTD algorithm and the proposed algorithm, respec-
tively, both with the CPML absorbing boundary conditions.
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Figure 1: Illustration of the scattering example with oblique inci-
dence.

The parameters of the CPML are chosen according to the
following expressions [18]:

𝜎
𝜍
=

𝜎
𝜍max

󵄨
󵄨
󵄨
󵄨
𝜍 − 𝜍
0

󵄨
󵄨
󵄨
󵄨

𝑝

𝛿
𝑝

(28a)

𝜎
𝜍 opt =

(𝑝 + 1)

150𝜋Δ𝜍

(28b)

𝜅
𝜍
= 1 + 𝜅

𝜍max

󵄨
󵄨
󵄨
󵄨
𝜍 − 𝜍
0

󵄨
󵄨
󵄨
󵄨

𝑝

𝛿
𝑝

, (28c)

where 𝜍 = 𝜌, 𝑧, 𝛿 is the thickness of the PML, 𝜍
0
is the interface

between the FDTD and PML grids, and 𝑝 = 4 is the order of
the polynomial. In the computing, the optimized parameters
are chosen to be 𝜅

𝜍max = 3, 𝜎max = 0.4𝜎opt, and 𝛼 = 0.004.
To validate the one-step leapfrog LOD-BOR-FDTD algo-

rithm further, the scattered field is computed via large
computational domain first. In this case, the scattered field at
the observation point𝑄 is without reflection, so one canmake
a clear comparison. Figure 2 shows the 𝐸

𝑧
fields obtained

by the two algorithms via large computational domains. For
the proposed algorithm, different CFLNs are used, where
CFLN = Δ𝑡/Δ𝑡CFL. It can be seen that the results of the
proposed algorithm agree well with those of the conventional
BOR-FDTD algorithm. Therefore, the proposed algorithm is
validated further. Meanwhile, one can see that the numerical
error of the proposed algorithm increases as the time step size
grows.

Figure 3 shows the reflection errors of the CPMLs for the
conventional BOR-FDTD algorithm and the proposed algo-
rithm, which are obtained by the 𝐸

𝑧
fields at the observation

point 𝑄. The reflection error is defined as

𝑅dB = 20 log10(
󵄨
󵄨
󵄨
󵄨
󵄨
𝐸pml (𝑡) − 𝐸ref (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

max 󵄨󵄨󵄨
󵄨
𝐸ref (𝑡)

󵄨
󵄨
󵄨
󵄨

) , (29)
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BOR-FDTD and the proposed algorithm.
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Figure 3: Relative reflection errors of the CPML for the con-
ventional BOR-FDTD and the proposed CPML for the one-step
leapfrog LOD-BOR-FDTD.

where 𝐸pml(𝑡) is the result obtained by the small computa-
tional domain as shown in Figure 1. 𝐸ref (𝑡) is the numerical
result via large computational domain. For the proposed
algorithm, 𝐸ref (𝑡) is computed separately for each CFLN. It
can be seen from Figure 3 that the CPML for the one-step
leapfrog LOD-BOR-FDTD algorithm shows good perfor-
mance.Moreover, the reflection error of the one-step leapfrog
CPML increases as the time step size grows.WhenCFLN = 8,
the maximum reflection error is about −40 dB.
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5. Conclusion

In this paper, the one-step leapfrog LOD-BOR-FDTD algo-
rithm is presented. It obtains a higher computational effi-
ciency while keeping the properties of the conventional
LOD-BOR-FDTD algorithm. In addition, the CPML for the
proposed algorithm is implemented. The numerical results
show the performances of the one-step leapfrog LOD-BOR-
FDTD algorithm and its CPML. It can be concluded that,
by applying the similar procedure, the CPML for the LOD-
FDTD algorithm in the Cartesian coordinate system can be
implemented.
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