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We present a perfect UHF metamaterial absorber by combining coupling lines and fractal lines with a very small unit cell. The
proposed absorber consists of a surface metal structure and metallic background plane, separated by a dielectric substrate and
air. Simulation results show that the absorber has an absorption peak at 442MHz with 99.73% absorptivity. The ratio between a
lattice constant and resonance wavelength is 1/68, significantly less than the existing absorber. The design principle is
introduced in detail according to the absorption mechanism of the proposed absorber. Moreover, the absorption peaks remain
high with large angles of incidence for both TE and TM polarizations. Due to the small ratio, it can be widely used in radiation
suppression for microwave relay communication such as mobile communication and wireless network by changing the
parameters of the structure.

1. Introduction

Perfect metamaterial absorbers were first proposed by Landy
et al. in 2008 [1], and these had broad application prospects
in the fields of radar target stealth, antenna design, and elec-
tromagnetic protection [2–5]. The incident electromagnetic
wave can be absorbed almost 100 percent by the rational
design unit cell and dielectric materials. To date, much work
has been made on absorbers to achieve multiband absorption
and broadband absorption due to its important applications
in microwave, terahertz, and optical frequency [6–15]. A
dual-band polarization-independent metamaterial absorber
has been designed using a fractal square loop. Dual-band
and triple-band polarization-independent metamaterial
absorbers have been designed by making arrays of different
structures [16]. A flexible ELC resonator is designed, and
by scaling the ELC resonator, single-band, dual-band, and
triple-band absorbers can be obtained easily. Most of the
absorber designs are focused on the S, C, and X bands of
microwave or higher frequency bands because the metama-
terial absorber requires a large number of periodic structures.
However, the lattice constant of the existing absorbers is not

small enough, typically only 1/3–1/5 of the wavelength.
Although the absorption peaks of the absorber can be
extended to any frequencies by changing the size, the
absorbers have a large-size unit cell for some applications at
UHF band such as 315MHz, 433MHz, and 2.4GHz.

A large number of efforts have been made on absorbers to
achieve an UHF band. In [17], the snake-shape design was
employed to realize the thin and small-size unit cell and the
frequency of the resonance peak is determined by controlling
the length of snake bar. Reference [18] also has a design
method based on the corrugated surface to realize low
frequency. By inserting the periodic square-pillar array into
the required resonant structure, it is easy to realize the
control of resonance frequency. The resonant frequency can
also be reduced by using an intermediate dielectric layer with
a high dielectric constant [19]. In this paper, an UHF
metamaterial absorber has been proposed. A fractal can be
infinitely long on a finite area. Based on the fractal and
coupling principle, we greatly reduce the ratio between unit
cell size and wavelength by designing the top-patterned cop-
per. The proposed absorber also possesses many advantages,
such as being polarization insensitive and wide angled and
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having a low profile and variable frequency. Moreover, we
discuss the principle and design process to add a new way
in the area of UHF band absorber with a small size.

2. Design and Simulations

The proposed absorber is designed by combining coupling
lines and fractal lines. The surface-patterned copper is a
closed curve made of twisted copper wire which not only is
a part of the fractal line but also is a part of the coupling line.
The top view of the unit cell geometry of the proposed
absorber is shown in Figure 1(a). Both the top-patterned
copper and bottom ground plate are 0.035mm thick with
an electric conductivity of 5.8× 107 S/m. The Teflon material
is selected for the dielectric substrate, with the relative
permittivity of εr = 2 1 and the dielectric loss tangent of
tan δ = 0 0002. Between the bottom ground plate and the
dielectric substrate is a layer of air with a thickness of
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Figure 1: (a) The front view of the proposed absorber; (b) perspective view of the proposed absorber; (c) enlarged view of the top layer; and
(d) complete unit cell surface structure.
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Figure 2: Simulated absorption spectra of the proposed absorber.
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8.6mm. The complete structure is actually a square ring with
curves as shown in the proposed absorber with a periodic
pattern in Figure 1(d). The structure has the following
geometrical parameters: a = 10mm, b = 9 6mm, h = 8 6mm,
t = 1mm, b = 9 6mm, W1 = 0 1mm, W2 = 0 1mm, W3 =
0 1mm, and θ = 45°. The line width is 0.1mm.

The unit cell structure is simulated in CST Microwave
Studio based on the finite element method. Periodic unit cell
boundary conditions were used along the x and y directions.
The floquet port is modeled to excite incident waves traveling
in the z direction. The absorptivity can be calculated as
A ω = 1 − S11 ω 2 − S21 ω 2, where S11 ω and S21 ω
are the absorption reflection and transmission, respectively.
Because of a completely metallic ground plate, S21 ω is zero.
The simulated result is depicted in Figure 2. From the result,
it can be seen that the proposed absorber had an absorption
peak at 442MHz with a peak absorption rate of 99.73%. The
absorber’s full width half maximum is 5.6% (from 430MHz
to 455MHz) and it can be applied to wireless security. The

use of air is to reduce the weight of the absorber so that it
has a wider range of applications. Actually, the air layer can
keep a gap of 8.6mm from the ground with the support of
plastic screws. Moreover, in order to understand the physical
mechanism of this absorber, the field distributions and surface
current are shown in Figure 3. Obviously, the current is mainly
along the copper line, due to the twists and turns in the
copper line, greatly increasing the length of the current,
thereby reducing the resonant frequency of the absorber.

The constitutive electromagnetic parameters can be
computed by S11 and S18. The constitutive parameters can
be retrieved, and the effective permittivity ε and effective
permeability μ are calculated and shown in Figure 4. The
metamaterial absorber changes its dielectric constant and
permeability through structural design. Meanwhile, the real
and imaginary parts of the normalized input impedance
Z should be 1 and 0 at the frequency of absorption. This
implies that ε and μ values should match at the absorption
frequency, as the structure is primarily excited due to the
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Figure 3: (a) The electric field distributions, (b) magnetic field distributions, and (c) surface current density at 442MHz.
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electric field. Thus, ε is varying over a large range com-
pared to μ values, both in the real and imaginary parts.
Therefore, the absorption mechanism is to match the
space impedance by adjusting the electromagnetic parame-
ters, then the current excited by the electric field leads to
strong electromagnetic absorptions.

3. Discussion

In order to explore the method of reducing the ratio between
the unit size and the incident wavelength, five structures were
designed to verify the influence of different types of struc-
tures to the resonance frequency. The most basic structure
is the square ring as shown in Figure 5(a). The resonant
frequency is related to the length of the structure [20]. f ∼ 1/

ε ∗ L , where ε is the relative permittivity of the dielectric,
and L is the length of the closed line. Therefore, the length of
the structure is inversely proportional to the resonant
frequency. A fractal can be of infinite length on a limited
area. Based on this, we designed the second structure as
shown in Figure 5(b).

The equivalent circuit of the absorber behaves as a
parallel RLC circuit [21]:

Zi = Zs ZTML,

Zs = Rs + jωLs +
1

jωCs
,

ZTML = Zd + Zc

= j
μ0μr
ε0εr

tan kd + Rd +
1

jωCc
,

1

where Ls is the absorber inductance corresponding to the
length of the square ring and Cs is the structure capacitance

between two adjacent unit cells. Rs is the resistance of the
top copper line. Zs is the impedance of the surface structure.
ZTML is the substrate impedance. εr and μr are the electric
permittivity and magnetic permeability of the dielectric
substrate, respectively. k = k0 εrµr is the wave number of
the incident wave in the substrate. Rd is the equivalent
resistance due to dielectric loss and Cc is the coupling
capacitance due to a periodic structure. The dielectric layer
loss is small, so the value of Rd is small. Zi is the impedance
of the absorber. At resonance frequency, the real part of
Zi will match closely with the free space impedance and
the imaginary part will tend to infinity. The resonance
frequency of the structure is determined by the LC circuit
resonance f = 1/2π LC, where L and C are inductance
and capacitance, respectively. Based on this, reducing the
distance between two unit cells will increase the capacitance
Cs and Cc. Then, the resonance frequency will decrease by
this way. The third structure is designed as shown in
Figure 5(c). We increase the number of fractals and make it
more closer to increase the coupling between the cells to fur-
ther reduce the resonance frequency. The fourth structure is
shown in Figure 5(d). Due to the actual fabrication, the dis-
tance between unit cells is limited and another way is needed
to further increase the coupling between the unit cells, such
as loading by interdigital capacitors, which is a copper line
densely arranged between adjacent unit cells [22]. The fifth
structure is designed as shown in Figure 5(e).

All the structures have been simulated in CSTMicrowave
Studio based on the finite element method. Each structure
has adjusted to the optimum thickness of the dielectric layer.
From the results shown in Figure 6, it can be seen that square
ring with a 0.35mm-thick dielectric layer has an absorption
peak at 6.23GHz with a peak absorption rate of 99.45%.
The ratio between the structure size and the wavelength is
1/4.8. The more compact structure with a 0.35mm-thick
dielectric layer has an absorption peak at 5.75GHz with a
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Figure 4: Comparison of extracted constitutive electromagnetic parameters. (a) Real parts and (b) imaginary parts.
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peak absorption rate of 98.34%. The ratio between the struc-
ture size and the wavelength is 1/5.6. The fractal square ring
with a 0.65mm-thick dielectric layer has an absorption peak
at 4.4GHz with a peak absorption rate of 99.84%. The ratio
between the structure size and the wavelength is 1/6.8. The
structure-loaded interdigital capacitors with a 0.8mm-thick
dielectric layer has an absorption peak at 2.255GHz with
a peak absorption rate of 96.69%. The ratio between the

structure size and the wavelength is 1/13.3. The more
compact fractal with a 0.8mm-thick dielectric layer has
an absorption peak at 2.39GHz with a peak absorption
rate of 99.19%. The ratio between the structure size and
the wavelength is 1/12.5.

The resonance frequency of the basic structure is
decreased in different ways. Comparing Figures 5(a) and
5(b), the resonant frequency can be reduced by increasing
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Figure 5: (a) Square ring: a= 10mm and b= 9mm. (b) Fractal: a= 10mm, b= 9mm, c= 2.6mm, and d= 2.5mm. (c) More compact:
a= 9.4mm and b= 9mm. (d) Compact fractal: a= 10mm, b= 8mm, c= 2mm, and d= 1.8mm. (e) Loaded interdigital capacitors:
a= 10mm, b= 9mm, and g= 0.1mm. The line width for all is 0.1mm.
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the length by a fractal. Comparing Figures 5(a) and 5(c), the
resonant frequency can be reduced by reducing the distance
between two unit cells. Comparing Figures 5(a) and 5(e),
the resonant frequency can be reduced by loading interdigital
capacitors. Combining these three methods, the added
interdigital capacitors are part of the fractal; at the same time,
the unit cell distance is reduced. The proposed absorber was
designed. As a result of the design incorporating all of the
above ways, the resonant frequency of the proposed absorber

is much smaller than the above structures. Moreover, the res-
onant frequency can be adjusted by changing the structural
parameters such as W3 which is the distance between
structures. The frequency of the resonance peak can also be
determined by controlling the number of the coupling line.
Like the previous absorbers, the size of the structure still
controls the absorption frequency. So it is easy to design
an absorber suitable for the UHF bands of 315M, 433M,
and 2.4G.

The proposed absorber is not strictly rotationally sym-
metrical. However, for the long line, the change is very small.
As shown in Figure 7, it is clear that the proposed absorber is
polarization insensitive at normal incidence. It shows that the
absorption rate remains unchanged at different polarization
angles (θ) and there is a slight frequency shift of less than
9MHz for all the peaks. In addition, the absorber is also
simulated with different incidence angles (ϕ) under both TE
and TM polarizations. For TE polarization, the incident elec-
tric field vector is invariant and perpendicular to the incident
direction. For TM polarization, the incident magnetic field
vector is invariant and perpendicular to the incident direc-
tion. Figure 8 shows the results of the proposed absorber. It
is observed that the absorptivity remains high with the
incident angle up to 60° under TE polarization. The main
function is the electric field. Under TE polarization, the elec-
tric field direction is unchanged, as the incident electric field
decreases and cannot efficiently excite the current, and thus,
the absorption rate decreases at 80°. It is observed that the
absorptivity remains high with the incident angle up to
40° under TM polarization. When the incident angle is
greater than 45°, the incident electric field influences the
resonance between the units; the resonant frequency
moves meanwhile the absorptivity decreases. The increase
in absorption frequency is due to the fact that as the incident
angle increases under TM polarization, the equivalent
medium thickness increases. C ∼ S/d, that is, as the thickness
d becomes larger, both capacitances Cs and Cc decrease and
the resonance frequency increases.

4. Experimental Results

To verify the correctness of the simulated absorption perfor-
mance, we have fabricated a prototype sample based on the
optimized geometric parameters using the laser ablation
machine. Due to the limitations of the measuring equipment,
the horn antennas, prototype sample, and microwave
anechoic chamber cannot be used at 440MHz. We have
fabricated a prototype sample based on 2.4GHz. The surface
is 20× 20 unit cells with an 88mm× 88mm× 0.1mm poly-
imide film prepared as a middle dielectric layer. The air layer
can keep a gap of 1.1mm from the ground with the support
of a sponge. The bottom is a layer of copper foil affixed to
the rubber shown in Figure 9. The use of an air layer
greatly reduces the weight of the entire absorber. In the
microwave anechoic chamber, a pair of double-ridge
broadband horn antennas (1–18GHz) connected to a
vector network analyzer (PNA-XN5244A) is used to measure
the reflectivity of the proposed absorber. To ensure the
remote field conditions, the distance between the absorber
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Figure 7: Simulated absorptivity for different polarization angles.
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and antennas is set as 2 meters. First, the reflection coefficient
of the copper foil which has the same size as the proposed
absorber is measured. Then, the reflection of the absorber is
measured by keeping the sample in the same position. The
reflection coefficients measured from the copper surface as
well as from the fabricated structure incorporate all the
imperfections into the account, like edge reflection, scattering
loss, diffraction loss, and so on, and cancels them out during
subtraction [4].

As shown in Figure 10, the measured results present an
absorption peak at 2.44GHz which are in good agreement
with the simulation. It is noted that the small deviation
between measured results and simulation results may be
due to fabrication tolerance. This result verifies the practical-
ity of the proposed absorber.

5. Conclusion

In summary, we have proposed a design method by combin-
ing fractal lines and coupling lines to realize an UHF
absorber. The proposed absorber exhibits an absorption peak
at 442MHz with 99.73% absorptivity. We elaborated on the
design principles and processes. Furthermore, absorbers of
different frequencies suitable for the UHF band can be
designed by changing the structure parameters. The simu-
lated surface current and field distributions are illustrated
to better understand the absorption mechanism. Moreover,
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Figure 8: (a) Simulated absorptivity for different incidence angles for TE (a) and TM (b) polarizations.

Figure 9: Photography of the fabricated active structure.
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the proposed absorber has many advantages such as being
polarization insensitive and wide angled so that it has
broader absorber applications. The size of the proposed
absorber is much smaller than the existing structure as
shown in Table 1. The experimental results coincide well
with the simulation results. The smaller structure can be
better applied to radiation suppression from mobile and
other electronic equipment.
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