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In this paper, we propose a frequency-tunable electromagnetic absorber that uses the mechanical control of substrate thickness. The
absorption frequency of the proposed absorber can be changed by varying the substrate thickness. In order to mechanically control
the substrate thickness, we introduce a 3D-printed molding with air space. The proposed structure consists of two layers and one
frame: the FR4 substrate, polylactic acid (PLA) frame, and air substrate. The FR4 and PLA thicknesses are fixed, and the air
thickness is varied using the PLA frame. Therefore, the effective dielectric constant of the overall substrate can be changed. The
metallic rectangular patch and ground are patterned on the top and bottom FR4 substrates, respectively. The performance of the
proposed tunable absorber is demonstrated from full-wave simulation and measurements. When both of the FR4 substrate
thicknesses are 0.3 mm and the air thickness is changed from 1 to 3.5mm, the absorption frequency is changed from 8.9 to
8.0 GHz, respectively. Therefore, the frequency-tuning capability of the proposed absorber is successfully demonstrated.

1. Introduction

Metamaterials are artificial structures in which periodic unit
cells are infinitely arranged. Using these metamaterials, we
can control the characteristics of a material [1]. These tech-
nologies are used in various fields, such as stealth technology
[2, 3], electromagnetic interference (EMI) and electromag-
netic compatibility (EMC) solutions [4], superlenses [5, 6],
RF circuit applications [7], and sound wave technology
[8]. Metamaterial absorbers are also one of its promising
applications. The metamaterial absorber was first proposed
by Landy et al. [9]. The previous absorbers, such as ferrite
[10-13] or wedge-tapered [14, 15] absorbers, were bulky and,
therefore, were limited by space. Compared to material-
based electromagnetic (EM) absorbers, structure-based meta-
material absorbers show high absorption rates, low pro-
duction costs, and functionality with a low profile.

In spite of the several advantages of the metamaterial
absorber, it has the disadvantage of a narrow bandwidth,
because it uses electromagnetic resonance. Therefore, in

order to overcome this disadvantage, metamaterial absorbers
have been designed using lossy patterns [16-18], multire-
sonance [19-21], and lumped components [22-24], in
order to broaden the absorption frequencies. A frequency-
tunable metamaterial absorber is an alternative solution.
The frequency-tunable metamaterial absorber can be used
not only as an electromagnetic absorber but also as a
frequency-selective sensor. Most frequency-tunable metama-
terial absorbers have been realized using electronic devices
such as diodes [25-27], microelectromechanical systems
(MEMS) [28-30], and liquid crystal technology [31, 32].
Recently, fluidically tunable metamaterial absorbers have
been proposed using liquid metal [33-35]. These electrically
tunable devices show an instantaneous response. However,
they are not only costly but also have limitations of design
in a periodic structure because of additional DC bias lines
and an extremely large number of devices. Alternatively,
frequency-tunable metamaterial absorbers using liquid crys-
tal or liquid metal can be fabricated not only on hard sub-
strates but also on flexible substrates. In spite of its slow
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FIGURE 1: Geometry of the unit cell of the proposed absorber. (a) Top view of the unit cell. (b) Perspective view of the unit cell. (c) Side view of
the unit cell. W, =12 mm; Lp =8 mm; W‘l7 =7mm; H; = 1.5mm; H, = Hy = 0.5 mm.

tuning speed, this type of tunable absorbers has drawn inter-
est due to its flexibility and simple design.

Recently, mechanically tunable metamaterial absorbers
have been proposed using stretching technology [36-38].
For instance, the physical size of the unit cell can be
deformed by stretching the substrate. Its tuning speed is
slow, but it has a simple design and low cost for a periodic
structure. Because the absorption frequency can be deter-
mined by the deformation level, a mechanically tunable
absorber can be used for frequency tunability as well as
physical strain sensors.

In this paper, we proposed a novel frequency-tunable EM
absorber by mechanically controlling the substrate thickness.
The proposed thickness-controllable substrate consists of the
FR4 layer with fixed thickness and the air layer with control-
lable thickness. In order to mechanically control the thick-
ness of the substrate, a polylactic acid (PLA) frame using a
3D printer was fabricated. The frequency tunability of the
proposed EM absorber is successfully demonstrated through
full-wave simulation and measurement.

2. Electromagnetic Absorber Design

In this paper, we proposed a rectangular patch for the unit
cell of the absorber. Figure 1 shows the geometry of a unit cell
of the proposed absorber with geometrical dimensions. The
unit cell size (Wsx Ws) is 12mm x 12mm. The proposed
absorber is composed of two FR-4 substrates with the air sub-
strate in between, as illustrated in Figure 1(b). The dielectric
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FIGURE 2: Simulated reflection coefficients of the proposed absorber
at different air thicknesses.

constant and tangent loss of the FR-4 substrate are 4.4 and
0.02, respectively. The patch is designed on the top of the
upper FR-4 substrate. The ground plane is designed on the
bottom FR-4 substrate. Both FR-4 substrates have a fixed
thickness (H, and H;) of 0.5mm. The air substrate thick-
ness (H,) can be varied from 1.5mm to 3.5mm. In this
work, the patch size is fixed, and the substrate thickness
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FIGURE 3: (a) Simulated electric field distribution; (b) top and (c) side view of the vector current density of the proposed absorber.

is varied. In particular, when the thickness of the air sub-
strate is varied, H; and e, are changed, thereby changing
the resonant frequency.

3. Simulation Results

Figure 2 shows the simulated reflection coefficients of the
proposed absorber at different air thickness of 1.5mm,
2.5mm, and 3.5 mm. ANSYS high-frequency structure simu-
lator (HESS) is used for full-wave analysis. It is observed that
the resonant frequency is 8.7 GHz with a reflection coeflicient
of —15dB when the air thickness is 1.5 mm. When the thick-
ness of the air layer is increased to 2.5mm and 3.5 mm, the
resonant frequency decreased to 8.4GHz and 8.2 GHz,
respectively. Therefore, the resonance frequency shifted by
0.5GHz from 8.7 to 8.2 GHz. Figure 3 shows the simulation
results of the electrical field distribution and vector current
density of the proposed absorber when the E- and H-fields
are incident on x and y polarization, respectively.

As shown in Figure 3(a), the electrical field is distrib-
uted on an edge of the patch along the x direction, which
generates an electric response. The vector current density
flows in the y direction, as shown in Figure 3(b). The top
and bottom planes of the vector current densities flow in
the +y and —y direction, which generates a magnetic response
as shown in Figure 3(c).

4. Measurement Results

For the experiment, we used a monostatic RCS measure-
ment setup. Figure 4 shows the illustration of the monostatic
far-field RCS measurement system. After the prototype is
fabricated, we measured the reflection coefficient to prove
the performance. The absorption is calculated by (1). Because
the bottom is covered entirely by copper, there is no trans-
mitted wave (T'). Therefore, the absorption is calculated only
from the reflection coefficient (T').
Aw)=1-T(w) - T(w) =1-T(w). (1)
To measure the reflection coefficient of the prototype,
we used a single WR-90 PE9856/SF-15 horn antenna
(Pasternack, CA, USA). The operating frequency range is
8.2-12.4 GHz, and the nominal gain is 15dB. The antenna
far field for measurement is 0.5 meter. The back side of the
prototype is placed in the wedge-tapered absorber, which
prevents unexpected reflected waves. We analyzed the exper-
iment results using an Anritsu MS2038C vector network ana-
lyzer, utilizing the time-gating function for measurement.
Figure 5 shows the 3D-printed frame for the fixed
air thickness. As shown in Figure 5(a), we fabricated a PLA
frame with 0.5 mm interval slots. We used the Ultimaker2+
3D printer (Ultimaker B.V., Geldermalsen, Netherlands)
for the PLA frame fabrication. Figure 5(b) shows a picture
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FIGURE 4: Illustration of the free space absorption ratio measurement setup under normal incidence.

(b)

(©)

FIGURE 5: Pictures of the 3D-printed frame for the fixed air thickness. (a) Fabricated 3D PLA frame. (b) The fabricated absorber. (c) 3D PLA

frame with an absorber.

of a fabricated absorber. The fabricated absorber size is
180 mm x 180 mm. Figure 5(c) shows the combined PLA
frame and absorber.

Figure 6 shows the measured reflection coeflicient
according to the change in air thickness and the relation
between the measurement results and fitted curve. In

Figure 6(a), when the air layer thickness is 1.5 mm, the reso-
nant frequency is 8.9 GHz with —41 dB. When the thickness
of the air layer was increased from 1.5mm to 2.5mm and
3.5mm, respectively, the resonant frequencies decreased
from 8.9GHz to 8.5GHz and 8.0 GHz. Figure 6(b) shows
the relation between the measurement results and fitted
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FIGURE 6: Measured reflection coefficient according to change in air thickness and the relation between the measurement results and

fitted curve.

TaBLE 1: Comparison of the proposed mechanically frequency reconfigurable absorber with those of other papers.

Reference paper Tuning method Tuning frequency range (GHz) BW* (%)
[38] Mechanically stretchable 11.15-11.56 3
[39] Mechanically stretchable 640-680 8
[40] Microelectromechanical system (MEMS) 1280-1320 3
[37] Mechanically stretchable 10.4-11.0 5
Proposed work Mechanically control the substrate thickness 8.0-8.9 10

‘BW = Af/fc’ where Af:fhigh 7flow andfc = (fhigh +f10w)/2,

curve. From the fitted curve of y=—-0.45x+9.519, the sensi-
tivity is defined to be 4.5x 10° Hz/mm when the air layer
thickness is changed. Table 1 shows the comparison between
the proposed work and other papers. The proposed work
shows wider tuning range and bandwidth compared to
other works.

5. Conclusions

In this paper, we proposed frequency-tunable electromag-
netic absorber using the mechanical control of substrate
thickness. In order to control the substrate thickness, a
PLA frame fabricated with a 3D printer was used as the
fixed substrate thickness, mechanically. We used two FR4
substrates with a middle air layer to control the thickness
of the air layer mechanically. The top side of the upper
substrate is designed by patch. The bottom side of the bot-
tom substrate is designed as ground. The patch dimension
of a unit cell is 8mm x7mm, and the overall fabricated
absorber is 180 mm x 180 mm. To perform the measurement,
we set up a monostatic RCS measurement. The measurement
was performed using a WR-90 horn antenna and a network
analyzer. The resonant frequency was matched to 8.9 GHz
with a reflection coefficient of —41 dB. When the air thickness

increased from 1.5mm to 2.5mm and 3.5 mm, the resonant
frequency decreased from 8.9 GHz to 8.5 GHz and 8.0 GHz,
respectively, shifted by up to 0.9 GHz. Therefore, we proved
the successful fabrication of a frequency-tunable electro-
magnetic absorber using a mechanically controlled sub-
strate thickness and proved the results through simulation
and measurement.

Data Availability

The structures are simulated and analyzed by ANSYS HESS
(high-frequency structure simulator).
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