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Two curved targets are used to explore far-field superconvergence effects arising in numerical solutions of the electric-field and
magnetic-field integral equations. Three different orders of basis and testing functions are used to discretize these equations, and
three different types of target models (flat facets, quadratic-curved facets, and cubic-curved facets) are employed. Ideal far-field
convergence rates are only observed when the model curvature is one degree higher than the basis order.

1. Introduction

Electromagnetic analysis has often exploited “variational” or
“stationary” techniques in an attempt to obtain results that
exhibit smaller error or faster convergence than might oth-
erwise be obtained for a given order of approximation. Rep-
resentations in terms of degree 𝑝 polynomials are expected
to produce error rates of 𝑂(ℎ𝑝+1) as ℎ → 0, where ℎ is the
characteristic cell dimension. For instance, a linear represen-
tation should produce𝑂(ℎ2) convergence. Superconvergence
occurs when the error decreases at a faster rate. Galerkin
method-of-moments (MoM) procedures, which involve the
use of identical functions for expanding the unknown surface
currents and enforcing the integral equation, sometimes
exhibit superconvergence in the far-zone fields or scattering
cross section (SCS) [1–4]. Theoretical SCS convergence rates
were established by Warnick for the electric-field integral
equation (EFIE) andmagnetic-field integral equation (MFIE)
[5] and are reported below.One example of superconvergence
arises with the popular Rao-Wilton-Glisson (RWG) solutions
of the EFIE [6], which usually yield SCS error rates of O(ℎ2)-
O(ℎ3) in practice instead of the𝑂(ℎ) rate expected from basis
functions that are only complete to degree 0.

When andwhere superconvergence occurs are not always
understood. It was demonstrated in [7] that mixed-order

divergence-conforming basis functions often produce super-
convergent far fields with the EFIE, but polynomial-complete
basis functions apparently do not. In a complementary man-
ner, polynomial-complete basis functions seem to produce
superconvergent far fields with the MFIE, while mixed-order
bases do not.Thus, theMFIE requires types of basis functions
different than the EFIE for optimal SCS errors. Furthermore,
ideal convergence rates should not be expected if target
models are not accurate enough, for instance, if flat facets
are used to model curved surfaces. Convergence rates are
usually slower if the problem geometry contains edges or
corners where current or charge densities may be singular,
unless special basis functions containing the proper behavior
are employed [8]. The purpose of the following is to attempt
to clarify conditions under which one can reasonably expect
to achieve the ideal convergence rates of [5]. Primarily, we
investigate the issue of curved-cell models and the required
accuracy in the testing integrals associated with the MoM
procedure for perfectly conducting targets that are spheres or
toroids.

We use mixed-order divergence-conforming vector basis
functions of the Nedelec variety [9] on curved triangular
patches to discretize the EFIE. The RWG basis functions
[6] are the lowest-order (𝑝 = 0.5) members of this family.
Hierarchical versions of these functions are described in [10]
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and were implemented in a Galerkin scheme. Functions of
orders 𝑝 = 0.5, 𝑝 = 1.5, and 𝑝 = 2.5 are considered and are
reported as follows.

Local Definition of the Hierarchical Divergence-Conforming
Vector Basis Functions Used with the EFIE, in Simplex Coor-
dinates (𝑢, V, 𝑤) on a Standard Triangle. The Edge-Based
Functions Straddle Adjacent Cells

Edge-based base vectors (𝑝 = 0.5) are

Λ1 = (𝑢 − 1)�̂� + VV̂,
Λ2 = 𝑢�̂� + (V − 1)V̂,
Λ3 = 𝑢�̂� + VV̂.

Order 𝑝 = 1.5 includes three additional edge-based
functions

√3(V − 𝑤)Λ1,
√3(𝑤 − 𝑢)Λ2,
√3(𝑢 − V)Λ3

and 2 cell-based functions

2√3𝑢Λ1,
2√3VΛ2.

Order 𝑝 = 2.5 includes three additional edge-based
functions

√5{(3(V − 𝑤)2 − 1)/2 − (𝑢/2)(𝑢 − 2)}Λ1,
√5{(3(𝑤 − 𝑢)

2
− 1)/2 − (V/2)(V − 2)}Λ2,

√5{(3(𝑢 − V)2 − 1)/2 − (𝑤/2)(𝑤 − 2)}Λ3

and 4 cell-based functions

6√5(V − 𝑤)𝑢Λ1,
6√5(𝑤 − 𝑢)VΛ2,
2√3𝑢(5𝑢 − 3)Λ1,
2√3V(5V − 3)Λ2.

Inner integrals were evaluated using adaptive quadrature
routines in conjunction with singularity cancellation proce-
dures to return results accurate to some number of decimal
places (6 digits for the 𝑝 = 2.5 results). Testing integrals
were evaluated with a 7-point Gauss rule (that can exactly
integrate degree 5 functions) for 𝑝 = 0.5 and 𝑝 = 1.5
and a 12-point Gauss rule that can exactly integrate degree
7 polynomials for 𝑝 = 2.5. These rules were selected after
numerical experimentation showed that higher-order rules
do not improve the accuracy or convergence rates of the
results. FromWarnick’s analysis, the error in the SCSobtained
from the EFIE under optimal conditions should converge
at a rate of 𝑂(ℎ2𝑝+2), where half-integer indices are used
for 𝑝 to denote the mixed-order functions. For instance,
the SCS error associated with 𝑝 = 0.5 functions is ideally
expected to converge as 𝑂(ℎ3), while that of the 𝑝 = 1.5

functions is ideally expected to converge as 𝑂(ℎ5). These
are superconvergent rates since they are different from the
rates associated with the underlying current density, namely,
𝑂(ℎ
𝑝+0.5
). It is noteworthy that 𝑂(ℎ𝑝+0.5) rates are observed

for SCS values when point-testing is used with the EFIE
instead of Galerkin testing [11].

On the other hand, [7, 12, 13] suggest that the MFIE SCS
is not superconvergent unless polynomial-complete bases are
employed. So for the MFIE we use polynomial-complete
bases of orders 𝑝 = 0.0 (constant), 𝑝 = 1.0 (linear), and
𝑝 = 2.0 (quadratic) on curved triangular patches to treat
the MFIE. The 𝑝 = 1.0 and 𝑝 = 2.0 functions are of the
curl-conforming variety and belong to Nedelec’s polynomial-
complete spaces [14]. The specific basis functions used are
interpolatory and are reported as follows.

Local Definition of the Interpolatory Curl-Conforming Vector
Basis Functions Used with the MFIE, in Simplex Coordinates
(𝑢, V, 𝑤) on a Standard Triangle. The Edge-Based Functions
Straddle Adjacent Cells

Order 𝑝 = 0.0 includes two constant cell-based
functions:

Ω1 = �̂�,
Ω2 = V̂.

Order 𝑝 = 1.0 includes six linear edge-based
functions:

V�̂�,
𝑢V̂,
𝑢�̂�,
𝑤�̂�,
𝑤V̂,
V�̂�.

Order 𝑝 = 2.0 includes twelve quadratic functions, 9
edge-based

V(1 − 2V)�̂�,
𝑤(1 − 2𝑤)�̂�,
𝑢(1 − 2𝑢)V̂,
𝑤(1 − 2𝑤)V̂,
𝑢(1 − 2𝑢)�̂�,
V(1 − 2V)�̂�,
V𝑤(�̂� − V̂),
𝑤𝑢(�̂� − �̂�),
𝑢V(V̂ − �̂�)

and 3 cell-based

V𝑤�̂�,
𝑤𝑢V̂,
𝑢V�̂�.
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Figure 1: Illustration of the triangular-cell sphere models used in
the analysis. This model contains 72 flat cells.

As with the EFIE, adaptive quadrature and singularity can-
cellation are used for the inner integrals. Galerkin testing is
implemented with a 7-point Gauss rule, which was demon-
strated to be adequate for all three orders. Under ideal
conditions, the error in the SCS obtained from the MFIE
should converge at a rate of 𝑂(ℎ2𝑝+2), where integer indices
are used for 𝑝 [5]. Thus the SCS error associated with 𝑝 = 0.0
functions is expected to converge as 𝑂(ℎ2), while that of the
𝑝 = 1.0 functions is expected to converge as 𝑂(ℎ4). Note that
these rates are one order less than the corresponding rates for
the EFIE SCS, based on the extent towhich the basis functions
are complete to a given degree, but are still superconvergent.

In the following, we investigate the convergence rates that
can be obtained for a sphere and toroid target, as a function
of the type of curvature used with the model (flat patches,
quadratic-curved patches, and cubic-curved patches). This
work is intended to build upon and extend the previous work
of the author in [7, 11, 15] in establishing baseline convergence
rates for numerical solutions of the EFIE and MFIE.

2. Results for Scattering from a Sphere

Triangular-cell models are obtained by dividing a sphere
uniformly in 𝜃 between its north pole and its south pole and
dividing it uniformly in 𝜙 so that the number of cell edges
along the equator is twice the number of divisions in 𝜃. Each
octant of the sphere surface is therefore a curved triangle
that is divided into smaller triangles of fairly uniform size.
Figure 1 shows one example employing 72 flat patches. For
curved patches, the cells aremapped from triangles to patches
defined by the usual 6 Lagrange points (quadratic) or 10
Lagrange points (cubic), with all the points on the sphere sur-
face.Themapping procedures for the divergence-conforming
(EFIE) and curl-conforming (MFIE) bases are described in

p = 2.0, cubic
p = 1.0, quadratic
p = 0.0, flat facets
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Figure 2: Error in the SCS versus number of unknowns for a sphere
with 𝑘𝑎 = 2𝜋, obtained from theMFIEwithGalerkin testing. Results
are reported for flat-facetedmodels used in conjunctionwith𝑝 = 0.0
basis and test functions, quadratic-curvedmodels used with 𝑝 = 1.0
functions, and cubic-curved models used with 𝑝 = 2.0 functions.

detail in [16].The surface area of each subsectional-cellmodel
is normalized to that of the desired sphere.

Relative accuracy is determined by evaluating the error
in the bistatic SCS at 5∘ increments in 𝜃 and 𝜙 over the entire
spherical range, with the 2-norm error computed according
to

𝐸 =

√(1/𝑁)∑
𝑁

𝑛=1

𝑒𝑛

2 sin 𝜃𝑛

|SCS|max
, (1)

where 𝑒𝑛 denotes the error at point 𝑛, 𝑛 = 1, 2, . . . , 𝑁, and
where 𝜃𝑛 denotes the value of 𝜃 at point 𝑛. The reference is
the exact eigenfunction “Mie series” expansion [1].

Consider a sphere with 𝑘𝑎 = 2𝜋 or a surface area of
approximately 12.57𝜆2. Thus a density of 100 unknowns per
square wavelength of surface area is reached when the total
number of unknowns equals 1257. Figure 2 shows the error in
SCS versus number of unknowns for results obtained from
the MFIE. Results are reported for three representations, a
flat-faceted model used in conjunction with 𝑝 = 0.0 basis
and test functions (piecewise constant), a quadratic-curved
model used with 𝑝 = 1.0 functions (linear), and a cubic-
curved model used with 𝑝 = 2.0 functions. As expected, the
higher-order bases and higher-order target models produce
more accurate solutions. Figure 3 shows the same data plotted
versus the average edge length used in the models. It is
apparent that the 𝑝 = 0.0 result closely follows an 𝑂(ℎ2)
trajectory, the 𝑝 = 1.0 result follows an 𝑂(ℎ4) trajectory,
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Figure 3: Error in the SCS versus the average edge lengths in the
models, for a sphere with 𝑘𝑎 = 2𝜋. MFIE results from Figure 2 are
compared to ideal asymptotic rates of𝑂(ℎ2),𝑂(ℎ4), and𝑂(ℎ6). Also
shown is the error obtained with 𝑝 = 2.0 basis functions when used
with quadratic-curved models.

and the 𝑝 = 2.0 result follows an 𝑂(ℎ6) trajectory, for small
ℎ. These are the ideal rates suggested in [5]. Also shown in
Figure 3 is a plot of the corresponding error for the 𝑝 = 2.0
case when quadratic-curved patches are used in the model.
With the quadratic-patch models, the 𝑝 = 2.0 results follow
a slower rate, near 𝑂(ℎ4). Similar behavior was observed
by the author for other targets (not shown), suggesting the
conclusion that 𝑝 = 2.0 bases must be used with cubic-patch
models to produce optimal convergence rates.

The SCS errors produced using the EFIE are presented in
Figures 4 and 5 for the same sphere target. Datawere obtained
using 𝑝 = 0.5 (RWG), 𝑝 = 1.5, and 𝑝 = 2.5 mixed-order
basis and test functions. Figure 4 shows results versus the
number of unknowns, with all models represented by cubic-
curved patches. In common with the MFIE results, once the
number of unknowns is in a reasonable range for a problemof
this electrical size, higher-order bases produce more accurate
results for a given number of unknowns. Figure 5 shows EFIE
results plotted versus the average edge length used in the
models, but for the case when the 𝑝 = 0.5 results are obtained
with flat-faceted models and the 𝑝 = 1.5 results are obtained
with quadratic-curved models. The 𝑝 = 0.5 results follow an
𝑂(ℎ
3
) trajectory, while the 𝑝 = 1.5 results in this case are

somewhere between 𝑂(ℎ4) and 𝑂(ℎ5). The 𝑝 = 2.5 results
appear to follow a trajectory between𝑂(ℎ6) and𝑂(ℎ7). Thus,
these data are close to the ideal rates of [5], but as observed
in [7, 15], the ideal rates are not always obtained in practice.
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Figure 4: Error in the SCS versus number of unknowns for a sphere
with 𝑘𝑎 = 2𝜋, produced by the EFIE. Results are reported for 𝑝 =
0.5, 𝑝 = 1.5, and 𝑝 = 2.5mixed-order divergence-conforming basis
and test functions, in conjunction with cubic-curved-patch models.

The author has also investigated the use of 𝑝 = 2.5 bases
with quadratic-patch sphere models (not shown) but always
observed a substantially slower convergence rate for that
combination. This suggests that 𝑝 = 2.5 bases must be used
with cubic-patch models to approach optimal convergence
rates.

3. Results for Scattering from a Torus

A torus is a simple target that, like a sphere, avoids the
complications introduced by edges and corners. For the
following comparisons, a torus with major radius of 3/𝜋𝜆
and minor radius of 1.5/𝜋𝜆, for a total surface area of 18.0𝜆2,
is employed. The torus is centered at the origin, parallel to
the 𝑥-𝑦 plane, and is illuminated by a uniform plane wave in
the 𝑧-direction with the electric field polarized along �̂�. For
illustration, Figure 6 shows a torus model containing 196 flat
triangular patches.

The torus is divided uniformly along both circumferences
into curved quadrilateral cells, which are each divided into
two (curved) triangles. The models employed twice as many
divisions along the larger circumference as along the smaller
and are scaled to the proper surface area. For comparison
purposes, a reference solution was obtained using the for-
mulation described in [17], with basis functions complete to
polynomial degree 5, and a total of 9216 unknowns. Relative
accuracy is determined from (1) by evaluating the error in the
bistatic SCS at 5∘ increments in 𝜃 and 90∘ increments in 𝜙. In
the figures for the torus example, a density of 100 unknowns
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Figure 5: Error in the SCS versus the average edge lengths in the
models, for a sphere with 𝑘𝑎 = 2𝜋. EFIE results are reported
for flat-faceted models used in conjunction with 𝑝 = 0.5 basis
and test functions, quadratic-curved models used with 𝑝 = 1.5
functions, and cubic-curved models used with 𝑝 = 2.5 functions.
Ideal asymptotic rates of 𝑂(ℎ3), 𝑂(ℎ5), and 𝑂(ℎ7) are shown for
comparison.
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Figure 6: Illustration of the triangular-cell torus models used in the
analysis. This model contains 196 flat cells.

per square wavelength of surface area is reached when the
total number of unknowns equals 1800.

Figure 7 shows the SCS error produced by the MFIE
versus the number of unknowns for flat-faceted models with
𝑝 = 0.0 functions, quadratic-curved models with 𝑝 = 1.0
functions, and cubic-curved models with 𝑝 = 2.0 functions.
Figure 8 shows the same data plotted versus the average edge
length used in the models. For these results, the 𝑝 = 0.0 data
exhibit a convergence rate between 𝑂(ℎ) and 𝑂(ℎ2), while
the 𝑝 = 1.0 and 𝑝 = 2.0 data closely approximate the ideal
trajectories of 𝑂(ℎ4) and 𝑂(ℎ6).
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Figure 7: Error in the SCS versus number of unknowns for a
torus with ka = 3 and kb = 6, obtained from the MFIE with
Galerkin testing. Results are reported for flat-facetedmodels used in
conjunction with 𝑝 = 0.0 basis and test functions, quadratic-curved
models used with 𝑝 = 1.0 functions, and cubic-curved models used
with 𝑝 = 2.0 functions.
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Figure 8: Error in the SCS versus the average edge lengths in the
models, for the same torus used in Figure 7. MFIE results from
Figure 7 are compared to ideal asymptotic rates of𝑂(ℎ2),𝑂(ℎ4), and
𝑂(ℎ
6
).



6 International Journal of Antennas and Propagation

10−4

10−3

10−2
2-

no
rm

 er
ro

r i
n 

SC
S

10010−1

Average edge length h

p = 2.5, cubic
p = 1.5, quadratic
p = 0.5, flat facets

h7
h5
h3

Figure 9: Error in the SCS versus the average edge lengths in the
models, for the same torus used in Figures 7 and 8. EFIE results are
reported for a flat-faceted model used in conjunction with 𝑝 = 0.5
basis and test functions, a quadratic-curvedmodel usedwith𝑝 = 1.5
functions, and a cubic-curved model used with 𝑝 = 2.5 functions.
Ideal asymptotic rates of 𝑂(ℎ3), 𝑂(ℎ5), and 𝑂(ℎ7) are shown for
comparison.

Figures 9 and 10 show EFIE results for the SCS error for
the same torus, plotted versus the average edge length. The
𝑝 = 0.5 and 𝑝 = 2.5 results converge somewhat slower than
the ideal rates of 𝑂(ℎ3) and 𝑂(ℎ7), while the 𝑝 = 1.5 data
appear to closely follow the 𝑂(ℎ5) rate. Figure 10 shows that
the convergence rate for the 𝑝 = 2.5 results is slower than
𝑂(ℎ
5
) if quadratic-patch models are used, while it is between

𝑂(ℎ
6
) and 𝑂(ℎ7) when cubic-patch models are used.

4. Conclusions

Far-field convergence rates are studied using two curved
targets. Numerical solutions of the EFIE and MFIE are
employed with higher-order vector basis functions and target
models that involve flat facets, quadratic-curved patches, or
cubic-curved patches. Superconvergence in the SCS at rates
close to those suggested in [5] is observed in the results,
provided that the models in use have high enough curvature,
and the testing integration is done with quadrature rules of
sufficient accuracy.

An interesting result of these observations is that it
appears necessary to employ cubic-curved-patch models
in order to obtain ideal convergence rates with quadratic
basis functions and the MFIE. This is at odds with the
classical literature onnumericalmethodswhere it is supposed
that quadratic models should be adequate with quadratic
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Figure 10: Error in the SCS versus the average edge lengths in the
models, for the same torus used in Figures 7–9. EFIE results are
reported for quadratic-curved and cubic-curved models used with
𝑝 = 2.5 functions. Asymptotic rates of 𝑂(ℎ5), 𝑂(ℎ6), and 𝑂(ℎ7) are
shown for comparison.

expansions. It also appears necessary to employ cubic models
with the 𝑝 = 2.5 mixed-order basis functions (which are
only complete to degree 2) used with the EFIE to approach
ideal SCS convergence rates. A similar conclusion applies to
the lower-order bases; namely, the linear 𝑝 = 1.0 functions
(used with the MFIE) and 𝑝 = 1.5 functions (used with
the EFIE) require quadratic-patch models to yield near-ideal
convergence rates.
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