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A sparse recovery method for robust transmit-receive angle imaging in a bistatic MIMO radar is proposed to deal with the effect of
array gain-phase errors. .e impact of multiplicative array gain-phase errors is changed to be additive through model refor-
mulation, and transmit-receive angle imaging is formulated to a sparse total least square signal problem. .en, an iterative
algorithm is proposed to solve the optimization problem. Compared with existing methods, the proposed method can achieve a
significant performance gain in the case that the number of snapshots is small. Simulation results verify the effectiveness of the
proposed method.

1. Introduction

Multiple-input multiple-output (MIMO) radars use multi-
ple channels to transmit orthogonal waveforms andmultiple
channels to receive echo signals, where the transmitting
aperture can be fully exploited [1–6]. Compared to a con-
ventional phased-array radar, an MIMO radar can enhance
spatial resolution, improve target detection performance,
etc. .e performance of the MIMO radar can usually be
improved by increasing the number of channels. According
to the transmitting and receiving antenna configurations,
there are two main classes of MIMO radars. .e first class is
the statistical MIMO radar [7, 8], where transmitting and
receiving antennas are widely separated. By exploiting the
spatial diversity, the statistical MIMO radar can resist the
performance degradations caused by target scintillations.
.e second class is the colocated MIMO radar [2], where the
transmitting antennas and receiving antennas are closely
spaced, and performance gain can be achieved by multi-
channel coherent processing. A colocated MIMO radar can
obtain a virtual aperture larger than its real aperture,
resulting in lower sidelobes and a narrower beam width.

A bistatic MIMO radar, firstly proposed in [3], has the
advantages of both the bistatic radar and the MIMO radar.

In the bistatic MIMO radar, the direction of arrival (DOA)
and the direction of departure (DOD) of targets can be
obtained at the same time by processing the received signals,
and it has been employed to identify and locate multiple
targets [9, 10], clutter cancellation [11, 12], and imaging
[13–15]. Nevertheless, due to the presence of the gain and
phase errors of the transmitting array and receiving array,
the imaging quality and detection accuracy of these tech-
niques can deteriorate seriously. Many methods have been
investigated tomitigate the impact of array gain-phase errors
in the bistaticMIMO radar [16, 17]. However, these methods
work well with a large number of snapshots, but they do not
work properly when the number of snapshots is small.

Sparse recovery techniques [18–20] can be employed to
achieve high-resolution imaging with a small number of
samples, and they have been applied to bistatic MIMO radar
imaging. A sparse recovery-based imaging method is pro-
posed in [14], which is robust to large gain errors. However,
the method does not consider the array phase errors and
does not work well with a single snapshot. In [15], a
transmit-receive angle imaging method is proposed, but its
complexity is high and its performance degrades severely
when the gain-phase errors are relatively large. In this work,
we propose a robust sparse recovery method for transmit-
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receive angle imaging in the bistatic MIMO radar. Signals
are transformed into a sparse domain by discrete wavelet
transform. .en, the reconstruction is formulated as an
optimization problem which is solved iteratively. .e pro-
posed method is more robust in dealing with the imper-
fection of array gain-phase errors and noise in the bistatic
MIMO radar system. We analyse the key parameters af-
fecting the performance of recovery results. We also analyse
the influence of the number of iterations on the convergence
of the algorithm. Simulation results show that compared
with existing methods, the proposed method exhibits better
robustness.

.is paper is organized as follows: .e bistatic MIMO
radar sparse signal model with array gain-phase errors is
derived in Section 2. In Section 3, a robust iterative algo-
rithm is proposed to achieve target image reconstruction in
the presence of array gain-phase errors. In Section 4, the
effectiveness of the proposed method is verified by simu-
lations. Some conclusions are drawn in Section 5.

2. Signal Model with Array Gain-Phase Errors

We consider a bistatic MIMO radar system with M trans-
mitting antennas and N receiving antennas, where both the
transmitter and the receiver are equipped with a uniform
linear array (ULA). .e transmitted pulses are denoted
by S ∈ CM×L, where M is the number of coded periodic
signals and L is the length of the coding sequence in one
pulse period.

As shown in Figure 1, the location of a target can be
determined by its angle pair (φt, θr), where φt and θr are the
angles of the target with respect to the transmitting array and
the receiving array, respectively. .e received signal can be
expressed as

Y q � ARDqA
T
TS + Eq, q � 1, 2, . . . , Q, (1)

where AT � [at1, at2, . . . , atg, . . . , atG]M×G and AR �

[ar1, ar2, . . . , arg, . . . , arG]N×G are the steering matrices of the
transmitting array and receiving array with G pixel points,
(·)T denotes the transpose operator, and
Dq � diag(d1, . . . , dg) is a diagonal matrix with diagonal
elements being the target scattering coefficients for the qth
pulse period. It is assumed that the transmitted signals are
orthogonal, i.e., SSH � I, and Eq denotes complex Gaussian
distributed noise with zero mean and σ2nIN covariance. .e
steering vectors of the receiving array arg and the trans-
mitting array atg can be expressed as

arg � 1, e
j(2π/λ)drsinθrg, e

j(2π/λ)2drsinθrg, . . . , e
j(2π/λ)(N− 1)drsinθrg 

T
,

atp � 1, e
j(2π/λ)dtsinφtg, e

j(2π/λ)2dtsinφtg, . . . , e
j(2π/λ)(M− 1)dtsinφtg 

T
,

(2)

where λ is the signal wavelength and dt and dr denote the
transmitting antenna spacing and receiving antenna spacing,
respectively.

Consider the region of interest Ω, as shown in Figure 1,
and we divide it into two-dimensional grids consisting of

angular position pairs Ω � (φk, θl): (k, l) ∈ 1, . . . ,{

G} × 1, . . . , G{ }}. After match filtering by the transmitted
waveforms, the received signals turn into

Yq � ARXqAT + Eq, (3)

where Xq ∈ CG×G is the matrix of target pixel distribution
and is nonzero only when it is the pixel of the target. When
we process the data of one range cell, only surface of the
ellipse has the pixels of the target, and any other grid points
inΩ are zeros.We can recover the image range by range..e
vectorized Yq can be expressed as

yq � vec Yq  � AR ⊗AT vec Xq  + eq � Φxq′ + eq, (4)

where Φ′ � AR ⊗AT, xq
′ � vec(Xq), eq � vec(Eq), and ⊗

denotes the Kronecker product. With the presence of gain-
phase errors in the transmitting and receiving arrays, the
steering matrices can be represented as

ΓR � ΘR
′AR � I + ΘR( AR � AR + ΘRAR � AR + ΔSR,

ΓT � ΘT
′AT � I + ΘT( AT � AT + ΘTAT � AT + ΔST,

(5)

where ΘR � diag(σR1, . . . , σRN) and ΘT � diag(σT1, . . . ,

σTM) are the diagonal matrices containing gain-phase errors.
.e diagonal elements σRi � aRie

jφRi and σTi � aTie
jφTi ,

where aRi and aTi denote the gain errors of the receiving
array and transmitting array elements and φRi and φTi de-
note the phase errors of the receiving array and transmitting
array elements, respectively. .e received signal with the
gain-phase errors can be expressed as

Zq � ΓRXqΓT + Eq. (6)

Hence, the vector form of equation (6) can be written as

Xq(k, l)
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Figure 1: Bistatic MIMO radar imaging.
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zq � vec Zq  � ΓR ⊗ ΓT vec Xq  + eq � AR + ΔSR( 

⊗ AT + ΔST( xq′ + eq
� AR ⊗AT + ΔSR ⊗AT + AR ⊗ΔST

+ ΔSR ⊗ΔSTxq′ + eq � Φ′ + Δν′( xq′ + eq,

(7)

where Δν′ � ΔSR ⊗AT + AR ⊗ΔST + ΔSR ⊗ΔST can be
modeled as an additive random perturbation matrix on the
ideal measurement matrix Φ′. We use the symlet wavelet in
discrete wavelet transform (DWT), to transform the image
into a sparse domain, and then reconstruct the image with
our robust algorithms in the sparse domain. We assume that
the wavelet transform matrix is W ∈ CG×G and then
Wxq′ � xq, so xq is a representation of xq′ in the sparse
domain. Accordingly, equation (7) can be rewritten as

zq � Φ′ + Δν′( xq′ + eq � Φ′ + Δν′( W− 1xq
+ eq � (Φ + Δν)xq + eq,

(8)

where Φ � Φ′W− 1 and Δν � Δν′W− 1. .e objective is to
recover the sparse vector xq, which is elaborated in Section 3.

3. Iterative Sparse Recovery Imaging Algorithm

.e model zq � (Φ + Δν)xq + eq shown in (8) considers
both gain-phase errors and noise. .e optimization problem
with the sparsity constraint can be formulated as [20]

xq,Δν, eq  � arg min
x,Δν,eq

Δν, eq 
�����

�����
2

F
+ c xq

�����

�����1

s.t. zq � (Φ + Δν)xq + eq.

(9)

.e cost function includes two parts: the error term
‖Δν, eq‖2

F
and the regularization term c‖xq‖1, where c is a

regularization parameter to control the sparsity of the so-
lution. In the problem formulated in (9), the observation
vector zq and measurement matrix Φ are given and Δν and
eq are the unknown perturbation matrix and noise vector,
respectively. Our aim is to recover the unknown signal
vector xq, which is a nonconvex optimization problem.

We use a coordinate descent method to solve the op-
timization problem. In the ith iteration, the method per-
forms two steps. In the first step, xq is updated, which can be
formulated as

xq(i) � argmin
xq

zq − (Φ + Δν(i − 1))xq
�����

�����
2

2
+ c xq

�����

�����1
, (10)

where the matrix Δν(i − 1) is obtained in the last iteration,
and the optimization problem above is convex. .e second
step is to update the perturbation matrix Δν with xq(i)

obtained in the first step, i.e.,

Δν(i) � argmin
Δν

zq − (Φ + Δν)xq(i)
�����

�����
2

2
+‖Δν‖

2
F. (11)

.e method fixes a parameter between xq and Δν while
optimizing the other one, until a stop criterion is satisfied. In

each iteration, xq can be solved by the following optimi-
zation problem [21]:

xq(i) � argmin
xq ,w

1
2
zq − (Φ + Δν)xq

�����

�����
2

2
+ c‖w‖1

+
ρ
2
xq − w

�����

�����
2

2
,

s.t. xq − w � 0.

(12)

In the above, we add the penalty term ρ/2‖xq − w‖22 to
bring robustness to the dual ascentmethod, where ρ is a penalty
parameter. .en, we can form the augmented Lagrangian:

Λ xq,w, L  �
1
2
zq − (Φ + Δν)xq

�����

�����
2

2
+ c‖w‖1 +

ρ
2
xq − w

�����

�����
2

2

+ LT xq − w ,

(13)

where the constraint s.t. xq − w � 0 can be written as the
term LT(xq − w) and L is a Lagrangian multiplier vector. We
use the alternating iteration method to solve (13). In the
k+ 1th iteration, the method performs three steps. In the first
step, xq can be updated as

xk+1
q � argmin

xq
Λ xq,wk

,Lk . (14)

By calculating the partial derivative of Λ(xq,wk,Lk) with
respect to xq andmaking it equal to zero, we can update xq as

xk+1
q (i) � (Φ + Δν)

T
(Φ + Δν) + ρI 

− 1
(Φ + Δν)

Tzq + ρwk
− Lk

 ,

(15)

where w and L are fixed and (Φ + Δν)T(Φ + Δν) + ρI is
always invertible since ρ> 0. .en, w can be updated by

wk+1
� argmin

w
Λ xk+1

q (i),w, Lk
 . (16)

Similarly, we can get wk+1 by letting the partial derivative
of Λ(xk+1

q (i),w, Lk) with respect to w equal to zero, i.e.,

wk+1
� sign xk+1

q (i) +
Lk

ρ
 ⊙ max xk+1

q (i) +
Lk

ρ




−

c

ρ
, 0 ,

(17)

where xk+1
q (i) and Lk are fixed and ⊙ denotes point multi-

plication..e updated estimates of xk+1
q (i) and wk+1 are then

employed to update the current estimate of Lk+1:

Lk+1
� Lk

+ ρ xk+1
q (i) − wk+1

 , (18)

with xq(i) available, the above formula is quadratic. .en,
letting the first-order derivative of (11) with respect to Δν to
be zero, we have

Δν(i) � zq − Φxq xT
q(i) xq(i)xT

q(i) + I 
− 1

. (19)

.e proposed algorithm is given in Algorithm 1.
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We set the regularization parameter c as 15 and penalty
parameter ρ as 0.2. .e algorithm stops when the difference
of the squared l2 error of two consecutive iterations is less
than δ � 1e− 10. After obtaining xq, we use xq′ � W− 1xq to
transform xq to xq′ to obtain the reconstructed image. .e
computational complexity of the proposed algorithm is
O((N3)G), where N is the number of receiving antennas and
G � mn denotes the product of two iteration numbers.
Generally, G� 200 will lead to satisfactory quality of the
reconstructed image.

4. Simulation Results

In this section, we examine the performance of the proposed
method in comparison with that of the Lasso method and
the methods proposed in [14] and [15]. We use the mean
square error (MSE) and performance recovery coefficient

(PRC) with the following definitions to evaluate the re-
construction quality:

MSE � xq′ − xt
�����

�����
2

2
,

PRC �
xq′ 

T
xt





xq′
�����

�����2
xt

����
����2

,

(20)

where xt represents the true image and xq
′ denotes the

reconstructed image..e PRCmeasures the similarity of the
true target coefficient and the estimated target coefficient.
Generally, the larger the PRC, the smaller the MSE and the
better the quality of the reconstructed image.

In our simulations, both the transmitting array and
receiving array are ULAs with 15 elements and half-wave-
length spacing. .ere are 64 pixels in each range. In each

Input: zq, Φ, c, ρ
Output: xq, Δν
Initialization with Δν(0) � 0M×N, w � 0N×1, L � 01×N, and err(0) � 0
for i� 1, 2, . . ., m do

for k� 0, . . ., n do
Update the iterate xk+1

q as
xk+1
q (i) � ((Φ + Δν)T(Φ + Δν) + ρI)− 1((Φ + Δν)Tzq + ρwk − Lk)

Compute the vector wk+1 as
wk+1 � sign(xk+1

q (i) + L/ρ)⊙max(|xk+1
q (i) + L/ρ| − c/ρ, 0)

Update Lk+1 as
Lk+1 � Lk + ρ(xk+1

q (i) − wk+1)

end for
Update the perturbation matrix Δν(i) as

Δν(i) � (zq − Φxq)xT
q(i)(xq(i)xT

q(i) + I)− 1

Update the squared l2 error err(i) as
err(i) � ‖zq − [Φ + Δν(i)]xq(i)‖22

if |err(i) − err(i − 1)|≤ δ
break

end if
end for

ALGORITHM 1: Proposed algorithm flow.
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Figure 2: MSE of the reconstruction results with different numbers of iterations of i and k whenM�N� 15 and SNR� 20 dB. (a) MSE with
the iteration number i when k� 200. (b) MSE with the iteration number k when i� 60.
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range is a one-dimensional two-slit image. .e number of
Monte Carlo trails is 500 in all simulations. All the simu-
lations are run usingMATLAB 2014a in a computer with the
following configuration: Intel(R) Core (TM) i7-7700CPU
3.6GHz and 16GB memory.

.e convergence of our algorithm is shown in Figure 2. It
illustrates the MSE of the reconstruction results with iter-
ation numbers i and k. Normally, the algorithm converges
within i� 60 and k� 150.

Figure 3 shows the computation time of each algorithm
with different numbers of antennas. It can be seen that the
proposedmethod takes less time than the iterative method in
[15] but takes longer time than the constrained optimization
method [14] and Lasso method.

Figure 4 shows the results of the image recovery by
using different methods. It can be seen in Figure 4 that the
iterative method [15] and Lasso method work slightly
better than the constrained optimization method [14] and
the proposed method achieves much better performance
than the iterative method [15] and Lasso method. Simu-
lations show that the MSEs of the constrained optimization
method [14], the iterative method [15], the Lasso method,
and the proposed method are 14.93, 11.07, 12.40, and 4.78,
respectively.

Figure 5 shows the MSE and PRC of the four methods,
where the error parameter ε changes from 0.2 to 0.8 with the
interval 0.02. We can see that the MSE of the proposed
method is much smaller than that of the other three methods
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Figure 3: Computing time of the methods against the number of antennas when SNR� 20 dB.
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and proposed method (M�N� 15, SNR� 20 dB, c � 15, and ρ � 0.2).
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and the PRC is much higher than that of the other three
methods when the array gain-phase error is greater than
0.35. However, the iterative method [15] and Lasso method
are better than the proposed method with small errors. .e
proposed method achieves better sparse recovery results
than others with one snapshot. As we can see from Figure 5,
the proposed method is robust to array errors in the case of
one snapshot.

It is indicated in Figure 6 that the performance of the
proposed method is much better than that of the other three
methods. As the SNR increases, better sparse recovery re-
sults can be obtained. .e SNR changes from 10 dB to 30 dB
with the interval 1 dB.

Figure 7 displays the effect of the regularization pa-
rameter c and penalty parameter ρ on the MSE of the re-
covery results. .e penalty parameter ρ is set as 0.2 in
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Figure 5: MSE and PRC of the sparse recovery results with the constrained optimization method [14], iterative method [15], Lasso method,
and proposed method with different array gain-phase errors (M�N� 15, SNR� 20 dB, c � 15, and ρ � 0.2). (a) MSE of the sparse recovery
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Figure 6: MSE and PRC of the sparse recovery results with the constrained optimization method [14], iterative method [15], Lasso method,
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Figure 7(a) and c changes from 0 to 40. We set c � 15 in
Figure 7(b) and ρ changes from 0.1 to 0.5. It can be observed
that the MSE decreases with the increase of c and ρ, but
when c is too large, the algorithm will diverge.

5. Conclusions

In this work, we have investigated a robust sparse recovery-
based transmit-receive angle imaging method for the bistatic
MIMO radar. Signals are transformed into a sparse domain
by discrete wavelet transform, and the reconstruction is
achieved by a robust iterative algorithm. .e proposed
method is more robust to deal with the imperfection of array
gain-phase errors and noise in the bistatic MIMO radar
system. Simulation results have been provided to show the
superiority of the proposed method, which can achieve
significantly better PRC and MSE than existing methods.
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