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An approach for null broadening beamforming is proposed based on adaptive variable diagonal loading (VDL) and combined
with the covariance matrix taper (CMT) approach, aiming at improving the robustness of adaptive antenna null broadening
beamforming when array calibration error exists. Hence, it is named VDL-CMT. In this novel approach, the signal-to-noise ratio
in the tapered sample covariance matrix is estimated and the VDL factor can be obtained adaptively. Then, the covariance matrix
of the CMT approach is loaded with the obtained VDL factor. According to simulation results, in the case of array calibration error,
robustness of the VDL-CMT is significantly improved and its performance is better than that of the existing adaptive antenna null
broadening beamforming approaches.

1. Introduction

Adaptive antenna beamforming is a technique used to receive
desired signals and suppress interferences by adjusting the
weight vectors of arrays adaptively. It has been widely used in
radar, wireless communication, radio astronomy, and many
other areas [1–3]. The performance of the adaptive antenna
beamformingwill be severely degraded if the weight vector of
an array cannot be able to adapt sufficiently fast to the jammer
motion. Forming broad nulls around the directions of inter-
ferences is an effective means to settle this problem [4, 5].

Thereexistmany adaptive antenna null broadening beam-
forming approaches in literature [6–14]. Covariance matrix
taper (CMT) [6–9] is a classical and widespread approach of
null broadening. The computational complexity of the CMT
approach is extremely low, while the depth of broad nulls
is shallow. Quadratic constraint sector suppressed (QCSS)
[10, 11] is also a null broadening beamforming approach. The
null depth of the QCSS is much deeper in comparison with
CMT. However, the solving process of the QCSS approach
is complicated. Linear constraint sector suppressed (LCSS)
approach [12] is proposed on the basis of the QCSS approach.
The nonlinear quadratic constraint is transformed into a set

of linear constraints; hence the solving process is greatly
simplified. A null broadening beamforming approach based
on projection and diagonal loading (PDL) is proposed in [13],
where the CMT and projection are combined. The null
depth of the PDL approach is deeper than that of the CMT
approach, and the computational complexity is low. The null
broadening beamforming approach of covariance matrix
reconstruction and similarity constraint (CMRSC) is pro-
posed in [14]. The interference-plus-noise covariance matrix
of array is reconstructed by the CMRSC. The depth of the
broad nulls of CMRSC is much deeper than that of the CMT
approach, but the computational complexity is high.

The approaches of LCSS [12], PDL [13], and CMRSC [14]
are all proposed in recent years. Without array calibration
error, deeper broad nulls and higher output signal-to-inter-
ference-plus-noise ratio (SINR) can be obtained by virtue of
these approaches in comparison with the CMT approach.
Nevertheless, all three approaches construct the correlation
matrix of the steering vector based on the presumed steering
vector, so they are greatly sensitive to array calibration error.
In practice, the array calibration error may exist, such as the
antenna location error and mutual coupling error [15]. In the
case of the array calibration error, the performance of the
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above three adaptive antenna null broadening beamforming
approaches will be severely degraded. On the contrary, the
CMT approach [7] does not construct the correlation matrix
of the steering vector. Therefore, its performance is better
than that of the three approaches above in overcoming the
array calibration error.

Diagonal loading (DL) [16] is a widespread robust beam-
forming technique.The robustness of adaptive antenna beam-
forming can be effectively improved by DL with a proper
loading factor that is difficult to achieve [17, 18]. The CMT
approach always uses a small fixed loading factor [9, 13, 14],
so its robustness against the array calibration error is very
limited. In order to improve the robustness of adaptive
antenna null broadening beamforming against array calibra-
tion error, an adaptive variable diagonal loading based cova-
riancematrix taper (VDL-CMT) null broadening beamform-
ing approach is put forward. The signal-to-noise ratio (SNR)
in the tapered sample covariance matrix is estimated and
the variable diagonal loading (VDL) factor can be obtained
adaptively.Then, the covariancematrix of the CMT approach
is loaded with the obtained VDL factor, and the optimal
weight vector of the adaptive antenna is calculated by the
use of the loaded covariance matrix. The advancement and
effectiveness of the VDL-CMT approach are verified by
theoretical analysis and simulation results.

2. The Existing Null Broadening
Beamforming Approaches

2.1. Signal Model. Consider a uniform linear array (ULA)
with 𝑁 elements and the element spacing is equal to one-
half wavelength. 𝐿 is the number of far-field narrowband
excitation sources which are incoherent. The received data
X(𝑡) of the antenna array can be expressed as

X (𝑡) = AS (𝑡) +N (𝑡) , (1)

where A = [a1(𝜃), a2(𝜃), . . . , a𝐿(𝜃)] is the matrix of array
steering vectors, S(𝑡) is the complex sources envelope, and
N(𝑡) is the noise of the antenna array.

The covariance matrix of the array can be written as

R = E {X (𝑡)XH (𝑡)} = ARsA
H + 𝜎2nI, (2)

where E{⋅}denotes the expectation operation, (⋅)H denotes the
conjugate transposition, Rs represents the matrix of sources,𝜎2n is the power of noise, and I is an identity matrix of 𝑁
dimension.

The standard minimum variance distortionless response
(MVDR) beamformer can be expressed as follows:

minw WHRi+nW

subject to WHa (𝜃d) = 1, (3)

whereW is the weight vector of the array, a(𝜃d) is the steering
vector of the desired signal, and Ri+n is the covariance matrix
of interference-plus-noise. Due to the difficulty of directly
calculating Ri+n, this matrix is commonly replaced by the

sample covariance matrix with limited number of snapshots
as

R̂ = 1𝐾
𝐾∑
𝑘=1

X (𝑘)XH (𝑘) , (4)

where𝐾 is the number of snapshots.The optimal weight vec-
tor of the MVDR beamformer can be expressed as

Wopt = R̂−1a (𝜃d)
aH (𝜃d) R̂−1a (𝜃d) , (5)

where (⋅)−1 denotes the inverse operation. The output SINR
is used to measure the output performance of the adaptive
beamforming, which can be expressed as

SINR = 𝜎2s 󵄨󵄨󵄨󵄨󵄨WHa (𝜃d)󵄨󵄨󵄨󵄨󵄨2
WHRi+nW

, (6)

where 𝜎2s is the input power of the desired signal.

2.2. The CMT Approach. CMT [7] is a classical and wide-
spread null broadening beamforming approach. The sample
covariance matrix R̂ is tapered by the matrix TCMT as

RCMT = R̂ ∘ TCMT, (7)

where ∘ represents Hadamard product and RCMT denotes the
tapered sample covariance matrix. The element of 𝑚th row
and 𝑛th column of TCMT can be expressed as

𝑇𝑚𝑛 = sin ((𝑚 − 𝑛) Δ)(𝑚 − 𝑛) Δ = sin 𝑐 ((𝑚 − 𝑛) Δ𝜋 ) , (8)

where sin 𝑐(𝑥) = sin(𝜋𝑥)/𝜋𝑥, and Δ determines the width of
the broad nulls. Then, the optimal weight vector of the array
can be calculated using RCMT.

The broad nulls can be formed around the interferences
adaptively without the prior information about the directions
of the interferences, and the computational complexity of the
CMT approach is very low. However, a single interference is
replaced by a set of virtual interferences with equal power
to form the broad nulls, so the null depth of the CMT
approach is shallow. This also leads to rising of sidelobes and
deteriorates output performance.

2.3. The LCSS Approach. The average output power of the
predefined sectorΘ is constrained by the LCSS approach [12],
which can be expressed as

WHQW ≤ 𝜂, (9)

where 𝜂 is the predefined output power and Q is the
correlationmatrix of the steering vector that can be expressed
as

Q = ∫
Θ
a (𝜃) aH (𝜃) 𝑑𝜃. (10)
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𝑆 equidistant sampling points in sector Θ are used to con-
structQ.The ideal goal to suppress the output power in sectorΘ is to obtain a zero power response; that is,WHQW = 0. Q
can be decomposed as Q = UΣUH based on its eigenvalues,
where U is the matrix of eigenvectors and Σ is a diagonal
matrix containing the eigenvalues ofQ in a decreasing order.
Assume that Q has a rank equal to 𝑟, and U𝑟 = [u1, . . . , u𝑟]
is the matrix of eigenvectors corresponding to the 𝑟 large
eigenvalues. The quadratic constraint WHQW = 0 can be
achieved if WHU𝑟 = 0, so the broad nulls can be formed
through a set of linear constraints as follows:

min
W

WHR̂W

subject to WHC = fT1 ,
(11)

where C = [a(𝜃d),U𝑟], f1 = [1, 0T]T, and (⋅)T denotes trans-
position. The solution to (11) is

WLCSS (𝑟) = R̂−1C (CHR̂−1C)−1 f1, (12)

where 𝑟 is the number of linear constraints that minimize
the average output power of sector Θ. The depth of the
broad nulls can be set according to the number of linear
constraints. In the case without the array calibration error,
the performance of the LCSS approach is better than that of
the CMT approach. However, the correlation matrix of the
steering vector in the LCSS approach is constructed based on
the presumed steering vector and is very sensitive to the array
calibration error. Therefore, the performance of the LCSS
approachwill be severely degradedwhen the array calibration
error exists.

2.4. The PDL Approach. The broad nulls can be formed by
the PDL approach [13] through projection. The correlation
matrix of the steering vector is constructed in the predefined
null broadening sectors as

ZP = 𝑃∑
𝑝=1

𝑎 (𝜃𝑝) 𝑎H (𝜃𝑝) , (13)

where 𝑃 is the number of the predefined null broadening sec-
tors. Combined with the CMT approach, ZP is tapered as

RP = ZP ∘ TCMT. (14)

Based on its eigenvalues, RP is decomposed as

RP = 𝑁∑
𝑞=1

𝜆𝑞𝜐𝑞𝜐H𝑞 , (15)

where 𝜆𝑞 is the eigenvalues ofRP, and 𝜐𝑞 is the corresponding
eigenvectors. The projection matrix TP is constructed by the𝑀 eigenvector corresponding to the large eigenvalues as

TP = 𝑀∑
𝑞=1

𝜐𝑞𝜐H𝑞 . (16)

Then, we project TP onto the sample covariance matrix R̂
as

RPDL = TPR̂T
H
P . (17)

The optimal weight vector of the PDL approach can be
calculated using RPDL. The correlation matrix of the steering
vector is constructed according to the presumed steering vec-
tor as formula (13) and very sensitive to the array calibration
error. Thus the performance of the PDL approach will be
severely degraded in the case of array calibration error.

2.5. The CMRSC Approach. The interference-plus-noise
covariance matrix is reconstructed by the CMRSC approach
[14] in the predefined sector Θ, and the broad nulls can be
formed as demonstrated below. Firstly, calculate the maxi-
mum power in sectorΘ as the interference power, which can
be expressed as

𝜎̃i ≈ max{ 1
aH (𝜃) R̂−1a (𝜃)} , (𝜃 ∈ Θ) . (18)

Reconstruct the interference covariancematrix according
to 𝜎̃i and the presumed steering vector as

Q̃ = 𝜎̃i ∫
Θ
a (𝜃) aH (𝜃) 𝑑𝜃. (19)

Then, R̂ is decomposed based on its eigenvalues and the
power of noise can be calculated according to the average
value of the small eigenvalues corresponding to noise. The
power of noise can be expressed as

𝜎̃n = 1𝑁 − 𝐿
𝑁∑
𝑞=𝐿+1

𝜆𝑞, (20)

where𝐿 is the number of sources.The interference-plus-noise
covariance matrix is reconstructed as

R̃i+n = Q̃ + 𝜎̃nI. (21)

The optimal weight vector can be calculated using R̃i+n.
The interference-plus-noise covariancematrix of the CMRSC
approach is reconstructed according to the presumed steering
vector as formula (19), so its performance will be severely
degraded in the case of the calibration error.

3. The Proposed Approach

3.1. The Method to Obtain the VDL Factor. It is generally
known that the improvement in robustness of the CMT
approach by DL with a fixed loading factor is limited. The
main reason is displayed in this paper by analyzing the effect
of DL on the components of the tapered sample covariance
matrixRCMT, and then the VDL-CMT approach is proposed.

The covariance matrix of the CMT approach with DL can
be expressed as [7, 9, 16]

RCMT = R̂ ∘ TCMT,
RDL = RCMT + 𝛼𝜎2nI, (22)
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where R̂ is the sample covariance matrix, I is an identity
matrix of 𝑁 dimension, and 𝛼 is the loading factor that
is expressed as the multiple of noise power 𝜎2n. RCMT is
decomposed based on its eigenvalues as

RCMT = UΣUH = UsΣsUs
H + UnΣnUn

H, (23)

where U is the matrix of eigenvectors, Σ is a diagonal matrix
containing the eigenvalues, Us denotes the signal-plus-
interference subspace, Σs is a diagonal matrix containing the
large eigenvalues corresponding to Us, Un denotes the noise
subspace, and Σn is a diagonal matrix containing the small
eigenvalues corresponding to Un. RCMT can be expressed as

RCMT = 𝜎2da (𝜃d) aH (𝜃d) + 𝐿−1∑
𝑖=1

𝜎2𝑖 a (𝜃𝑖) aH (𝜃𝑖) + 𝜎2nI, (24)

where 𝜎2d is the power of the desired signal in RCMT, 𝜎2𝑖 is the
power of interference, 𝜎2n is the power of noise, 𝜎2da(𝜃d)aH(𝜃d)
denotes the desired signal component, ∑𝐿−1𝑖=1 𝜎2𝑖 a(𝜃𝑖)aH(𝜃𝑖)
denotes the interference component, and 𝜎2nI denotes the
noise component.

Ideally, RCMT can be obtained by tapering the interfer-
ence-plus-noise covariancematrixRi+n, and the performance
of the beamforming will be extremely good. However, Ri+n
is commonly replaced by the sample covariance matrix R̂
in practical applications [19]. The output performance and
robustness of the CMT approach will be degraded, because R̂
has two drawbacks compared withRi+n. Firstly, R̂ is obtained
through limited number of snapshots, which causes the
disturbance of small eigenvalues corresponding to the noise
subspace. The sidelobes will rise and the performance of the
beamforming will be degraded [16, 17]. Secondly, R̂ includes
the desired signal component, which will degrade the per-
formance of beamforming, especially in nonideal situations
[19–21]. Therefore, if the disturbance of the small eigenvalues
corresponding to the noise subspace is suppressed, the side-
lobes will be depressed, and the output performance of beam-
forming will be improved. If the desired signal component
or its proportion is decreased, the output performance and
robustness of beamforming will be improved.The covariance
matrix of the CMT approach with DL can be expressed as

RDL = RCMT + 𝛼𝜎2nI
= 𝜎2da (𝜃d) aH (𝜃d) + 𝐿−1∑

𝑖=1

𝜎2𝑖 a (𝜃𝑖) aH (𝜃𝑖) + 𝜎2nI
+ 𝛼𝜎2nI

= 𝜎2da (𝜃d) aH (𝜃d) + 𝐿−1∑
𝑖=1

𝜎2𝑖 a (𝜃𝑖) aH (𝜃𝑖)
+ (𝜎2n + 𝛼𝜎2n) I.

(25)

It can be known from formula (25) that white noise
is added to the covariance matrix by DL. The noise com-
ponent is strengthened, exerting different impacts on each

component of the covariance matrix. The disturbance of the
small eigenvalues corresponding to the noise subspace is
suppressed, so 𝛼 should be bigger to further suppress the
disturbance of the small eigenvalues. The SNR in the covari-
ance matrix is decreased. That is to say, the proportion of the
desired signal component is decreased. Therefore, 𝛼 should
be bigger to further reduce the SNR in the covariance matrix.
The proportion of the interference component is decreased,
which reduces the null depth, so 𝛼 should be smaller to
prevent the null depth from being reduced. Therefore, the
components of RCMT have various requirements for 𝛼, and
they are contradictory.Theperformance improvement for the
beamforming is limited if 𝛼 is too small. On the contrary,
the performance of the beamforming may be degraded if𝛼 is too large and so a proper loading factor is difficult to
achieve.The CMT approach always uses a small fixed loading
factor [9, 13, 14]. In the following, we make analysis on the
main reason why the robustness improvement of the CMT
approach by DL with a fixed loading factor is limited.

The SNR in RCMT is

𝛽 = 𝜎2d𝜎2n ,
𝛾 = 10 log10𝛽.

(26)

The SNR in RDL is

𝛽DL = 𝜎2d𝜎2n + 𝛼𝜎2n = 𝛽1 + 𝛼 ,
𝛾DL = 10 log10𝛽DL.

(27)

It can be obtained from formula (27) that if 𝛼 is fixed, 𝛽DL
will always increase with the increase of 𝛽, so the SNR in the
covariance matrix cannot be effectively decreased.That is the
main reason why the robustness improvement of the CMT
approach by DL with a fixed loading factor is limited. If 𝛼 can
be adjusted adaptively with the change of 𝛽, the performance
of the CMT approach may be further improved. Thus the
VDL-CMT approach is proposed in this paper, where the
VDL factor 𝛼 is adjusted adaptively according to 𝛽, and the
SNR in the covariance matrix can be effectively decreased.

Theminimum loading factor that can effectively decrease
the SNR in the covariance matrix and suppress the distur-
bance of the small eigenvalues corresponding to the noise
subspace is selected as the VDL factor for the VDL-CMT
approach. When there is Gaussian white noise, the small
eigenvalues disturb around the noise power 𝜎2n. The distur-
bance of the small eigenvalues can be partly suppressed when𝛼 ≥ 2. As the lower bound, 2 is a widely used loading factor,
which can be used in both the MVDR beamforming and the
CMTapproach. In order to effectively decrease the SNR in the
covariance matrix to a certain degree even if the input SNR is
very high, 𝛼 can be adjusted adaptively according to 𝛽 as

𝛼 ≥ 𝜎2d𝜎2n = 𝛽. (28)
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Formula (28) is obtained based on qualitative analysis. As
the lower bound, when 𝛼 is equal to 𝛽, the SNR inRDL can be
expressed as

𝛽DL = 𝜎2d𝜎2n + 𝜎2d = 𝛽1 + 𝛽 . (29)

It can be observed from formula (29) that, no matter how𝛽 changes, there is always 𝛽DL < 1 and 𝛾DL < 0. That is to say,
the power of the desired signal in the covariance matrix is
close to that of the noise. The SNR in the covariance matrix
can be decreased effectively.

From the above analysis, we learn that the SNR in the
covariance matrix can be effectively decreased when 𝛼 ≥𝜎2d/𝜎2n = 𝛽, and the disturbance of the small eigenvalues
corresponding to the noise subspace can be suppressed when𝛼 ≥ 2.TheminimumVDL factor under the two constraints is
a compromising 𝛼 for the VDL-CMT approach, which can be
expressed as

𝛼 = 𝜎2d𝜎2n = 𝛽, (𝛽 > 2) ,
𝛼 = 2, (𝛽 ≤ 2) .

(30)

TheVDL factor 𝛼 for the VDL-CMT approach is adjusted
adaptively according to𝛽, bywhich the SNR in the covariance
matrix can be effectively decreased. Thus the robustness of
the VDL-CMT approach is improved compared with the
CMT approach using a fixed loading factor. It is important to
emphasize that 𝛽 is the SNR in the tapered sample covariance
matrix RCMT, but not the input SNR of the array. Then, 𝛽
should be estimated to get 𝛼.
3.2. The Method to Estimate 𝛽. There is no existing method
to estimate 𝛽. In this paper, 𝛽 is obtained based on the
relationship between 𝛽 and the SNR in the sample covariance
matrix R̂, which will be derived below.

Firstly, the SNR in R̂ is estimated according to literature
[22]. Similar to formula (23), R̂ is decomposed based on its
eigenvalues as

R̂ = 𝑁∑
𝑞=1

𝜆̂𝑞𝜐̂𝑞𝜐̂H𝑞 = ÛsΣ̂sÛ
H
s + ÛnΣ̂nÛ

H
n . (31)

The presumed steering vector of the desired signal is
a(𝜃0), which is projected to 𝜐̂𝑞 as

𝑝 (𝑞) = 󵄨󵄨󵄨󵄨󵄨k̂H𝑞 a (𝜃0)󵄨󵄨󵄨󵄨󵄨2 . (32)

𝑝(𝑞) is sorted in a decreasing order as 𝑝[𝑁] ≥ ⋅ ⋅ ⋅ ≥ 𝑝[1]. The
eigenvectors and the eigenvalues are all sorted corresponding
to 𝑝(𝑞) as k̂[𝑁] ≥ ⋅ ⋅ ⋅ ≥ k̂[1] and 𝜆̂[𝑁] ≥ ⋅ ⋅ ⋅ ≥ 𝜆̂[1]. The
maximum of the projections 𝑝[𝑁] is obtained when 𝜐̂𝑞 is the

eigenvector corresponding to the desired signal. The SNR in
R̂ can be expressed as [22]

𝛽 = 𝜆̂[𝑁]
𝜆̂[1] ,

𝛾 = 10 log10(𝜆̂[𝑁]
𝜆̂[1] ) .

(33)

Then, we derive the relationship between 𝛽 and 𝛽.
According to formulas (18) and (19) in literature [9],RCMT can
be expressed as

RCMT = R̂ ∘ TCMT = R̂ ∘ E {eeH} , (34)

where

e = [1, . . . , 𝑒𝑗𝑛𝜔, . . . , 𝑒𝑗(𝑁−1)𝜔]T , (35)

where−Δ ≤ 𝜔 ≤ Δ.WhenΔ = 0 and e = [1, . . . , 1, . . . , 1]T, no
broad nulls will be formed. When Δ > 0, the broad nulls will
be formed with width Δ, and e = [1, . . . , 𝑒𝑗𝑛𝜔, . . . , 𝑒𝑗(𝑁−1)𝜔]T.
Phase “dithered” is introduced into the steering vectors of R̂
through e by the CMT approach [9]. According to formula
(35), the original single phase becomes𝑁 phases, which real-
izes the “dithered” phase.Therefore, the original single inter-
ference is replaced by 𝑁 virtual interferences with equal
power, and broad nulls can be formed with the width Δ. The
desired signal is affected the same as interferences, so the
relationship between 𝛽 and 𝛽 is

𝛽 = 𝛽𝑁. (36)

𝛽 can be obtained according to formulas (33) and (36), so the
VDL factor 𝛼 for the adaptive VDL-CMT approach can be
obtained according to 𝛽 and formula (30).

3.3. The VDL-CMT Approach. Solution procedures of the
VDL-CMT approach are summarized as below.

Step 1. Obtain the tapered sample covariance matrix RCMT
based on formulas (7) and (8).

Step 2. Estimate 𝛽 according to formulas (31), (32), and (33).

Step 3. Estimate 𝛽 according to formula (36).

Step 4. Obtain 𝛼 according to formula (30).

Step 5. Obtain the loaded covariance matrix RDL according
to 𝛼 and formula (25).

Step 6. Calculate the optimal weight vectorWopt using RDL.

The VDL-CMT approach can be done by the above steps.
The performance of the VDL-CMT approach is examined by
simulations next.
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4. Simulation Results

Assume that the incoherent narrowband excitation sources
are in the far field from the antenna array. We take account of
a ULA with 12 array elements, and the element space is equal
to one-half wavelength. The input SNR of array is 5 dB. The
input interference to noise ratio is 30 dB. Additive noise is
modeled as Gaussian white noise. The desired signal illumi-
nates on the antenna array in the direction of 3∘.The interfer-
ences are from the directions of−40∘ and 45∘. Assume that the
width of the broad nulls is set to 10∘.The number of snapshots
is 100. The VDL-CMT approach is compared with the LCSS
approach [12], the PDL approach [13], the CMRSC approach
[14], and the CMT approach [7] using the fixed loading factor
2. Four examples are used to verify the performance of the
VDL-CMT approach. In all simulations, 100 Monte Carlo
runs are used to obtain the results.

4.1. In the Case without Array Calibration Error. The pre-
sumed array steering vector is the same as the actual situa-
tion. Figure 1 shows the beam patterns obtained by the five
approaches. Figure 2 shows the output SINR versus the input
SNR for the five approaches and the theoretical optimal result
when the input SNR changes.

It can be observed from Figure 1 that the broad nulls can
be formed by the five approaches. The null depths of the
LCSS, CMRSC, and PDL approaches are deeper than those
of the VDL-CMT and CMT approaches. According to the
presumed steering vector, the approaches of LCSS, CMRSC,
and PDL construct the correlation matrixes of the steering
vector and their performance is enhanced. It can be observed
from Figure 2 that the output SINRs of the LCSS, CMRSC,
and PDL approaches are all close to the theoretical optimal
value. When the input SNR is lower than 0 dB, the output
SINRs of the VDL-CMT and CMT approaches are close to
the theoretical optimal value. When the input SNR exceeds
0 dB, the output SINR of the VDL-CMT approach is higher
than that of the CMT approach. Consequently, without array
calibration error, the performance of the LCSS, CMRSC,
and PDL approaches is better than that of the VDL-CMT
and CMT approaches. However in practice, array calibration
errormay exist, such as the antenna location error andmutual
coupling error.

4.2. In the Case of Antenna Location Error. The difference
between the presumed and actual location of each antenna
element is modeled as a uniform random variable distributed
in the interval [−0.075𝜆, 0.075𝜆], where 𝜆 is the wavelength.
Figure 3 shows the beam patterns obtained by the five
approaches. Figure 4 shows the output SINR versus the input
SNR of the five approaches and the theoretical optimal result
when the input SNR changes.

It can be observed from Figure 3 that the null positions
of the LCSS, CMRSC, and PDL approaches have shifted.
The three approaches construct the correlation matrix of the
steering vector on the basis of the presumed steering vector.
Therefore, they are sensitive to array calibration error. The
broad nulls are formed by the approaches of VDL-CMT and
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Figure 1: Beam patterns of the five approaches.

CMT and their robustness against the antenna location error
is good. According to Figure 4, the output performance of
the LCSS, CMRSC, and PDL approaches is severely degraded.
The overall output performance of the VDL-CMT approach
is better than that of other approaches. Therefore, the per-
formance of the VDL-CMT approach is better than that of
other adaptive null broadening beamforming approaches in
the case of the antenna location error.

4.3. In the Case of Antenna Location Error and Mutual
Coupling Error. Suppose that the mutual coupling only
exists between adjacent array elements, and the coefficient
of mutual coupling is 0.75𝑒−𝑗𝜋/3. The remaining simulation
conditions are the same as those in Section 4.2. Figure 5
shows the beam patterns obtained by the five approaches.
Figure 6 shows the output SINR versus the input SNR of the
five approaches and the theoretical optimal result when the
input SNR changes.

It can be observed from Figure 5 that the null positions
of the LCSS, CMRSC, and PDL approaches have shifted. The
null positions of the CMT approach are accurate, but the
main lobe is deformed. The VDL-CMT approach not only
has accurate null positions but also has good performance
onmain lobe and sidelobes.TheVDL-CMT approach adjusts
the VDL factor adaptively to effectively decrease the SNR in
the covariance matrix, so better robustness can be obtained
compared with the CMT approach using a fixed loading
factor. It can be observed from Figure 6 that the output
performance of the approaches of LCSS, CMRSC, and PDL is
severely degraded. The output SINR of the CMT approach
decreases when the input SNR exceeds 0 dB. The overall
output performance of the VDL-CMT approach is better
than that of other approaches, which shows that robustness
against the array calibration error is improved in the VDL-
CMT approach. Therefore, the performance of the VDL-
CMT approach is better than that of other adaptive antenna
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Figure 2: Output SINR versus input SNR of the five approaches and
the theoretical optimal result.
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Figure 3: Beam patterns of the five approaches.

null broadening beamforming approaches in the case of the
antenna location error and the mutual coupling error.

4.4. In the Case of Antenna Location Error, Mutual Coupling
Error, and Jammer Motion. We assume that both of the
interferences move. One interference moves from the −40∘
direction to the 0∘ direction. The other interference moves
from the 45∘ direction to the 90∘ direction.Themoving speed
is 0.03∘ per snapshot. The remaining simulation conditions
are the same as those in Section 4.3. Figure 7 shows the beam
patterns obtained by the five approaches. Figure 8 shows the
output SINR versus the input SNR of the five approaches and
the theoretical optimal result when the input SNR changes.
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Figure 4: Output SINR versus input SNR of the five approaches and
the theoretical optimal result.
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Figure 5: Beam patterns of the five approaches.

It can be observed from Figure 7 that the null positions
of the LCSS, CMRSC, and PDL approaches have shifted. The
null positions of the CMT approach are accurate, but the
main lobe is deformed. The VDL-CMT approach not only
has accurate null positions but also has good performance on
main lobe and sidelobes. According to Figure 8, the output
performance of the approaches of LCSS, CMRSC, and PDL
is severely degraded. The output SINR of the CMT approach
decreases when the input SNR exceeds −5 dB. The overall
output performance of the VDL-CMT approach is better
than that of other approaches. Therefore, when the antenna
location error, the mutual coupling, and the jammer motion
all exist, the performance of theVDL-CMTapproach is better
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Figure 6: Output SINR versus input SNR of the five approaches and
the theoretical optimal result.
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Figure 7: Beam patterns of the five approaches.

than that of the existing adaptive antenna null broadening
approaches.

5. Performance Comparison

Firstly, the output performance is compared. Without the
array calibration error, the performance of the LCSS,
CMRSC, and PDL approaches is better than that of the VDL-
CMT and CMT approaches. The performance of the VDL-
CMT approach is better than that of other adaptive null
broadening beamforming approaches in the case of the array
calibration error.
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Figure 8: Output SINR versus input SNR of the five approaches and
the theoretical optimal result.

Secondly, the computational complexity is compared.
The computational complexity of the LCSS and CMRSC
approaches is both 𝑂(𝑆𝑁2), (𝑆 ≫ 𝑁), where 𝑆 is the number
of sampling points in the predefined sector. The com-
putational complexity of the PDL, VDL-CMT, and CMT
approaches is all 𝑂(𝑁3), and they are far below that of the
LCSS and CMRSC approaches.

Lastly, the needed prior information is compared. The
LCSS, CMRSC, and PDL approaches require the prior infor-
mation about the directions of interferences. However, the
VDL-CMT and CMT approaches do not need it.

6. Conclusion

The VDL-CMT approach is proposed through analyzing the
reasons of the limited robustness of the CMT approach. It
is derived that the VDL factor 𝛼 can be adjusted adaptively
according to 𝛽. It is shown by simulation results that the
performance of the VDL-CMT approach is better than that of
the existing adaptive antenna null broadening beamforming
approaches in the case of the array calibration error. In
addition, the jammer motion can be suppressed. Moreover,
the computational complexity of the VDL-CMT approach is
greatly low, and the VDL-CMT approach does not demand
the prior information about the directions of interferences.
Therefore, the VDL-CMT is an advanced and effective adap-
tive antenna null broadening beamforming approach that is
capable of resisting to the array calibration error.
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