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-is paper considers the long-time coherent detection problem for maneuvering targets with jerk motion. A novel method based on
product-scaled integrated cubic phase function (PSICPF) is proposed. -e main strategy of PSICPF is to estimate target’s motion
parameters along the slow time for each range frequency cell. In order to eliminate the coupling terms between range frequency and slow
time, the scaled nonuniform fast Fourier transform (SNUFFT) is newly defined in the integrated cubic phase function (ICPF).-en, the
product operation is employed to coherently synthesize the estimation results, improve the antinoise performance, and suppress the
cross terms. Finally, coherent integration is achieved via keystone transform (KT) and fold factor searching. Analysis demonstrates that
the SNUFFT has the same computational complexity with nonuniform fast Fourier transform (NUFFT), and thus the PSICPF could be
efficiently implemented via complex multiplications, the fast Fourier transform (FFT), and NUFFT. Detailed comparisons with other
representativemethods in computational cost, motion parameter estimation performance, and detection ability indicate that the PSICPF
could achieve a good balance between the computational cost and detection ability. Simulations and real data processing results are
presented to verify the effectiveness of the proposed method.

1. Introduction

-e illegal flight activities of unmanned aerial vehicle (UAV)
have caused great danger to air safety [1]. -erefore, radar
maneuvering target detection attracts increasing attention in
recent years. In order to detect such low radar cross section
(RCS) targets, a long-time coherent integration is always re-
quired [2–8]. Unfortunately, the problems that come with it
include not only the linear range migration (LRM) caused by
the target’s high speed [9, 10] but also the range curvature and
Doppler frequency migration (DFM) caused by the accelera-
tion and jerk [11–13]. -ese unfavorable effects seriously de-
teriorate detection performance of the conventional integration
method, e.g., moving target detection (MTD). Consequently,
how to effectively detect maneuvering targets is becoming a hot
topic in the field of radar signal processing.

In order to coherently detect the targets, many successful
methods have been proposed. In summary, these works

could be divided into three categories according to the
target’s maneuverability:

(a) -e first category mainly focuses on the LRM caused
by the high speed. Representative methods include
the keystone transform (KT) [14–16], Radon–
Fourier transform (RFT) [17–19], scaled inverse
Fourier transform (SCIFT) [20], frequency-domain
deramp-keystone transform (FDDKT) [21], axis
rotation MTD (AR-MTD) [10], and modified loca-
tion rotation transform (MLRT) [22]. Nevertheless,
due to ignoring the acceleration and jerk, the signal
energy will be dispersed in the Doppler domain.

(b) -e second category further considers the uniform
radial acceleration in the motion. Several typical al-
gorithms could achieve satisfactory integration per-
formance, such as the KT-Dechirp method [23], KT
and Lv’s distribution (KT-LVD) [24], improved axis
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rotation and fractional Fourier transform (IAR-FRFT)
[25], KT and linear canonical transform (KT-LCT)
[26], MLRT-LVD [27], minimum entropy and Radon
transform [28], Radon-LVD (RLVD) [29, 30], RFT-KT
[31], frequency-domain second-order phase difference
(FD-SoPD) [32], segmented KT and Doppler Lv’s
transform (SKT-DLVT) [33], frequency autocorrela-
tion function and and Lv’s distribution (FAF-LVD)
[34], and RFT-FRFT [35]. However, for highly ma-
neuvering targets, jerk motion usually exists and
defocuses the Doppler spectrum.

(c) -e last category considers the jerk and thus has wider
applications. -e generalized RFT (GRFT) is proposed
as an optimal estimator and detector by multidimen-
sional parameter searching [36]. Despite its perfect
detection performance, the serious blind speed side
lobes (BSSLs) and huge computational burden prevent
its applications. -e subband dual-frequency conjugate
(SDFC) and Radon-chirp rate-quadratic chirp rate
(RCR-QCR), i.e., SRQ method proposed in [37], avoid
the BSSLs of GRFT and could estimate motion pa-
rameters at low SNR. However, its computational
complexity is heavier thanGRFTand thus is not suitable
for real-time processing. -e adjacent cross-correlation
function (ACCF) is proposed in [38, 39], which corrects
the range migration and DFM by the rank reduction
operation. Although the ACCF-based methods have
low computational cost, their poor antinoise perfor-
mance becomes a shortcoming that cannot be ignored.
-emethod based on time reversing transform, second-
order KT, and LVD (TRT-SKT-LVD) is proposed in
[40]. Similar to the ACCF, the TRT operation obtains
high efficiency at the cost of sacrificing the detection
performance. In [41], two methods, i.e., KT and gen-
eralized dechirp process (KT-GDP) and KT and cubic
phase function (KT-CPF), are presented to remove
DFM and realize coherent integration. However, the
incoherent integration in fold factor searching is sen-
sitive to noise, which limits the detection performance.

-is paper extends our preliminary works in [32, 34]. We
propose a method based on product-scaled integrated cubic
phase function (PSICPF) to achieve coherent detection for
maneuvering targets with jerk motion. Different from con-
ventional methods, the main strategy of PSICPF is to estimate
motion parameters in the range frequency and slow time
domain. -e scaling property and product operation are in-
troduced to realize decoupling and energy accumulation.
Furthermore, the proposed method could be efficiently
implemented via complex multiplications, fast Fourier trans-
form (FFT), and nonuniform FFT (NUFFT) [42]. Detailed
comparisons with other representative algorithms indicate that
the proposed method could achieve a balance between de-
tection performance and computational cost.

-e remainder of this paper is organized as follows: in
Section 2, the signal model for a maneuvering target with
jerk motion is established. -e proposed method is illus-
trated in detail in Section 3. In Section 4, the properties are

analyzed. Experiments with the synthetic and raw data are
performed in Section 5 to validate the effectiveness of the
proposed method. Finally, Section 6 gives the conclusions.

2. Signal Model and Problem Formulation

Suppose the radar transmits a linear frequency-modulated
(LFM) signal, which could be expressed as

st(􏽢t) � rect
􏽢t

Tp

􏼠 􏼡exp j2πfc
􏽢t + jπkr

􏽢t
2
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is the rectangular window function and 􏽢t is the fast time. Tp and
fc indicate, respectively, the pulse width and carrier frequency.
kr � B/Tp is the chirp rate, with B the bandwidth of radar signal.

In most applications, a three-order polynomial could be
used to approximate the instantaneous slant range between
the maneuvering target and radar; i.e.,

R tm( 􏼁 ≈ R0 + vtm +
1
2

at
2
m +

1
6

gt
3
m, (3)

where R0, v, a, and g denote, respectively, the initial slant
range, radial velocity, radial acceleration, and jerk of the
target. tm � mTm(m � 1, 2, . . . , M) denotes the slow time
variable, Tm represents the pulse repetition time, and M is
the number of integrated pulses.

Ignoring the influence of noise, the received signal after
pulse compression can be written as [34]

sc
􏽢t, tm( 􏼁 � Apc sin c B 􏽢t −

2R tm( 􏼁

c
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c
􏼠 􏼡,

(4)

where Apc and c denote the signal amplitude and the light
speed, respectively.

Inserting (3) into (4) yields

sc
􏽢t, tm( 􏼁 � Apc sin c B 􏽢t −

2 R0 + vtm + at2m/2 + gt3m/6( 􏼁
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× exp − j4π
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λ
􏼠 􏼡,

(5)
where λ � c/fc is the wavelength.

As can be seen in equation (5), the first term indicates the
signal envelope, which changes nonlinearly with the slow
time. When the offset during the observation time exceeds
the range resolution Δr � c/2B, range migration would
occur.-e exponential term indicates the Doppler frequency
of the target, which is defined as [34]

fd,T � −
2
λ
d R0 + vtm + at2m/2 + gt3m/6( 􏼁

dtm

� −
2 v + atm + gt2m/2( 􏼁

λ
.

(6)
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Due to the acceleration and jerk, the Doppler frequency
changes nonlinearly with the slow time, which forms a
quadratic frequency-modulated (QFM) signal. When the
offset exceeds a Doppler resolution, the DFM would occur
and seriously defocus the target energy in the Doppler
domain.

Performing the Fourier transform (FT) on equation (5)
along the 􏽢t-axis, we obtain the compressed signal in the slow
time-range frequency domain; i.e.,

S fr, tm( 􏼁 � Afrect
fr

B
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c
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(7)

where Af is the amplitude of the spectrum and fr denotes
the range frequency variable.

It is obvious in equation (7) that the coupling between fr

and tm is the essential cause of range migration. In order to
detect the maneuvering target in low SNR background, the
coupling terms and DFM should be eliminated correctly by
an effective detection method.

3. Principle of the Proposed Method

In conventional methods, the range migration is firstly cor-
rected in the slow-range time domain, and then the DFM is
estimated and eliminated. However, in our proposed method,
the PSICPF is derived in range frequency-slow time domain to
estimate the acceleration and jerk.-en, the KTand fold factor
searching are employed to achieve coherent integration.

3.1. Parameter Estimation via PSICPF. In equation (7), the
signal along the slow time could be expressed as
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where ξ � (fr + fc)/fc is the scaling factor dependent on the
range frequency and φ0 � − 2R0/λ, φ1 � − 2v/λ, φ2 � − 2a/λ,
andφ3 � − 2g/λ denote the constant phase, centroid frequency,
chirp rate, and quadratic chirp rate, respectively.

-e cubic phase function (CPF) [43] is defined as a
bilinear autocorrelation operation over the slow time; i.e.,
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where τm is the lag variable.
In [44], the NUFFT is performed with respect to τ2m to

accumulate the signal energy; i.e.,
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where fτ2m is the frequency variable corresponding to τ2m and
δ(·) is the Dirac delta function.

In equation (10), the signal energy peaks along the in-
clined line fτ2m � ξφ2 + ξφ3tm. However, because of the
coupling between fr and tm, the interception and slope of
this line indicate the wrong values. -erefore, we consider
the scaling factor ξ and propose the scaled NUFFT
(SNUFFT), which could be written as

GSNU tm, fτ2m
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where fτ2m
′ is the scaled frequency variable corresponding to

ξτ2m.

Different from NUFFT, the peak position is corrected to
the right place after SNUFFT. In this case, the parameter
estimation result will keep consistent for all range frequency
cells, which benefits to the coherent integration of signal
energy. At the same time, the SNUFFT could also be effi-
ciently implemented via NUFFT without increasing the
computational burden.

In equation (9), the slow time tm and lag variable τ2m are
coupled with each other, which is the essential cause of the
inclined line. Different from the LVD [30], the first expo-
nential term in equation (11) makes difficulties in the
decoupling process. In the integrated CPF (ICPF) [45], the
complex modulus and inverse FT (IFT) are performed to
eliminate the disturbance of exp[j4πξ(φ0 + φ1tm +

φ2t
2
m/2 + φ3t

3
m/6)]; i.e.,
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where pm is the time variable with respect to fτ2m

′ .
Finally, the scaled Fourier transform (SFT) [46] and FT

are employed to coherently integrate the signal energy in the
chirp rate-quadratic chirp rate (CR-QCR) domain:
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As can be seen from equation (13), the signal is accumulated

into a peak, of which the position is (φ2,φ3). For different range
frequency cells, the peak locates at the same position. In order to
improve the antinoise performance of parameter estimation and
suppress the side lobes, the product operation could be
employed over the range frequency. In this case, the PSICPF is
defined, which coherently integrates the signal energy as

P fcr, fqcr􏼐 􏼑 � 􏽙
B/2

fr�− B/2
D fcr, fqcr; fr􏼐 􏼑 � Apδ fcr − φ2( 􏼁δ fqcr − φ3􏼐 􏼑,

(14)
where Ap is the amplitude after product.

By equation (14), we could simultaneously estimate the
chirp rate and quadratic chirp rate from the peak position; i.e.,

fcr,max, fqcr,max􏼐 􏼑 � argmax
fcr ,fqcr
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Finally, the acceleration and jerk of the target are derived as
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2
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2
.

(16)

3.2. Coherent Integration via KT. Referring to equation (7),
we may utilize the estimated parameters to construct the
following phase compensation function to compensate the
range curvature and DFM caused by acceleration and jerk:

Hcom,1 fr, tm( 􏼁 � exp j4π fr + fc( 􏼁
􏽢at2m/2 + 􏽢gt3m/6

c
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Multiplying equation (17) by equation (7), we have
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-e expression in equation (18) shows that the effects of
acceleration and jerk are removed and only the linear
coupling term caused by the target velocity exists. However,
due to the high speed of target and the low-pulse repetition
frequency (PRF) of radar, Doppler ambiguity would often
occur. In this case, the velocity of the target can be stated as

v � nbvb + v0, (19)

where nb is the ambiguity integer named the fold factor, vb �

λfp/2 is the blind speed with fp � 1/Tm the PRF,
v0 � mod(v, vb) denotes the ambiguous velocity which
satisfies |v0|< vb/2, and mod(·) is the remainder function.

Substituting equation (19) into equation (18), we obtain
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c
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where the fact exp(− j4πnbvbtm/λ) � 1 is used.
To achieve coherent integration, many successful methods

have been proposed [14–16]. In this paper, the KTis employed for
convenience, which scales the slow time for each range frequency:

tm �
fc

fr + fc

ta. (21)

Substituting the scaling formula into (20), we get
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(22)

By equation (22), the coupling caused by the ambiguous
velocity is removed. However, the residual range migration
caused by integral multiples of blind speed, i.e., the coupling
between nbvb and tm, is still present. -us, another phase
compensation function is established to search the unknown
fold factor and then to achieve coherent integration; i.e.,

Hcom,2 fr, tm; ns( 􏼁 � exp j4πfr

nsvbtm

c
􏼔 􏼕, (23)

where ns is the searching fold factor.
Multiplying (23) with (22) and performing IFTalong the

range frequency, we may obtain
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c
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4πv0tm

λ
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(24)

When nb � ns, the range migration will be eliminated
and the FTcould be performed with respect to the slow time
to achieve coherent integration; i.e.,
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-e searching fold factor could be estimated by com-
paring the amplitude of E(􏽢t, fd; ns):
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Finally, the target velocity is estimated as
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(27)

In (25), the received signal of a maneuvering target is
integrated into a single peak with the peak value
|E(􏽢t, fd; ns � nb)|. -ereafter, the constant false alarm rate
(CFAR) technique could be used for target detection; i.e.,

E 􏽢t, fd; ns � nb( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 £
H1

H0
η, (28)

where η is the detection threshold. -e adaptive threshold is
obtained by the reference unit after coherent integration via
the integration method, and then the test statistic in the
detecting unit is compared with the threshold to confirm the
presence or absence of a target. If the test statistic is smaller
than the threshold, there will be no moving target or a target
is missed, and then it moves on to the next detecting unit.
Meanwhile, if the test statistic is larger than the threshold,
the target detection is declared.

4. Analysis of the Proposed Method

4.1. Cross Terms Analysis. Similar to (7), the received
signal of K targets in range frequency domain could be
written as
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2
m +

1
6

φ3,q + φ3,l􏼐 􏼑t
3
m􏼔 􏼕􏼚 􏼛

× exp j2πξ φ1,q − φ1,l􏼐 􏼑τm + φ2,q − φ2,l􏼐 􏼑tmτm +
1
2

φ3,q − φ3,l􏼐 􏼑t
2
mτm +

1
6

φ3,q − φ3,l􏼐 􏼑τ3m􏼔 􏼕􏼚 􏼛,

(32)

International Journal of Antennas and Propagation 5



are the cross terms.
According to Euler’s formula, i.e.,

exp(jθ) + exp(− jθ) � 2 cos θ, (33)

we obtain

Rcross tm, τm; fr( 􏼁 � Rcros1 tm, τm; fr( 􏼁 + Rcros2 tm, τm; fr( 􏼁

� 􏽘
K

q�1
􏽘

K

l�1,l≠q
2Af,qAf,lrect

fr

B
􏼠 􏼡exp j2πξ

1
2

φ2,q + φ2,l􏼐 􏼑 +
1
2

φ3,q + φ3,l􏼐 􏼑tm􏼔 􏼕τ2m􏼚 􏼛

× exp j2πξ φ0,q + φ0,l􏼐 􏼑 + φ1,q + φ1,l􏼐 􏼑tm +
1
2

φ2,q + φ2,l􏼐 􏼑t
2
m +

1
6

φ3,q + φ3,l􏼐 􏼑t
3
m􏼔 􏼕􏼚 􏼛

× cos 2πξ φ1,q − φ1,l􏼐 􏼑τm + φ2,q − φ2,l􏼐 􏼑tmτm +
1
2

φ3,q − φ3,l􏼐 􏼑t
2
mτm +

1
6

φ3,q − φ3,l􏼐 􏼑τ3m􏼔 􏼕􏼚 􏼛.

(34)

-e cross terms for multiple targets at a certain range
frequency cell could be obtained as

Dcross fcr, fqcr; fr􏼐 􏼑 � FTpm
SFTpmtm

IFTfτ2m
′ SNUFFTτ2m Rcross tm, τm; fr( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛􏼚 􏼛􏼚 􏼛. (35)

It can be seen from (34) and (35) that the cosine
function and the nonlinear coupling terms would dis-
turb the integration of the cross terms after SNUFFT,
complex modulus, IFT, and SFT. Only when φ1,q � φ1,l,
φ2,q � φ2,l, and φ3,q � φ3,l, the cosine function could be
eliminated. In this case, the cross terms become the self-
terms. -us, the cross terms of PSICPF cannot be
accumulated.

4.2. Computational Complexity Analysis. In this part, the
computational burden of the proposed method is analyzed
in detail. -e GRFT, KT-GDP, KT-CPF, and TRT-SKT-
LVD, which could also complete coherent detection for
maneuvering target, are selected for comparisons. Denote
the number of range cells, echo pulses, searching velocity,
searching acceleration, searching jerk, and searching fold
factor as Nr, M, Nv, Na, Ng, and NF, respectively.

For GRFT, a four-dimensional parameter searching is
needed. -e computational complexity can be easily ob-
tained as O(NrMNgNaNv) [36].

For KT-GDP, the KTand fold factor searching are firstly
performed to eliminate the LRM, and the computational
costs are, respectively, O(3NrM log2 M) [16] and
O(NFMNrlog2 MNr). -e GDP is then employed to esti-
mate the acceleration and jerk, of which the computational
cost is at the order of O(MNaNglog2 M). -erefore, the
total computational complexity is about
O(NFMNrlog2Nr + MNaNglog2 M) [39].

Compared with KT-GDP, the acceleration and jerk are
estimated via CPF, of which the computational cost is about

O(2M2log2 M) [44]. In this case, the computational com-
plexity of KT-CPF is about O(NFMNrlog2 MNr).

For TRT-SKT-LVD, to complete the chirp-z-based SKT
and LVD, the computational complexities are
O(3NrM log2 M) and O(3M2log2 M), respectively. -ere-
fore, the total computational complexity is about O(3(Nr +

M)M log2 M) [40].
For the proposed method, the main procedures in es-

timating acceleration and jerk for each range frequency bin
include the bilinear autocorrelation operation [O(M2)], the
SNUFFT [O(2M2log2 M)], the IFT along the scaled fre-
quency [O(M2log2 M)], the SFT with respect to the slow
time [O(3M2log2 M)], and the FT to integrate the signal
energy [O(M2log2 M)]. -e computational complexity of
KT and fold factor are, respectively, O(4MNrlog2 M) and
O(NFMNrlog2 MNr). -us, the total computational
complexity is in the order of O(7NrM

2log2 M+

NFMNrlog2 MNr)

-e computational complexities of the above methods
are listed in Table 1. In practical applications, Nv, Na, and
Ng are usually much larger than M, while NF is much
smaller than M. Under the assumption of Nr � M,
Nv � Na � Ng � NFM, and NF � 20, Figure 1 intuitively
presents the computational complexities of the above
methods. It is obvious that the GRFT and the KT-GDP take
too much time due to the multidimensional parameter
searching. -e proposed method has a moderate compu-
tation complexity compared with KT-CPF and TRT-SKT-
LVD. However, these two methods have poor detection
performance under low SNR environment, which will be
shown in Section 5.
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Table 1: Computational complexity comparisons of different algorithms.

Method Computation complexity
GRFT O(NrMNgNaNv)

KT-CPF O(NFMNrlog2 MNr)

KT-GDP O(NFMNrlog2 MNr + MNaNglog2 M)

TRT-SKT-LVD O(3(Nr + M)M log2 M)

Proposed method O(7NrM
2log2 M + NFMNrlog2 MNr)
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Figure 1: Computational costs of different algorithms.

Table 2: Radar simulation parameters.

Parameters Value Parameters Value
Carrier frequency 1GHz Bandwidth 2MHz
Sample frequency 5MHz PRF 512Hz
Pulse duration 10 μs Pulse number 1024
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Figure 2: Continued.
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5. Simulations andRealDataProcessingResults

In this section, several numerical experiments are given to
demonstrate the effectiveness of the proposed method. -e
simulation parameters are given in Table 2.

5.1. Coherent Integration for a Maneuvering Target. First of
all, a single maneuvering target is used to evaluate the co-
herent integration ability of the proposed method. -e
motion parameters of the target are R0 � 150 km,
v � 250m/s, a � 8m/s2, and g � 5m/s3. Figure 2(a) gives
the target trajectory. Due to the high speed of the target,

serious range migration could be observed. Figure 2(b)
shows the parameter estimation result when fr � − B/2.
-anks to the proposed SNUFFT, correct values of accel-
eration and jerk could be obtained. -en, the PSICPF is
achieved by multiplying all the range frequency cells, as
presented in Figure 2(c). It is clear that the product oper-
ations greatly strengthen the main lobe and suppress the side
lobes. From the peak position, we could read that 􏽢a � 8m/s2
and 􏽢g � 5m/s3. After compensating for the range migration
and DFM caused by acceleration and jerk, the KT and fold
factor searching are performed. From Figure 2(d), we could
estimate the fold factor, i.e., 􏽢nb � 3. -e LRM elimination
result is given in Figure 2(e). Finally, coherent integration is
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Figure 2: Coherent integration for a maneuvering target. (a) Result of pulse compression. (b) Parameter estimation at fr � − B/2.
(c) Parameter estimation result of PSICPF. (d) Result of fold factor searching. (e) Result of LRM elimination. (f ) Result of coherent
integration.

8 International Journal of Antennas and Propagation



Table 3: Motion parameters of two maneuvering targets.

Target Amplitude Initial range (km) Velocity (m/s) Acceleration (m/s2) Jerk (m/s3) SNR (dB)
Tr1 1 150 250 10 6 0
Tr2 1 150.2 − 180 − 8 − 5 0

Sl
ow

 ti
m

e (
s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–0.8

–1

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

146 148 150 152 154
Range (km)

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 6
Y: 10
Z: 1 X: –5.025

Y: –8
Z: 0.9994

0.8

0.6

0.4

0.2

1

N
or

m
al

iz
ed

 am
pl

itu
de

20
0

–20

Acceleration (m/s 2)

20
0

–20
Jerk (m/s3 )

(b)

×104

X: 3
Y: 3.766e + 04

0.5

1

1.5

2

2.5

3

3.5

4

In
te

gr
at

io
n 

am
pl

itu
de

–5 0 5 10–10
Fold factor

(c)

X: –2
Y: 4.078e + 04

×104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
te

gr
at

io
n 

am
pl

itu
de

–5 0 5 10–10
Fold factor

(d)

Figure 3: Continued.
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realized and a well-focused peak could be seen in the range-
Doppler domain, as shown in Figure 2(f). Considering the
peak position, we may estimate the target velocity and initial
range, i.e., 􏽢v � 249.975m/s and 􏽢R0 � 150 km. -is experi-
ment preliminarily demonstrates the integration capability
of the proposed method.

5.2. Coherent Integration for Multiple Targets. -e in-
tegration ability of the proposed method for multiple targets
(i.e., Tr1 and Tr2) is evaluated in this part, where the motion
parameters are listed in Table 3. In this simulation, Gaussian
noise with zero mean is added to the signal after pulse
compression. -e input SNR is defined as

SNR � 10 log10
A2
pc

σ2
􏼠 􏼡, (36)

where σ2 is the variance of Gaussian noise. Results of in-
tegration and parameter estimation are shown in Figure 3.

Figure 3(a) gives the result of range compression. Since
the input SNR is 0 dB, the target trajectory could be hardly
recognized. Figure 3(b) shows the parameter estimation
result of PSICPF. As can be seen, two sharp peaks are ob-
tained in the CR-QCR domain. By product operation, the
self-terms are strengthened while the cross terms are greatly
suppressed. From the peak position, we get 􏽢a1 � 10m/s2 and
􏽢g1 � 6m/s3 for Tr1 and 􏽢a2 � − 8m/s2 and 􏽢g2 � − 5.025m/s3
for Tr2. After phase compensation with the estimated pa-
rameters, the fold factor estimation results are presented in
Figures 3(c) and 3(d). For Tr1, we have 􏽢nb,1 � 3, and for Tr2,
we have 􏽢nb,2 � − 2. Finally, the coherent integration results
are, respectively, given in Figures 3(e) and 3(f). -e ve-
locities are estimated as 􏽢v1 � 249.975m/s for Tr1 and
􏽢v2 � − 180m/s.

In Figure 3, the proposedmethod could achieve coherent
integration for multiple targets. In order to intuitively
evaluate the impact the cross terms, we could define the
normalized cross terms as

Gnorm fcr, fqcr; fr􏼐 􏼑 �
Dcross fcr, fqcr; fr􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

max Dself fcr, fqcr; fr􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (37)

where Dself(fcr, fqcr; fr) denotes the self-terms.
-e simulation results of cross terms for a certain range

frequency cell are shown in Figure 4, where the Gaussian
noise is ignored. It is evident that the cross terms show
significant oscillation characteristics. -e maximum ratio of
Gnorm(fcr, fqcr; fr) is about 6%. After the product operation
of different range frequency cells, the ratio will further
decrease.-erefore, we may get the conclusion that the cross
terms have little impact on parameter estimation.

5.3. Performance of Target Detection and Parameter
Estimation. -e detection performance of the proposed
method is also evaluated by using the CFAR detector.
Complex white Gaussian noise is added to the signal after
pulse compression to yield SNRs varying from with − 20 dB
to 20 dB. 500 independent Monte Carlo trials are performed
for each SNR value. -e false alarm ratio is set as Pfa � 10− 6.
-e representative GRFT, KT-GDP, KT-CPF, and TRT-
SKT-LVD are selected for comparisons. -e detection
performance is given in Figure 5.

First of all, it is important to state that the GRFT has
the optimal detection performance since it is designed
based on maximum likelihood. Obviously, with the
GRFT as a benchmark, the KT-GDP suffers from 6 dB
performance loss due to the incoherent procedure in fold
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Figure 3: Coherent integration for multiple maneuvering targets. (a) Result of pulse compression. (b) Parameter estimation of PSICPF.
(c) Result of fold factor searching for Tr1. (d) Result of fold factor searching for Tr2. (e) Coherent integration for Tr1. (f ) Coherent
integration for Tr2.
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factor searching. -e KT-CPF has inferior detection
probability at − 5 dB than the proposed method since the
least squares (LS) method fails at low SNR. -e TRT-
SKT-LVD is only effective when the SNR is high because
the TRToperation loses much signal energy, even though
it is beneficial to reducing computational complexity.
-erefore, when considering the computational cost, the
proposed method is more suitable for practical appli-
cations than GRFT.

As the detection performance is determined by the
target’s acceleration and jerk estimation accuracy, the pa-
rameter estimation performance is also evaluated by the
experiment. -e root-mean-square error (RMSE) is utilized

as the criterion. -e RMSEs of initial range, velocity, ac-
celeration, and jerk are given in Figures 6(a)–6(d), re-
spectively. Corresponding to the detection performance, the
GRFTand KT-GDP have better antinoise performance than
the proposed method, and the KT-CPF may get wrong
estimation results at low SNR.-e TRT-SKT-LVD could not
estimate motion parameters and thus is not compared with
other methods.

5.4. Real Data Processing Results. In this subsection, we
adopt the measured data of a DJI Phantom 3 commercial
UAV to demonstrate the proposed method. -e data were
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Figure 6: Analysis of motion parameter estimation performance. RMSE of (a) initial range estimation, (b) velocity estimation, (c) ac-
celeration estimation, and (d) jerk estimation.
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collected in March 2017 by the National University of
Defense Technology, Hunan, China. Figures 7(a) and 7(b)
present the experimental scene and frequency-modulated
continuous wave (FMCW) radar system, respectively. Radar
parameters are given in Table 4. It is worth noting that, in
order to obtain the LRM and Doppler ambiguity, we de-
liberately chose a large bandwidth and a low PRF before
experiment.

Figure 7(c) shows the target trajectory after pulse
compression. During the coherent time, the UAV moves
across 24 range cells and causes serious range migration.
Figure 7(d) gives the parameter estimation result at
fr � − 0.5GHz. From this range frequency, we may ob-
tain the target acceleration and jerk. However, to im-
prove the antinoise performance, the PSICPF is proposed
by multiplying all the range frequency cell. Figure 7(e)
presents the result of PSICPF, where the noise and clutter
are greatly suppressed. -e motion parameters of the
target are 􏽢a � 0.018m/s2 and 􏽢g � 0.037m/s3. -en, the KT
and fold factor searching are employed to remove the
LRM and achieve coherent integration, of which the
results are shown in Figures 7(f ) and 7(g), respectively. It
is easy to see that a well-focused peak is obtained in the
range-Doppler domain. -e initial range and velocity of
the UAV are 􏽢R0 � 132.9m and 􏽢v � 2.735m/s. At the same
time, Figure 7(h) gives the integration result of MTD.
Due to ignoring the LRM and DFM effects, the signal
energy is dispersed over multiple ranges and Doppler

cells, which creates difficulties for target detection. -is
experiment verifies the practicality of the proposed
method.

6. Conclusions and Future Work

In this paper, we have presented a coherent integration
method for maneuvering target with jerk motion based
on PSICPF. -e main strategy of the proposed method is
to coherently estimate motion parameters along the slow
time for each range frequency. In order to eliminate the
coupling between range frequency and slow time, the
scaling property is introduced into NUFFT and then the
SNUFFT is proposed. When integrating the signal en-
ergy, the product operation is applied to improve the
antinoise performance and suppress the side lobes. Fi-
nally, the KT combining with fold factor searching is
performed to achieve coherent integration. -e con-
tributions of the proposed method include the
following:

(1) -e SNUFFT is newly defined to realize decoupling
between range frequency and slow time so that the
parameter estimation results of different range fre-
quency cells could remain coincident

(2) -e product operation is employed to coherently
synthesize the estimation results, improve the
antinoise performance, and suppress the cross
terms

(3) -e proposed method could be implemented via
complex multiplications, FFT, and NUFFT, which
guarantee the high efficiency

(4) -e PSICPF achieves a good balance between
detection performance and computational
complexity
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Figure 7: Processing results with real radar data. (a) Experimental scene. (b) FMCW radar system. (c) Result of pulse compression.
(d) Parameter estimation atfr � − B/2. (e) Parameter estimation result of PSICPF. (f ) Result of fold factor searching. (g) Integration result of
the proposed method. (h) Integration result of MTD.

Table 4: FMCW radar parameters.

Radar parameter Value Radar parameter Value
Carrier frequency 9.5GHz PRF 50Hz
Bandwidth 500MHz Sampling frequency 1MHz
Pulse width 0.0102 s Coherent time 2.64 s

14 International Journal of Antennas and Propagation



As the bilinear autocorrelation operation in CPF brings
about estimation performance loss, linear methods will be
considered in the future to further improve the detection
ability. -e core problem may focus on the efficient
implementation.
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-e radar data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is article was supported by the National Natural Science
Foundation of China (no. 61501513).

References

[1] X. Li, Z. Sun, T. S. Yeo et al., “STGRFT for detection of
maneuvering weak target withmultiple motionmodels,” IEEE
Transactions on Signal Processing, vol. 67, no. 7, pp. 1902–
1917, 2019.

[2] P. C. Suo, S. Tao, R. Tao, and Z. Nan, “Detection of high-speed
and accelerated target based on the linear frequency modu-
lation radar,” IET Radar Sonar and Navigation, vol. 8, no. 1,
pp. 37–47, 2014.

[3] S. Q. Zhu, G. S. Liao, D. Yang, and H. H. Tao, “A new method
for radar high-speed maneuvering weak target detection and
imaging,” IEEE Geoscience & Remote Sensing Letters, vol. 11,
no. 7, pp. 1175–1179, 2014.

[4] X. Li, G. Cui, W. Yi, and L. Kong, “Radar maneuvering target
detection and motion parameter estimation based on TRT-
SGRFT,” Signal Processing, vol. 133, pp. 107–116, 2017.

[5] W. Wu, G. H. Wang, and J. P. Sun, “Polynomial radon-
polynomial Fourier transform for near space hypersonic
maneuvering target detection,” IEEE Transactions on Aero-
space and Electronic Systems, vol. 54, no. 3, pp. 1306–1322,
2018.

[6] X. Li, L. Kong, G. Cui, and W. Yi, “CLEAN-based coherent
integration method for high-speed multi-targets detection,”
IET Radar, Sonar & Navigation, vol. 10, no. 9, pp. 1671–1682,
2016.

[7] X. Huang, S. Tang, L. Zhang, and S. Li, “Ground-based radar
detection for high-speed maneuvering target via fast discrete
Chirp-Fourier transform,” IEEE Access, vol. 7, pp. 12097–
12113, 2019.

[8] X. Chen, J. Guan, N. Liu, and Y. He, “Maneuvering target
detection via radon-fractional Fourier transform-based long-
time coherent integration,” IEEE Transactions on Signal
Processing, vol. 62, no. 4, pp. 939–953, 2014.

[9] Z. Niu, J. Zheng, T. Su, and J. Zhang, “Fast implementation of
scaled inverse Fourier transform for high-speed radar target
detection,” Electronics Letters, vol. 53, no. 16, pp. 1142–1144,
2017.

[10] X. Rao, H. Tao, J. Su, X. Guo, and J. Zhang, “Axis rotation
MTD algorithm for weak target detection,” Digital Signal
Processing, vol. 26, pp. 81–86, 2014.

[11] J. Zhang, T. Su, J. Zheng, and X. He, “Novel fast coherent
detection algorithm for radar maneuvering target with jerk
motion,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 10, no. 5, pp. 1792–
1803, 2017.

[12] X. L. Li, Z. Sun, W. Yi, G. L. Cui, L. J. Kong, and X. Yang,
“Computationally efficient coherent detection and parameter
estimation algorithm for maneuvering target,” Signal Pro-
cessing, vol. 155, pp. 130–142, 2018.

[13] X. Li, G. Cui, W. Yi, and L. Kong, “Sequence-reversing
transform-based coherent integration for high-speed target
detection,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 53, no. 3, pp. 1573–1580, 2017.

[14] R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of
moving targets,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 35, no. 1, pp. 188–200, 1999.

[15] D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without
interpolation for SAR ground moving-target imaging,” IEEE
Geoscience and Remote Sensing Letters, vol. 4, no. 1, pp. 18–22,
2007.

[16] F. Pignol, F. Colone, and T. Martelli, “Lagrange-polynomial-
interpolation-based keystone transform for a passive radar,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 54, no. 3, pp. 1151–1167, 2018.

[17] J. Xu, J. Yu, Y.-N. Peng, and X.-G. Xia, “Radon-Fourier
transform for radar target detection, I: generalized Doppler
filter bank,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 2, pp. 1186–1202, 2011.

[18] J. Xu, J. Yu, Y.-N. Peng, and X.-G. Xia, “Radon-Fourier
transform for radar target detection (II): blind speed sidelobe
suppression,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 4, pp. 2473–2489, 2011.

[19] J. Yu, J. Xu, Y.-N. Peng, and X.-G. Xia, “Radon-Fourier
transform for radar target detection (III): optimality and fast
implementations,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 48, no. 2, pp. 991–1004, 2012.

[20] J. B. Zheng, T. Su, W. T. Zhu, X. H. He, and Q. H. Liu, “Radar
high-speed target detection based on the scaled inverse
Fourier transform,” IEEE Journal of Selected Topics in Applied
Earth Observations & Remote Sensing, vol. 8, no. 3,
pp. 1108–1119, 2015.

[21] J. Zheng, T. Su, H. Liu, G. Liao, Z. Liu, and Q. H. Liu, “Radar
high-speed target detection based on the frequency-domain
deramp-keystone transform,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 9,
no. 1, pp. 285–294, 2016.

[22] Z. Sun, X. Li, W. Yi, G. Cui, and L. Kong, “A coherent de-
tection and velocity estimation algorithm for the high-speed
target based on the modified location rotation transform,”
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 11, no. 7, pp. 2346–2361, 2018.

[23] J. Su, M. Xing, G.Wang, and Z. Bao, “High-speed multi-target
detection with narrowband radar,” IET Radar, Sonar &
Navigation, vol. 4, no. 4, pp. 595–603, 2010.

[24] X. Li, G. Cui, W. Yi, and L. Kong, “Manoeuvring target
detection based on keystone transform and Lv’s distribution,”
IET Radar, Sonar & Navigation, vol. 10, no. 7, pp. 1234–1242,
2016.

[25] X. Rao, H. Tao, J. Su, J. Xie, and X. Y. Zhang, “Detection of
constant radial acceleration weak target via IAR-FRFT,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 51,
no. 4, pp. 3242–3253, 2015.

[26] X. Huang, L. Zhang, S. Li, and Y. Zhao, “Radar high speed
small target detection based on keystone transform and linear

International Journal of Antennas and Propagation 15



canonical transform,” Digital Signal Processing, vol. 82,
pp. 203–215, 2018.

[27] X. Li, Z. Sun,W. Yi, G. Cui, and L. Kong, “Radar detection and
parameter estimation of high-speed target based on MART-
LVT,” IEEE Sensors Journal, vol. 19, no. 4, pp. 1478–1486,
2019.

[28] M. Xing, J. Su, G. Wang, and Z. Bao, “New parameter esti-
mation and detection algorithm for high speed small target,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 47, no. 1, pp. 214–224, 2011.

[29] X. Li, G. Cui, W. Yi, and L. Kong, “Coherent integration for
maneuvering target detection based on Radon-Lv’s distri-
bution,” IEEE Signal Processing Letters, vol. 22, no. 9,
pp. 1467–1471, 2015.

[30] X. Lv, G. Bi, C. Wan, and M. Xing, “Lv’s distribution:
principle, implementation, properties, and performance,”
IEEE Transactions on Signal Processing, vol. 59, no. 8,
pp. 3576–3591, 2011.

[31] J. Tian, W. Cui, Q. Shen, Z. Wei, and S. Wu, “High-speed
maneuvering target detection approach based on joint RFT
and keystone transform,” Science China Information Sciences,
vol. 56, no. 6, pp. 1–13, 2013.

[32] K. Jin, T. Lai, Y. Wang, G. Li, and Y. Zhao, “Coherent in-
tegration for radar high-speed maneuvering target based on
frequency-domain second-order phase difference,” Electron-
ics, vol. 8, no. 3, p. 287, 2019.

[33] J. Tian, W. Cui, X.-G. Xia, and S.-L. Wu, “Parameter esti-
mation of ground moving targets based on SKT-DLVT
processing,” IEEE Transactions on Computational Imaging,
vol. 2, no. 1, pp. 13–26, 2016.

[34] K. Jin, T. Lai, S. Zhu, G. Li, T. Jin, and Y. Zhao, “Coherent
detection and parameter estimation for radar high-speed
maneuvering target based on FAF-LVD,” Circuits, Systems,
and Signal Processing, 2019.

[35] J. Tian, W. Cui, and S. Wu, “A novel method for parameter
estimation of space moving targets,” IEEE Geoscience and
Remote Sensing Letters, vol. 11, no. 2, pp. 389–393, 2014.

[36] J. Xu, X. G. Xia, S. B. Peng, J. Yu, Y.-N. Peng, and L.-C. Qian,
“Radar maneuvering target motion estimation based on
generalized radon-Fourier transform,” IEEE Transactions on
Signal Processing, vol. 60, no. 12, pp. 6190–6201, 2012.

[37] W. Cui, J. Tian, X. G. Xia, and S. L. Wu, “An approach for
parameter estimation of maneuvering targets with non-linear
motions,” IEEE Transactions on Aerospace & Electronic Sys-
tems, 2019.

[38] X. Li, G. Cui, W. Yi, and L. Kong, “A fast maneuvering target
motion parameters estimation algorithm based on ACCF,”
IEEE Signal Processing Letters, vol. 22, no. 3, pp. 270–274,
2015.

[39] X. Li, G. Cui, L. Kong, andW. Yi, “Fast non-searchingmethod
for maneuvering target detection and motion parameters
estimation,” IEEE Transactions on Signal Processing, vol. 64,
no. 9, pp. 2232–2244, 2016.

[40] X. Li, G. Cui, W. Yi, and L. Kong, “Fast coherent integration
for maneuvering target with high-order range migration via
TRT-SKT-LVD,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 52, no. 6, pp. 2803–2814, 2016.

[41] X. Li, L. Kong, G. Cui, andW. Yi, “A low complexity coherent
integration method for maneuvering target detection,”Digital
Signal Processing, vol. 49, pp. 137–147, 2016.

[42] J. Zheng, T. Su, L. Zhang, W. Zhu, and Q. H. Liu, “ISAR
imaging of targets with complex motion based on the chirp
rate–quadratic chirp rate distribution,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 52, no. 11, pp. 7276–7289,
2014.

[43] P. O’Shea, “A fast algorithm for estimating the parameters of a
quadratic FM signal,” IEEE Transactions on Signal Processing,
vol. 52, no. 2, pp. 385–393, 2004.

[44] J. Su, H.-H. Tao, X.-L. Guo, J. Xie, and X. Rao, “Coherently
integrated cubic phase function for multiple LFM signals
analysis,” Electronics Letters, vol. 51, no. 5, pp. 411–413, 2015.

[45] J. Zheng, H. Liu, Z. Liu, and Q. Liu, “ISAR imaging of ship
targets based on an integrated cubic phase bilinear auto-
correlation function,” Sensors, vol. 17, no. 3, p. 498, 2017.

[46] J. Zheng, H. Liu, J. Liu, X. Du, and Q. H. Liu, “Radar high-
speed maneuvering target detection based on three-di-
mensional scaled transform,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 11,
no. 8, pp. 2821–2833, 2018.

16 International Journal of Antennas and Propagation



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

