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We provide a complete study on the direction-of-arrival (DOA) estimation of noncircular (NC) signals for uniform linear array
(ULA) via Vandermonde constrained parallel factor (PARAFAC) analysis. By exploiting the noncircular property of the signals,
we first construct an extended matrix which contains two times sampling number of the received signal. Then, taking the
Vandermonde structure of the array manifold matrix into account, the extended matrix can be turned into a tensor model
which admits the Vandermonde constrained PARAFAC decomposition. Based on this tensor model, an efficient linear algebra
algorithm is applied to obtain the DOA estimation via utilizing the rotational invariance between two submatrices. Compared
with some existing algorithms, the proposed method has a better DOA estimation performance. Meanwhile, the proposed
method consistently has a higher estimation accuracy and a much lower computational complexity than the trilinear alternating
least square- (TALS-) based PARAFAC algorithm. Finally, numerical examples are conducted to demonstrate the effectiveness
of the proposed approach in terms of estimation accuracy and computational complexity.

1. Introduction

Direction-of-arrival (DOA) estimation of signals impinging
on an array of sensors is an important and fundamental issue
in array signal processing due to its wide applications in wire-
less communications, geophysics, radar, and so on [1–3]. In
this context, many DOA estimators have been developed to
solve this problem, such as propagator method (PM) [4],
maximum likelihood (ML) methods [5, 6], tensor-based
method [7], estimation of signal parameters via rotational
invariance technique (ESPRIT) algorithm [8], and multiple
signal classification (MUSIC) algorithm [9].

Unfortunately, all of the above works [4–9] ignore the
characteristics of the incident signals. It has been shown that
the accuracy of DOA estimation can be enhanced by taking
advantage of the noncircular (NC) property of the impinging
signals [10]. Examples of the noncircular signals include
binary phase-shift keying (BPSK) and amplitude-modulated
(AM) signals which are widely applied in wireless telecom-
munication systems. While the property of NC signals is
utilized, the array aperture is virtually doubled in [10], which

yields a better DOA estimation performance than that in
[9]. Besides taking the noncircularity of signals into account,
the maximum number of sources can potentially exceed the
number of array elements. Consequently, solid researches
on NC signals for DOA estimation have appeared in many
literatures [11–14]. NC ESPRIT algorithm and NC Unitary
ESPRIT algorithm for DOA estimation were presented in
[11, 12], respectively. The work [13] developed a low-
complexity noncircular rational invariance propagator
method (NC-RI-PM) for angle estimation, which is used
for uniform linear array (ULA). However, the performance
of the NC-RI-PM became worse rapidly in the case of low
signal-to-noise ratio (SNR). The authors in [14] utilized
the parallel factor (PARAFAC) analysis [15] to acquire the
two-dimensional (2D) angle estimation of NC signals for
uniform rectangular array (URA). The main drawback in
[14] is that it has large computational load and is sensitive
to the iterative initial value.

In this paper, we present a Vandermonde constrained
PARAFACmethod to improve the DOA estimation accuracy
by taking advantages of the property of NC signals and the
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array manifold matrix with Vandermonde structure. In order
to construct a PARAFAC data model, we first build an
extended matrix by concatenating the received data and its
conjugated component. Then, the extended data matrix can
be formulated as a PARAFAC model with Vandermonde
constrained factor matrix. Finally, a closed-form solution
can be utilized to acquire the angle information by taking
the Vandermonde structure into account.

The contributions of this paper can be summarized as
follows: (1) We combine the property of NC signals and the
array manifold matrix with Vandermonde structure, based
on which a Vandermonde constrained PARAFAC method
is proposed to acquire the DOA of NC signals for uniform
linear array. (2) Compared with trilinear alternating least
square- (TALS-) based PARAFAC method, the proposed
method provides a better angle estimation as well as a lower
computational complexity. (3) The proposed approach also
has a higher estimation accuracy than the ESPRIT method
[8], NC ESPRIT method [11], and NC-RI-PM method [13].

The rest of this paper is structured as follows. In Section
2, we introduce the systemmodel for ULA. Section 3 presents
the Vandermonde constrained PARAFAC method for DOA
estimation of noncircular signals. The complexity analysis
and Cramér-Rao Bound (CRB) of NC signal DOA estimation
are given in Section 4. Numerical results are provided in
Section 5. Finally, Section 6 concludes the paper.

Notations: scalars, vectors, matrices, and tensors are
denoted by lowercase letters, lowercase boldface letters,
uppercase boldface letters, and calligraphic letters, respec-
tively. The operators ⋅ ∗, ⋅ T, ⋅ H, ⋅ †, and ⋅ F denote
the conjugate, transpose, conjugate transpose, pseudoinverse,
and Frobenius norm, respectively. IK stands for aK × K iden-
tity matrix. diag a is the diagonal matrix with diagonal
elements given by a. ⊙, ∘, and ⊕ represent the Khatri-Rao
product, outer product, and Hadamard product, respectively.
rA is the rank of a matrix A.

2. System Model

Let us consider a uniform linear array consisting ofM omni-
directional sensors. The distance between two adjacent sen-
sors is d. As shown in Figure 1, the first sensor is regarded
as the reference point for the array, assuming that there are
K uncorrelated narrowband far-field signals impinging on
this array from distinct directions θ1,… , θK We also assume
that the number of sources K is known a priori or has
been estimated by the methods shown in [16, 17]. Under
such a scenario, the received signal vector x n ∈ℂM×1

can be modeled as

x n =As n + v n , 1

where

A =

1 ⋯ 1

α1 ⋯ αK

⋮ ⋱ ⋮

αM−1
1 ⋯ αM−1

K

2

is the array manifold matrix with size of M × K , αk =
e−j 2π/λ dsin θk , k = 1,… , K λ is the wavelength; s n =
s1 n ,… , sK n T ∈ℂK×1 is the signal vector at snapshot n.
v n ∈ℂM×1 stands for the additive Gaussian noise vector
with zero-mean and covariance σ2IM . From (2), we know
that A is a Vandermonde matrix with distinct nonzero
generators α1,… , αK In this paper, the strictly second-
order noncircular signals [18] are considered. Thus, we have
E s n = 0K×1,E s n sH n ≠ 0K×K , andE s n sT n ≠ 0K×K

It is assumed that the DOAs of the sources are constant in
N snapshots. We collect N snapshots corresponding to x n ;
the received signal matrix X ∈ℂM×N is given by

X = x 1 ,… , x N

=AST +V,
3

where S = s 1 … s N T ∈ℂN×K stands for the source
matrix and V ∈ℂM×N contains the samples of the additive
noise. Due to the NC property, we can decompose the source
matrix as S = S0Ψ [18], where S0 ∈ℝN×K is a real-valued
matrix, Ψ = diag e−jψ1 ,… , e−jψK ∈ℂK×K is a diagonal
matrix, and ψk is referred to as the phase shift of the kth
source. Then (3) can be rewritten as

X =AΨST0 +V 4

3. Estimation of DOA via Vandermonde
Constrained PARAFAC Decomposition

3.1. PARAFAC Model. Since the noncircular signals are con-
sidered, we construct the extended data matrix X ∈ℂ2M×N as
follows [12, 14]:

X =
X
JX∗

=
AΨST0

J AΨST0
∗ +

V
JV∗

=
AΨ

AΛΨ−1
ST0 +V1 =

AD1 Φ
AD2 Φ

ST0 +V1

= Φ ⊙A ST0 +V1,

5
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Figure 1: Illustration of the array geometry.
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where J ∈ℝM ×M is the exchange matrix with ones on
its antidiagonal and zeros elsewhere. V1 is the
extended noise matrix. Λ = diag ej 2π/λ M−1 d sin θ1 ,… ,
ej 2π/λ M−1 dsin θK ∈ℂK×K , and

Φ =
e−jψ1 ,… , e−jψK

ej
2π
λ
M−1 d sin θ1+ψ1 ,… , ej

2π
λ
M−1 d sin θK+ψK

6

is a 2 × K matrix. Di Φ is the diagonal matrix with diagonal
elements given by the ith row of Φ. According to Harshman
[15], the signal part of (5) can be seen as a matrix representa-
tion of a third-order PARAFAC model ∈ℂM ×N ×P, whose
m, n, p − th element is given by

xm,n,p = 〠
K

k=1
am,ks0n,kϕp,k, 7

where m = 1,… ,M, n = 1,… ,N , and p = 1, 2 xm,n,p repre-
sents the typical element of the tensor . am,k denotes
the m, k − th element of A, and similarly for the others.
Using the reshaping operations, we can obtain the other
two equivalent matrix representations of as follows:

Y = A ⊙ S0 ΦT +V2 ∈ℂ
MN ×2,

Z = S0 ⊙Φ AT +V3 ∈ℂ
2N ×M

8

Till now, we successfully link the expanded data matrix
with a tensor model which satisfies the PARAFAC decompo-
sition. According to (5), the PARAFAC decomposition can
be accomplished by solving the following unconstrained
optimization problem.

min
A,S0,Φ

χ − 〠
K

k=1
ak ∘ s0k ∘ ϕk

2

F

, 9

where ak, s0k, and ϕk represent the kth columns of the matri-
ces A, S0, and Φ, respectively. This is most often done by
means of the TALS method. As its programming simplicity,
the TALS algorithm has been successfully employed to esti-
mate the parameters of several tensor models [7, 19, 20].
The basic idea of the TALS algorithm for fitting the proposed
PARAFAC model is stated as follows:

With the consideration of (5), while A and Φ are fixed,
we update S0 using the following least squares (LS) fitting:

Ŝ0 = arg min
S0

X − Φ ⊙A ST0 F

= Φ ⊙A †X T,
10

where Ŝ0 stands for the estimation of S0. In the same way,
while A and S0 are fixed, Φ can be updated by the following
LS fitting:

Φ̂ = arg min
Φ

Y − A ⊙ S0 ΦT
F

= A ⊙ S0 †Y T,
11

where Φ̂ stands for the estimation of Φ. Similarly, we obtain
an updated A via LS fitting as

Â = arg min
A

Z − S0 ⊙Φ AT
F

= S0 ⊙Φ †Z T,
12

where Â stands for the estimation of A. Repeat updating pro-
cess of the three matrices until convergence, and then the
estimation matrices Â, Ŝ0, and Φ̂ can be obtained. It is well
known that the TALS algorithm is sensitive to the initial
value as well as the array manifold, which may cause the
TALS algorithm converging slowly. In the next subsection,
a more efficient algorithm is applied to obtain the estimation
of DOA for noncircular signals.

3.2. DOA Estimation with Vandermonde Constrained
PARAFAC Method. From the previous analysis, we know
that the matrix A is a Vandermonde matrix with distinct
nonzero generators α1,… , αK Therefore, by taking the Van-
dermonde factor into account, the model can be seen as a
tensor which admits the PARAFAC decomposition with
Vandermonde constraint. And then, a more efficient algo-
rithm is applied to fitting the PARAFACmodel with Vander-
monde constraint.

According to (6), we know that rΦ =min 2, K If K > 2,
we can conclude that the matrix Φ does not have full-
column rank, which implies that rΦ is less than K . Then,
the rank of Y is also less than K . Consequently, the spatial
smoothing technique can be used to handle with this prob-
lem [21]. The detailed process of spatial smoothing is pre-
sented as follows:

Denote Y l2 as the l2th subarray of Y such that Y l2 = Y
N l2 − 1 + 1 N L1 + l2 − 1 , : , l2 = 1,… , L2, where L2 is
the smoothing factor. The integers L1 and L2 must be chosen
such that M = L1 + L2 − 1 Taking the advantage of the Van-
dermonde structure of A, we have

Y l2 =

S0Dl2
A

S0Dl2+1 A
⋮

S0Dl2 +L1−1 A

ΦT =

S0D1 A
S0D2 A

⋮

S0DL1
A

Ωl2 − 1ΦT,

13

whereΩ = diag ej 2π/λ dsin θ1 ,… , ej 2π/λ dsin θK ∈ℂK ×K Then,

denote Ỹ = Y 1 … Y L2 ∈ℂNL1×2L2 , we can obtain
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Ỹ = Y 1 ⋯ Y L2

=

S0D1 A

S0D2 A

⋮

S0DL1
A

ΦT ΩΦT ⋯ ΩL2−1ΦT

= A L1 ⊙ S0 ΦT ΩΦT ⋯ ΩL2−1ΦT ,

14

where A L1 ∈ℂL1 ×K denotes the first L1 rows of A. Note that

ΦT ΩΦT ⋯ ΩL2−1ΦT T =

ΦD1 A

ΦD2 A

⋮

ΦDL2
A

= A L2 ⊙Φ ,

15

where A L2 ∈ℂL2 ×K denotes the first L2 rows of A.
Therefore, (14) can be rewritten as

Y = A L1 ⊙ S0 A L2 ⊙Φ
T

16

In this way, the matrix representation Y of the tensor ,
which involves a rank-deficient matrix Φ (while K > 2), is
replaced by a matrix representation Y which only involves
two full-column rank matrices A L1 ⊙ S0 and A L2 ⊙Φ
The matrix Y can be seen as a matrix representation of a con-
strained PARAFAC decomposition model [22–24] with
three factors A L1 , S0 and A L2 ⊙Φ When the matrix Y is
obtained, a more efficient algorithm can be used to fit the
Vandermonde constrained PARAFAC model [23, 24].

While the matrices A L1 ⊙ S0 and A L2 ⊙Φ have full-
column rank, we perform the compact singular value
decomposition (SVD) of Y, which is given by Y ≈UΣVH,
where Σ ∈ℂK ×K is a diagonal matrix consisting of the largest
K nonzero singular values. U ∈ℂL1N ×K and V ∈ℂ2L2 ×K are
matrices composed of left and right singular vectors associ-
ated with the largest K nonzero singular values, respectively.
Since the factor matrices A L1 ⊙ S0 and A L2 ⊙Φ have full-
column rank, we can conclude that the subspace spanned by
the column vectors of U is the same as the subspace spanned
by the column vectors of the matrix A L1 ⊙ S0, so we have

span A L1 ⊙ S0 = span U 17

Therefore, there exists a unique nonsingular matrix
M ∈ℂK ×K such that

UM =A L1 ⊙ S0 18

Using the inherent Vandermonde structure of A L1 , we
define the following two submatrices:

U1M =A L1 ⊙ S0 =

S0D1 A
S0D2 A

⋮

S0DL1−1 A

, 19

U2M =A L1 ⊙ S0 =

S0D2 A
S0D3 A

⋮

S0DL1
A

, 20

whereU1 =U 1 L1 − 1 N , 1 K andU2 =U N + 1 L1N ,
1 K , and the relationship between A L1 , A L1 , and A L1

is that

A L1 =
A L1

last row
=

f irst row
A L1

21

Therefore, there exists a diagonal matrix Z ∈ℂK ×K

such that

A L1 ⊙ S0 Z = A L1 ⊙ S0 , 22

where Z = diag z1,… , zK with generators zk = e−j 2π/λ dsin θk ,
k = 1,… , K .

According to (19), (20), (21) and (22), we can obtain that

U2M =U1MZ 23

From (23), we have U2 =U1MZM−1 =U1Ẑ, where Ẑ =
MZM−1 Assuming that the matrix A L1 ⊙ S0 has full-
column rank, we can conclude that the matrices U1 and U2
have full-column rank and Ẑ can be rewritten as

Ẑ =U†
1U2 =MZM−1 24

Therefore, the generators zk, k = 1,… , K , can be
obtained from the eigenvalue decomposition (EVD) of U†

1
U2. Then, the DOA of the kth source θk can be recovered via

θ̂k = arcsin
−λangle zk

2πd
 k = 1,… , K , 25

where θ̂k stands for the estimation of θk and angle(·) is used
for obtaining the phase. The proposed Vandermonde con-
strained PARAFAC algorithm for NC signals DOA estima-
tion is presented in Algorithm 1.

Remark 1. The proposed method in this paper is developed
for noncircular signals. Therefore, we assume that the circu-
lar signals are not present in this paper. When the mixed
noncircular and circular signals are considered, the DOAs
can be estimated by the algorithms reported in [25, 26].

3.3. Identifiabilitity Analysis. The most remarkable charac-
teristic of the PARAFAC decomposition is its essential
uniqueness property, which makes PARAFAC decomposi-
tion a key tool for signal separation. In this subsection,
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we discuss the identifiabilitity condition for the proposed
PARAFAC method.

Theorem 1 [7, 15, 27, 28]. Let ∈ℂM ×N ×2 be a tensor with
matrix representation Y = A ⊙ S0 ΦT, where A ∈ℂM ×K , S0
∈ℝN ×K , and Φ ∈ℂ2×K , if

kA + kS0 + kΦ ≥ 2K + 2, 26

then the three factor matrices A, S0, and Φ are unique up to
permutation and scaling of columns, meaning that any other
triple (Â, Ŝ0, Φ̂) is related to (A, S0,Φ) via

Â =AΠΔ1, Ŝ0 = S0ΠΔ2, Φ̂ =ΦΠΔ3, 27

where kA, kS0 , and kΦ are the k − ranks [27, 28] of the matrices
A, S0, and Φ, respectively. Π is a permutation matrix. Δi,
i = 1,… , 3, are diagonal scaling matrices satisfying Δ1Δ2
Δ3 = IK

If the three factor matrices have full rank, then condition
(26) becomes

min M, K +min N , K +min 2, K ≥ 2K + 2 28

In this paper, we assume N ≥ K , K ≥ 2, then the identifi-
able condition (28) becomesM ≥ K . Therefore, themaximum
number of sources that can be handled by the PARAFAC
algorithm is no more than M.

When ∈ℂM ×N ×P is a tensor that admits the Vander-
monde constrained PARAFAC decomposition, we have the
following uniqueness result.

Theorem 2 [23, 24]. Let ∈ℂM×N×2 be a tensor with
matrix representation Y = A ⊙ S0 ΦT, where A ∈ℂM ×K

is a Vandermonde matrix with distinct generators, S0 ∈
ℝN ×K and Φ ∈ℂ2×K . Consider the matrix representation

Y = A L1 ⊙ S0 A L2 ⊙Φ T
with L1 + L2 =M + 1. If

r A L1 ⊙ S0 = K ,

r A L2 ⊙Φ = K ,
29

for some L1 + L2 =M + 1, then K = r , and the Vander-
monde constrained PARAFAC decomposition of is unique.
Generically, condition (29) is satisfied if and only if

min L1 − 1 N , 2L2 ≥ K 30

When we assume N ≥M and L1 ≥ 2, the condition (30)
becomes 2L2 ≥ K . Therefore, the maximum number of
sources that can be identified by the Vandermonde con-
strained PARAFAC algorithm is 2L2. If 2L2 >M, the Vander-
monde constrained PARAFAC method can identify more
sources than the PARAFAC method under the same condi-
tions. Notably, the scaling does not involve the Vandermonde
factor matrix in a PARAFAC model with Vandermode con-
straint. This means that the estimated matrices A, S0, and Φ
are related to A, S0, and Φ via

A =AΠ, S0 = S0ΠΔ2,Φ =ΦΠΔ3, 31

where Δj, j = 2, 3, are diagonal scaling matrices satisfying

Δ2Δ3 = IK

Remark 2. The proposed method can be seen as a generalized
ESPRIT method. In line with the experiments for ESPRIT in
[29, 30], we can choose the pair (L1, L2) such that the
dimensions of the matrices A L1 ⊙ S0 and A L2 ⊙Φ are
close, with the inequality min L1 − 1 N , 2L2 ≥ K satisfied.
According to [29, 30], we know that such a direct method
will yield a very good estimation result. Therefore, in order
to reduce the computational complexity, L1 is fixed to 3
and L2 =M − 2 in this paper. Although it may not yield
the best estimation result with the parameters being set as
L1 = 3 and L2 =M − 2, a good estimation result can be still
achieved. Note that simulations in Section 5 show that the
DOA performance of such a direct approach still outper-
forms than other methods.

4. Performance Analysis

4.1. Computational Complexity Analysis. In this subsection,
we discuss the computational complexity of the proposed
Vandermonde constrained PARAFAC method. The main
computational tasks of the Vandermonde constrained
PARAFAC method are computing the compact SVD of
Y which requires O 2NL1L2K [31], pseudoinverse opera-
tion of matrix U1 which requires O 2 L1 − 1 NK2 , and the
EVD of U†

1U2 which requires O K3 Therefore, the main
computational complexity of the proposed Vandermonde
constrained PARAFAC method is O 2NL1L2K + 2 L1 − 1

Step 1. Construct the tensor model with the matrix representation Y = A ⊙ S0 ΦT by exploiting the property of NC signals.

Step 2. Choose the pair (L1, L2) subject to L1 + L2 =M + 1 and construct the matrix representation Y = A L1 ⊙ S0 A L2 ⊙Φ T
via

spatial smoothing.
Step 3. Perform the compact SVD of Y Y ≈UΣVH.
Step 4. Construct U1 =U 1 L1 − 1 N , 1 K , U2 =U N + 1 L1N , 1 K .
Step 5. Perform the EVD of U†

1U2 U†
1U2 =MZM−1, Z = diag z1,… , zK with generators zk = e−j 2π/λ dsin θk , k = 1,… , K .

Step 6. Compute θ̂k = arcsin −λangle zk /2πd , k = 1,… , K .

Algorithm 1: The Vandermonde constrained PARAFAC algorithm for NC signals DOA estimation.
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NK2 + K3 The TALS-based PARAFAC method is also
illustrated for comparison. The computational cost of
TALS-based PARAFAC method is O K3 + 2NMK n1
[32], where n1 is the number of iterations. We summarize
the main computational complexity of the proposed Vander-
monde constrained PARAFAC method and the TALS-based
PARAFAC method in Table 1.

4.2. Cramér-Rao Bound (CRB). From [33], we can derive
the Cramér-Rao Bound (CRB) of noncircular signal DOA
estimation for ULA as follows:

CRB =
σ2

2N
Re DHΠ⊥

BD ⊕ P̂T −1
, 32

where σ2 is the noise power, B =Φ ⊙A = b1,… , bK ,
Π⊥

B = I − B BHB −1BH, P̂ = 1/N ∑N
n=1s0 n sH0 n , s0 n =

s0 n s0 n T, s0 n is the nth row of S0, D = d1θ,… , dKθ,
d1ψ,… , dKψ , dkθ = ∂bk/∂θk, and dkψ = ∂bk/∂ψk with bk
being the kth column of B.

Remark 3. Since the proposed Vandermonde constrained
PARAFAC solution can be seen as a generalized ESPRIT
method, hence it could be better optimized by weighting
subspace fitting methods such as [34, 35].

5. Simulation Examples

The simulations are presented to evaluate the DOA estima-
tion performance of the proposed method in this section.
The root mean square error (RMSE) is used to evaluate the
DOA estimation performance, which is defined as

RMSE =
1
K
〠
K

k=1

1
500

〠
500

q=1
θ̂k,q − θk

2
, 33

where θ̂k,q is the estimated values of θk in the qth trial,
q = 1,… , 500. K is the number of sources.

Figure 2 shows the DOA estimation result of the pro-
posed Vandermonde constrained PARAFAC method. In this
simulation, we set M = 8, N = 300, SNR = 5 dB. 30 Monte
Carlo trials are carried out. Moreover, we assume that there
exist K = 4 noncircular signals locating at angles θ1, θ2, θ3,
θ4 = 10°, 20°, 30°, 40° , and the noncircular phases are set
as ψ1, ψ2, ψ3, ψ4 = 20°, 30°, 50°, 60° It can be seen from
Figure 2 that our Vandermonde constrained PARAFAC
method has a good DOA estimation performance even at a

low SNR level. Therefore, the effectiveness of the proposed
method is verified.

Figure 3 depicts the DOA estimation result of the
proposed Vandermonde constrained PARAFAC method
for close sources. In this simulation, we assume M = 8, N =
300, SNR = 15 dB, K = 4, θ1, θ2, θ3, θ4 = 10°, 20°, 22°, 40° ,
and ψ1, ψ2, ψ3, ψ4 = 20°, 30°, 50°, 60° The number of
the Monte Carlo trials is set to 30. From Figure 3, it
can be observed that the proposed Vandermonde con-
strained PARAFAC method can separate close sources
effectively. Moreover, Figures 2 and 3 present that the
DOA estimation performance could be improved with
SNR increasing.

Figure 4 presents the RMSE of the proposed Vander-
monde constrained PARAFAC method versus SNR. We
assume that K = 4, θ1, θ2, θ3, θ4 = 5°, 15°, 45°, 60° , ψ1,
ψ2, ψ3, ψ4 = 10°, 20°, 30°, 40° , M = 8, and N = 200. The
TALS-based PARAFAC algorithm, ESPRIT algorithm in
[8], NC-ESPRIT algorithm in [11], NC-RI-PM algorithm
in [13], and the CRB are also illustrated for comparison in
Figure 4. From Figure 4, we can see that the Vandermonde
constrained PARAFAC method can achieve a better estima-
tion performance than ESPRIT, NC-ESPRIT, and NC-RI-
PM. Notably, by taking the Vandermonde structure into
account, our Vandermonde constrained PARAFAC method
outperforms the TALS-based PARAFAC approach.

The bias and variance of the estimator versus SNR
are shown in Figures 5 and 6, respectively. We consider
there exist K = 4 noncircular signals locating at the angles
of θ1, θ2, θ3, θ4 = 10°, 20°, 40°, 60° , and the noncircular
phases are set as ψ1, ψ2, ψ3, ψ4 = 20°, 30°, 40°, 50° The
number of antennas is set as M = 8, the snapshot N
is fixed to 200, while SNR is varied from 0 to 30 dB.
As expected, we can see from Figures 5 and 6 that
the bias and variance of the estimator decrease as SNR
increases, respectively.

Table 2 shows the comparison of average run time (s)
between Vandermonde constrained PARAFAC method

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

DOA

D
O

A

Figure 2: Angle estimation result for 30 independent trials with
SNR = 5 dB.

Table 1: Computational complexity of the proposed algorithm and
TALS-based PARAFAC.

Algorithm Computational complexity

The proposed method O 2NL1L2K + 2 L1 − 1 NK2 + K3

TALS-based PARAFAC O K3 + 2NMK n1
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and TALS-based PARAFAC method. In this simulation,
SNR is fixed at 15 dB, M = 8, K = 3, θ1, θ2, θ3 = 10°, 20°,
40° , ψ1, ψ2, ψ3 = 20°, 30°, 60° , while N is varied from 50
to 300. We can see that average run time of each method
grows as the number of snapshots N increases. It can be also
observed that the Vandermonde constrained PARAFAC
method is more computationally efficient than the TALS-
based PARAFAC method.

At last, the impact of the number of sources K is inves-
tigated. Figure 7 presents the RMSE performance of our
Vandermonde constrained PARAFAC method versus SNR
with different K , when M = 8 and N = 300. It is observed
from Figure 7 that the estimation accuracy decreases as the
source number K increases.

6. Conclusions

The problem of DOA estimation of noncircular signals
for uniform linear array was considered in this paper.
Due to the property of noncircular signals, we constructed
an extended matrix by concatenating the received data
and its conjugated component. And then, a Vandermonde
constrained PARAFAC model was derived from the
extended matrix. Finally, estimation of the angle informa-
tion was obtained via eigenvalue decomposition of two
submatrices. Compared with some existing methods, the
proposed method consistently provided a better DOA
estimation performance. Simulation result illustrates the
effectiveness of our method in terms of estimation accu-
racy and computational complexity. Utilizing the weight-
ing subspace fitting to optimize the proposed method
will be carried out in our future work. The case of mixed
noncircular and circular signals will be also a topic for
future research.
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Figure 6: Variance of the estimator versus SNR.
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Figure 5: Bias of the estimator versus SNR.
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Figure 3: Angle estimation result of close sources for 30
independent trials, SNR = 15 dB.
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