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Based on polarizability in the form of a complex quadratic rational function, a novel finite-difference time-domain (FDTD)
approach combined with the Newmark algorithm is presented for dealing with a complex dispersive medium. In this paper, the
time-stepping equation of the polarization vector is derived by applying simultaneously the Newmark algorithm to the two sides
of a second-order time-domain differential equation obtained from the relation between the polarization vector and electric field
intensity in the frequency domain by the inverse Fourier transform. Then, its accuracy and stability are discussed from the two
aspects of theoretical analysis and numerical computation. It is observed that this method possesses the advantages of high
accuracy, high stability, and a wide application scope and can thus be applied to the treatment of many complex dispersion
models, including the complex conjugate pole residue model, critical point model, modified Lorentz model, and complex
quadratic rational function.

1. Introduction

The finite-difference time-domain (FDTD) method has been
widely used to study electromagnetic (EM) wave interaction
with a wide variety of materials due to its robustness and
its ability to calculate accurate broadband response via a
single simulation [1, 2]. In the analysis of dispersive mate-
rials using the FDTD approach, it is required that the
variation of dielectric parameters with frequency is modeled
efficiently and accurately. In recent years, some novel
dispersive models have been introduced, for example, the
complex-conjugate pole-residue (CCPR) model [3], critical
point (CP) model [4], modified Lorentz (m-Lo) model [5],
and quadratic complex rational function (QCRF) model
[6]. Some hybrid dispersion models, such as the Drude-
Lorentz model [7, 8] and Drude-CP model [4, 9], were also
usually adopted. However, the introduction of these new
dispersion models and their hybrid models undoubtedly
challenges the versatility of the existing FDTD methods.
For the typical dispersive FDTD approaches, the recursive
convolution (RC) method and Z transform (ZT) method

are not convenient to deal with the high-order models
such as m-Lo and QCRF. The auxiliary differential equa-
tion (ADE) method has more stringent stability conditions
than the Courant-Friedrichs-Lewy (CFL) condition of Yee’s
FDTD scheme [10–12].

The Newmark algorithm was originally used for the
numerical solution of structural dynamics and was intro-
duced into the finite-element time-domain (FETD) method
for electromagnetic simulations [13–15]. Then, it is intro-
duced into the analysis of the dispersive FDTD computation
in 2014 for the unified treatment of the Debye, Drude, and
Lorentz medium [16–18]. In this paper, the Newmark-
FDTD method is further extended to the high-order model
so that it can be used as a general approach for dispersive
media, not only to treat with Debye, Drude, and Lorentz
media, but also to deal with complex dispersion models
including CCPR, CP, m-Lo, and QCRF media. The scope of
application of the algorithm is extended greatly. Then, the
computational accuracy and stability are investigated from
the two aspects of theory and numerical computation, and
higher accuracy and stability are shown.
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2. Extended Newmark-FDTD Method

For the linear electric dispersive medium, the Maxwell’s curl
equation can be written as

∇ ×H = ∂D
∂t

+ σE, 1

∇ × E = −
∂B
∂t

, 2

where E, D, H, and B are the electric field strength, electric
displacement, magnetic field strength, and magnetic flux
density, respectively. σ is the electric conductivity. For
simplicity, consider only the electric dispersion medium.
The constitutive relation in a frequency domain can be
characterized as

B = μH, 3

D ω = ε ω E ω = ε0 ε∞ + χ ω E ω , 4

where μ is the magnetic permeability. ε0 and ε∞ are the
relative electric permittivity in free space and at the infinite
frequency, respectively. ε ω and χ ω are the electric per-
mittivity and electric susceptibility in frequency domain,
respectively. In this paper, the electric susceptibility is
adopted in the following rational function form:

χ ω = 〠
Q

q=1
χq ω = 〠

Q

q=1

b0,q + b1,q jω + b2,q jω 2

a0,q + a1,q jω + a2,q jω 2 , 5

where ai,q and bi,q (i=0, 1, 2) are both real constants. In this
way, the three typical kinds of dispersive models, that is,
Debye, Drude, and Lorentz, and some of the complex disper-
sive models, that is, CCPR, CP, m-Lo, and QCRF, can be
viewed as special cases of (5). The higher degrees of freedom
and wider range of application are possessed.

The time-stepping equation of H can be simply obtained
by applying the Yee discrete scheme to (2). However, to
obtain the time-stepping equation of E from (1), we must
firstly solve (4) in a time-stepping manner. For this rea-
son, the polarization vector P in the frequency domain
is introduced

P ω = χ ω E ω , 6

and let Pq = χq ω E ω ; thus, (4) can further be repre-
sented as

D ω = ε0ε∞E ω + ε0 〠
Q

q=1
Pq ω 7

Substituting (5) into P, we can obtain

a0,q + a1,q jω + a2,q jω 2 Pq ω

= b0,q + b1,q jω + b2,q jω 2 E ω

8

Converting (8) into a time domain by the relation jω→ ∂/∂t,
we arrive at a two-order differential equation

a2,q
d2Pq t

dt2
+ a1,q

dPq t

dt
+ a0,qPq t

= b2,q
d2E t

dt2
+ b1,q

dE t
dt

+ b0,q E t

9

It can be observed that the right side of (9) not only contains
E t but also contains the first-order derivative and second-
order derivative of E t so that it cannot be solved directly
using the Newmark algorithm employed in [16, 17]. For
this reason, a temporary variable W is introduced and
(9) is further represented as

a2,q
d2Pq t

dt2
+ a1,q

dPq t

dt
+ a0,qPq t =W,

b2,q
d2E t

dt2
+ b1,q

dE t
dt

+ b0,qE t =W
10

Then, the Newmark algorithm is applied to (10) with a
unified time step Δt and to obtain higher stability, γ = 0 5
and β = 0 25 are adopted [13, 14]. Thus, we can obtain

c0,q ⋅ Pn+1
q − c1,q ⋅ Pn

q + c2,q ⋅ Pn−1
q

= Δt 2

4 Wn+1 + Δt 2

2 Wn + Δt 2

4 Wn−1,

11

d0,q ⋅ En+1 − d1,q ⋅ En + d2,q ⋅ En−1

= Δt 2

4 Wn+1 + Δt 2

2 Wn + Δt 2

4 Wn−1,

12

where

c0,q = a2,q +
1
2 a1,qΔt +

1
4 a0,q Δt 2, 13

c1,q = 2a2,q −
1
2 a0,q Δt 2, 14

c2,q = a2,q −
1
2 a1,qΔt +

1
4 a0,q Δt 2 15

d0,q, d1,q, and d2,q are similar to c0,q, c1,q, and c2,q. It only needs
replacing a0,q, a1,q, and a2,q in (13), (14), and (15) with b0,q,
b1,q, and b2,q.

Due to be a unified Δt,W in (11) and (12), the value ofW
at n + 1, n, and n − 1 must be the same, so we can obtain the
Pq update formula

Pn+1
q = 1

c0,q
c1,q ⋅ Pn

q − c2,q ⋅ Pn−1
q + d0,q ⋅ En+1 − d1,q ⋅ En + d2,q ⋅ En−1

16
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Finally, substituting (16) and (7) into the discretized form of
(1), the FDTD-updating formula of E is given

ε0ε∞ + ε0 〠
Q

q=1

d0,q
c0,q

+ σΔt
2 En+1

= ε0ε∞ + ε0 〠
Q

q=1

d1,q
c0,q

−
σΔt
2 En + Δt ⋅ ∇ ×H

− ε0 〠
Q

q=1

d2,q
c0,q

En−1

+ ε0 ⋅ 〠
Q

q=1

1 − c1,q
c0,q

⋅ Pn
q + 〠

Q

q=1

c2,q
c0,q

⋅ Pn−1
q

17
In this way, a complete FDTD time-domain iterative compu-
tation is constituted by (17) and (16) and the standard FDTD
formula of H corresponding to (2). The FDTD computation
can be realized.

3. Analysis of Accuracy and Stability

In the FDTD method, Maxwell’s curl equations are replaced
with a different equation and the dispersion relation in the

discrete form is thus quite different from that in the contin-
uous form. For the dispersive FDTD method, the accuracy
of the FDTD method is related also to a discrete scheme
applied to the dispersive model of the media in the time
domain. So, the accuracy of FDTD method can clearly be
understood by investigating the errors between the numer-
ical dispersive model of media and analytical model of
media. The smaller the errors, the higher the computational
accuracy [19]. The accuracy of the extended Newmark-
FDTD algorithm is discussed below. Moreover, for simplic-
ity and without loss of generality, let Q = 1 and ε∞ = 0; the
permittivity of dispersive media becomes a rational fraction
form similar to (5).

To investigate the accuracy of the extended FDTD
method, the z-domain electric susceptibility is given by
applying the z transform to (16)

χ z =
d0,qz − d1,q + d2,qz

−1

c0,qz − c1,q + c2,qz−1
18

Substituting c0,q, c1,q, c2,q, d0,q, d1,q, d2,q, and z = ejωΔt into
(18) and then rearranging the resulting equation, we can
arrive at

To derive a more compact form, the following double-angle
formula of trigonometric identity is applied to (19):

sin ωΔt = 2 sin 1
2ωΔt cos 1

2ωΔt ,

tan 1
2ωΔt =

sin 1
2ωΔt

cos 1
2ωΔt

20

The numerical electric susceptibility corresponding to (5) is
derived as follows:

χ ω = b0 + b1 jω + b2 jω 2

a0 + a1 jω + a2 jω 2 , 21

where

ω = 2
Δt tan

1
2ωΔt 22

Comparing (21) with (5), it is shown that the forms of numer-
ical electric susceptibility χ ω and electric susceptibility

χ ω are exactly the same, apart from replacing ω
with ω.

By expanding (22) into the power series, we can obtain

2 tan ωΔt
2 = ωΔt + ωΔt 3

12 +O ωΔt 5 ≈ ωΔt 23

The error between ω and ω is not higher than ωΔt 3. For
practical FDTD computation, ωΔt restricted by CFL stable
condition is always very small. Hence, χ ω is very close
to χ ω . In comparison with the ADE method given in
[10, 19], the extended Newmark-FDTD method possesses
higher accuracy.

Then, the stability of the extended FDTD method is
investigated, which is of great importance to fully employ this
method for general dispersive media. The stability of the
dispersive FDTD method depends not only on the dispersive
model but also on the discretization scheme [11]. It can be
carried out by the Von Neumann method combined with
the Hurwitz-Routh (R-H) criterion [20]. Consider a time-
dependent wave equation in a source-free homogeneous
dispersive medium, we have

z − 1 2D + 4zε0v2E = 0, 24

χ ejω =
b0,q Δt 2 cos2 1/2 ωΔt + jb1,q Δt sin ωΔt + 4b2,q sin2 1/2 ωΔt
a0,q Δt 2 cos2 1/2 ωΔt + ja1,q Δt sin ωΔt + 4a2,q sin2 1/2 ωΔt

19
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where

v2 = c0Δt 2 〠
s=x,y,z

sin2
ksΔs/2
Δs 2 25

In (24) and (25), D and E are complex amplitudes of
field quantities, ks s = x, y, z is a numerical wavenumber
in s direction, Δs is the space step in s direction, and
c∞ = 1/ μ0ε∞. Substituting (18) into (4), we have

ε z = D
E

= ε0
d0z

2 − d1z + d2
c0z2 − c1z + c2

26

The stability polynomial in z-plane can be given as follows
from (24) and (26):

SDE z = d0z
4 − d1 + 2d0 − 4c0v2 z3

+ d2 + 2d1 + d0 − 4c1v2 z2

− 2d2 + d1 − 4c2v2 z + d2

27

It is known from the knowledge of signal processing that the
root of SDE z must lie in the unit circle on the z-plane to
make the FDTD algorithm stable. In order to avoid solving
directly the root of SDE z , we can transform (27) into the
s-plane by the relation z = s + 1 / s − 1 , then substituting
c0, c1, c2, d0, d1, and d2, the following stability polynomial
in the s-plane is obtained:

SDE s = 4v2a0 Δt 2s4 + 8v2a1 Δt s3

+ 4 b0 − v2a0 Δt 2 + 16v2a2 s2

+ 8 b1 − v2a1 Δt s + 16 b2 − v2a2

28

In this way, the problem of judgment of whether the root of
SDE z is in the unit circle on the z-plane is converted into
the problem of whether the root of SDE s lies in the left of
the s-plane, which can be calculated according to the R-H
criterion with the Routh table. Finally, the following effective
stability conditions are obtained:

a0 ≥ 0, 29

a1 ≥ 0, 30

a1b0 − a0b1 Δt 2 + 4v2a1a2 ≥ 0, 31

b2 − a2ε0v
2 ≥ 0 32

Taking (32) into account, for a2 > 0, the last numerical
stability condition of the extended Newmark-FDTD method
can be written in terms of Δt:

Δt ≤ b2
a2

1
c0

〠
s=x,y,z

1
Δs2

−1/2

33

A comparison of the extended Newmark-FDTD algorithm
with the double average scheme (DAS) of the ADE method
as well as the Mobius transformation (MT) method indicates
that a similar time-domain update formula is presented

except for the coefficient difference with a constant in the
three dispersive FDTD algorithms, although these three
formulations are based on different approximation principles
[11, 21–23]. The aforementioned numerical stability condi-
tion expressed by (33) is also the same as the stability condi-
tion of DAS and MT and is more relaxed than the stability
condition of the direct scheme (DS) of the ADE algorithm
[12]. Therefore, the extended Newmark-FDTD method also
has the best stability [24, 25]. However, the derivation of
the extended Newmark scheme is much simpler than that
of the ADE and MT method, as the problem of the dis-
crete scheme and time synchronism in the ADE algorithm
as well as the tedious derivation in the MT algorithm can
be avoided [22, 26].

4. Numerical Verification

To verify the advantages of extended Newmark-FDTD
method, the numerical analysis of accuracy and stability of
this method is further conducted.

Firstly, to verify the computational accuracy of the
extended Newmark-FDTD algorithm, consider a 1-D human
dry skin tissue modeled in the frequency range of 400MHz–
3GHz by a QCRF with the coefficients of Q = 1, b0 = 188 85,
b1 = 7 49 × 10−8, b2 = 1 04 × 10−18, a0 = 1 0, a1 = 1 80 × 10−9,
and a2 = 4 38 × 10−20 [19]. The error is measured using the
relative error between ε ω and ε ω defined as

error = ε ω − ε ω

ε ω
34

The results at dt = dtmax and dt = 0 5 ⋅ dtmax are shown in
Figure 1, where dtmax = Δz/c0 and Δz are one tenths of the
minimum wavelength in incident wave. As a comparison,
the relative error of the direct scheme (DS) of the ADE
method is also given. It is seen from Figure 1 that both the
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Figure 1: The relative error of ε ω and ε ω for the extended
Newmark algorithm.
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relative errors of the extended Newmark algorithm and ADE
algorithm are very small and decrease with the decrease of
the discrete interval Δt. A comparison of the two methods
shows that the extended Newmark algorithm has a smaller
magnitude of relative error than the ADE method, so it has
higher computational accuracy.

The stability of the extended Newmark-FDTD method is
also investigated by the root locus of the stability polynomial
in z-plane as (27). Consider a human muscle tissue mod-
eled in the frequency range of 400MHz–3GHz by QCRF
as (5) with the following parameters [21]: Q = 1, ε∞ = 0,
b0 = 455 72, b1 = 2 50 × 10−7, b2 = 1 98 × 10−18, a0 = 1, a1 =
4 47 × 10−9, and a2 = 7 56 × 10−20. Let λmin = 0 0138m and
Δz = λmin/10, then the maximum time step satisfying the
CFL stability limit of 1-D FDTD in free space is Δt0 =
Δz/c0 = 4 6021ps and the time step of 1-D FDTD in human
muscle tissue is Δt = v ⋅ Δt0, where 0 < v ≤ vmax = b2/a2 =
5 1177, vmax is computed from (33). Then, the root locus of
the stability polynomial of an extended Newmark-FDTD
implementation is computed and shown in Figure 2(a) for
0 < v ≤ vmax. At the same time, the root locus of the stability
polynomial of the direct scheme of the ADE algorithm is
given in Figure 2(b).

It is seen from Figure 2(a) that for 0< v< 5.1177, all
the roots of the stability polynomial of the extended
Newmark-FDTD implementation are inside the unit circle
that shows the extended Newmark-FDTD method is stable

for Δt satisfied (33). This is consistent with the theoretical
analysis. On the other hand, it is seen from Figure 2(b) that
one root of the stability polynomial of the DS-ADE method
escapes outside the unit circle for 5 0422 < v < 5 1177. This
indicates that the direct scheme of the ADE method
becomes unstable. This result is also consistent with the
results from [21]. The comparison of Figures 2(a) and
2(b) shows that the stability condition of the extended
Newmark scheme is more relaxed than that of the ADE
direct implementation scheme.

To validate further the theoretical stability results, the
FDTD simulation of electromagnetic wave propagation in
a 1-D domain is considered. The simulation domain is
composed of a human muscle tissue slab with the same
parameters as described above and sandwiched between
two semi-infinite dielectrics with εr = A2/B2 + 1. The size of
the simulation domain is limited to 8000 space cells and ter-
minated by the convolutional perfectly matched layer
(CPML) with a thickness of 10 cells. The muscle slab is
located between the nodes 4000 and 5000 of the domain. A
modulated Gaussian pulse given by Ex = exp − t/τ − 3 2 sin
2πf ct is introduced at the S point that is 10 Δz away
from the left boundary of the simulation domain (where
f c = 1 5GHz and τ = 0 5198ns). The electric field Ex can
be observed at point O that is 3000 Δz away from the left
boundary of the simulation domain [21]. The simulation
domain geometry is shown in Figure 3.
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Figure 2: Root locus of the stability polynomial in z-domain.
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Figure 3: Structure of simulation domain (where S and O are, resp., the source point and observation point).
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If the spatial step is Δz = 0 00138m, the maximum
time step of the 1-D FDTD computation in free space that
satisfied the Courant stability condition is Δt0 = Δz/c0 =
4 6021ps and the upper bound of the time step of 1-D
FDTD in the human muscle tissue for the discretization
of extended Newmark FDTD is Δtmax = A2/B2Δt0 =
5 1177Δt0 = 23 5521ps obtained from (33). The maximum
time step of the 1-D FDTD computation in the surrounding
semi-infinite dielectrics is Δt = Δz/ c0/ εr = 23 997ps. In
the first test, the FDTD simulation is performed with a time
step limit Δtmax. This time step selection meets the stability
limit in the human muscle tissue. Figure 4(a) shows the
time-domain evolution of Ex as recorded at the observation
point O. It can be seen that the field Ex remains stable during
the whole period of time. The simulation is repeated by using
Δt = 1 01Δtmax = 23 7877ps that is bigger than the stability
limit in the human muscle tissue. Figure 4(b) shows the
time-domain evolution of Ex as recorded at observation point
O. It can be seen that the field begins to increase without
being bound in the late-time response, and therefore, it
is unstable.

5. Conclusion

In this paper, an extended Newmark-FDTD approach for the
complex dispersive medium is presented in terms of polariz-
ability in the form of a quadratic complex rational function,
in which the time-stepping equation of the polarization
vector is obtained by the Newmark algorithm used widely
in finite-element time-domain (FETD) computation. The
high accuracy and stability of this method are demonstrated
from the two aspects of theoretical analyses and numerical
results. It is also indicated that the application scope of this
approach is extended greatly. In addition, this approach can
be further used for the analysis of some complex dispersive
models and some hybrid models, for example, CCPR, CP,
m-Lo, QCRF, Drude-Lorentz, and Drude-CP.
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