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This study explores the use of a hybrid Autoregressive Integrated Moving Average (ARIMA) and Neural Network modelling for
estimates of the electric field along vertical paths (buildings) close to Digital Television (DTV) transmitters. The work was carried
out in Belém city, one of the most urbanized cities in the Brazilian Amazon and includes a case study of the application of this
modelling within the subscenarios found in Belém. Its results were compared with the ITU recommendations P. 1546-5 and
proved to be better in every subscenario analysed. In the worst case, the estimate of the model was approximately 65% better than
that of the ITU. We also compared this modelling with a classic modelling technique: the Least Squares (LS) method. In most
situations, the hybrid model achieved better results than the LS.

1. Introduction

The growth in the population density of big cities has made
residential and commercial buildings a common feature of the
urban landscape, as they optimize the spatial exploitation of a
terrain. Sometimes, though, these buildings are located near
transmitter towers. Depending on the operating frequency and
received power intensity of these transmitters, there is a real
concern about the excessive exposure of the general public to
nonionizing radiation (NIR), which in particular can affect
citizens, building constructors, and supervisory agencies.

This article sets out a hybrid modelling system to esti-
mate the propagation of the electric field along vertical paths
close to transmitter towers that operate around 600 MHz.
We chose this frequency range because it is adopted by
Brazilian Digital Television (DTV) and, at least in Belém and
similar cities, one of the most significant sources of outdoor/
indoor NIR exposure are VHF/UHF transmitters operating
at a high-voltage power.

Finding a definitive solution to this problem, such as, for
example, fitting frequency filters to the walls of the buildings
or relocating the transmitter towers, requires great political
will and a high financial cost. In the meantime, people are
being continuously exposed to NIR in their own homes/
offices. This subject is still under discussion and has led to
various approaches, such as in [1-6]. Hamiti et al. [1] de-
scribe a study of exposure to NIR involving multiple fre-
quencies in the city of Prishtina. Koprivica et al. [2] carry out
a statistical analysis of electromagnetic radiation, but are
restricted to GSM frequencies in Serbia. Bernhardt [3] ad-
dresses general subjects related to NIR. Belpomme et al. [4]
examine some of the expected effects of long-term exposure
to NIR. Kuzniar et al. [5] conduct a study of the biological
effects of short-term exposure to NIR with three frequencies
(50 Hz, 2.1 GHz, and 5.8 GHz) in mammalian cells. Bernabo
et al. [6] carry out a survey of the scientific literature with
regard to the effects of NIR exposure on fertility (the authors
examined 104 papers published from 1989 to 2017).
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There have been suspicions about the health effects of
continuous NIR exposure on these people which have
arisen because of the uncertainty of the results obtained so
far. In light of this, the aim of this study is to provide a
degree of comfort to the general public by helping to es-
timate the level of exposure to NIR (i.e., electric field ex-
posure), in vertical path scenarios satisfactorily. With the
aid of this information and on the basis of the exposure
safety standards for NIR, ordinary citizens can check if
their level of exposure to NIR (in a selected frequency)
exceeds the permitted limit, which may mean their health is
at risk. The modelling proposed in this article is designed to
help involved parties to make an assessment of their risk of
exposure to NIR.

The system used in this work is a hybrid ARIMA and
neural network model. This type of model is well known for
its ability to address problems that have both linear and
nonlinear components in their mathematical formulation,
since single ARIMA models are widely used to represent
linear problems and neural network models can represent
nonlinear problems satisfactorily. The purpose of this hybrid
approach is to use the advantages of both modelling tech-
niques to tackle a single problem.

Neural network modelling is a technique inspired by
how the human brain operates, with regard to the synaptic
connections of its neurons. It is widely used (either alone or
combined with other techniques) in many areas, including
for the solution of electromagnetic propagation problems.
This wide range of applications is the most important ad-
vantage of a neural network.

Models such as ARIMA, that is, based on the time series
theory, are widely used in areas such as economics and
biology, as well as for any problem that can be modelled
using a series of time-based data as its main variable.
However, this type of modelling is rarely used to meet the
requirements of electromagnetic propagation, which is the
main problem in this work.

Some studies closely related to the model set out in this
work are [7-12]. Wang et al. [7] analysethe phenomenon of
tuberculosis incidence by means of a hybrid ARIMA model
and nonlinear autoregressive neural network and compare
its estimates to those of a single ARIMA model. In [8], a
hybrid seasonal ARIMA (SARIMA) and neurofuzzy system
network is used to predict the monthly inflow of water, as it
is an extremely important variable in water resource
planning. This model was compared with a combined
SARIMA and neural network model and achieved better
results for its purpose. Naveena et al. [9] employ a joint
hybrid ARIMA and neural network model to predict the
price of “Robusta Coffee” in India and compares this with
single ARIMA and neural network models. On the basis of
the chosen evaluation metric, the hybrid model predicted
the prices more accurately. In [10], the main benchmark for
the model is chosen. A large number of studies which use
similar hybrid models have been influenced by [10]. Finally,
Khandelwal et al. and Aladag et al. [11, 12] provide vari-
ations of the methodology devised by [10] and applied to
literature-based data.
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2. Materials and Methods and the
Proposed Model

2.1. NIR Problem and General Methodology. This particular
problem of human exposition to NIR was analysed in the
central zone of Belém city (located in the Brazilian state of
Pard, in the Brazilian Amazon region), where the trans-
mitters of its main television/radio stations are located.
Some of these towers are as close as 50m to residential
buildings. An aggravating factor is that, instead of having
repeater stations throughout the city operating at a lower
power, there is only one transmitter for each station that
usually operates at an excessively high power. For instance,
the highest transmission power level in Belém is around
20 kW and this tower is located in one of the most urbanized
neighbourhoods of the city, where there is a residential
building that is almost as high as the tower situated ap-
proximately 100 m from it.

Table 1 shows the limits of exposure to NIR for the
general public adopted in Brazil. In this work, we take into
account the values of electric field exposure limits, since the
measurements were of electric field intensity. It should be
noted that the Brazilian limits to NIR exposure follow the
public exposure guidelines defined by the International
Commission on Non-lonizing Radiation Protection
(ICNIRP) for the frequency range of 8.3kHz to 300 GHz.

As the transmitter analysed in this work operates at
600 MHz, the electric field intensity exposure limit equals
33.6805 V/m. This is the limit of the general public exposure
and should not be exceeded by the mean value of the electric
field over a time lag of 6 minutes.

The assessment of human exposure to NIR at any given
point can be measured by using the quadratic relationship

following [13]
E,.\
D (’”) , (1)
i L,

where E,_ ; is the measured electric field at the given point in
frequency i and Ej; is the exposure limit for frequency i.
Equation (1) shows that the effect from exposure to NIR is
cumulative, if more than one source is present. As only one
frequency is considered in this work, the sum in equation (1)
becomes a single quadratic ratio for each point, as variable i
has a single value for every measured point (see equation
(2)). The value of the ER ratio must not be higher than the
unity, that is, ER < 1. If the ER value exceeds 1, it means there
is an excessive exposure to NIR in the considered location:

2
ERz(%Z). (2)

The studied scenario and its measurement campaigns
resulted in three datasets, namely, “datal,” “data2,” and
“data3.” They represent a single scenario: a building close
(less than 250 m) to a transmitter tower operating at approx.
600 MHz. These three datasets can be regarded as three
subscenarios, that is, three similar situations. Figure 1 shows
a representation of the studied scenario. All three datasets

ER =
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TaBLE 1: Limits of the general public exposure to electromagnetic fields in the range of frequencies between 8.3 kHz and 300 GHz [13].

Radio frequency range Electric field intensity (V/m)

Magnetic field intensity (A/m) Power density, seq (W/m?)

9kHz to 65kHz 87 5 —
0.065 MHz to 1 MHz 87 0.73/ f —
1 MHz to 10 MHz 87/ f12 0.73/f —
10 MHz to 400 MHz 28 0.073 2
400 MHz to 2000 MHz 1.375 f12 0.0037 f1/2 1200
2GHz to 300 GHz 61 0.16 10
. TaBLE 2: Information on the tested subscenarios.
Subscenario “datal” “data2” “data3”
d 48 m 100 m 200 m
— h, 212m 125m 125m
F e h, 8l m 11m 8l m
1\ EEEE N
n \ ENEE g
1 EEEE m h, empirically based model. New datasets can be acquired
‘,s et : through measurement campaigns and/or simulations. These
f® d - - . are some of the continuous upgrades designed for this work,
! aenl as described in Section 4. Another advantage of this model is
i T mman ® that it can be deployed to address a wide range of problems,
| as it can design both linear and nonlinear systems precisely.

FIGURE 1: Representation of the studied scenario. Tx abbreviation
stands for “transmitter tower.” Variable d is the horizontal distance
between the measured building and the transmitter tower (not to be
confused with the distance of the receiver equipment from the
transmitter source). Variable h; is the height of the transmitter
tower and h, represents the height of the measured building.

were obtained through measurement campaigns and consist
of values of electric field intensity (V/m) in every floor of
each measured building. The receiver equipment was always
located in such a way that it was directly facing the trans-
mitter tower and the data was acquired for 6 minutes, as
recommended by [13], which resulted in a series of values of
the electric field for each floor. The mean value of each series
was taken to represent the received intensity of the electric
field in each floor. Table 2 provides information of the
variables in Figure 1.

The proposed model was developed from a hybrid
methodology that combined an ARIMA model and a neural
network, inspired by [10-12]. Let E be the value of the
electric field intensity. This can be written as the sum of two
components (equation (3)), one containing its linear part
(L) and the other containing its nonlinear part (N), that is,

E=L+N. (3)

In this work, the linear component L is first adjusted by
an ARIMA model. Secondly, the difference between the
ARIMA estimate L and the measured data (E), ie., the
residuals of the ARIMA estimates, is adjusted by the neural
network.

Datasets representing other scenarios (different from
those found in Belém) must be acquired to ensure that the
model operates effectively in these new scenarios, as it is an

The necessary calculations and programs were carried out on
MATLAB [14] software, by means of internal functions,
both for ARIMA and the adjusted neural network.

2.2. ARIMA Fitting Methodology. The ARIMA adjustment
was made by adopting the usual strategies from the time
series theory, mainly autocorrelation function (ACF) and
partial autocorrelation function (PACF) analysis for the
original, or (somehow) transformed, time series, as in [15].
The neural network is a radial basis network with two layers.

It should be noted that, when using the ARIMA model,
the (usual) variable “time” is replaced with the “height from
ground” variable, which characterizes a vertical path. In
other words, it is assumed that the electric field intensity on
one floor of a building is determined by the values (the exact
quantity depends on the order of the model) from the floors
below. The standard Cartesian coordinate system is used for
the y-axis with a variable height (zero at the base and in-
creasing as it rises).

The analysis and the results of this work were divided
into two groups: (1) Original Measured Data and (2) In-
terpolated Measured Data. As the names suggest, the results
of Group 1 were obtained from the datasets with their
original number of samples. With regard to the second
group, the results were obtained after adjusting the model to
the interpolated measured data. We did this to increase the
number of samples of each measured dataset, thus allowing
the ARIMA model to work with more samples, thus, refining
the linear fitting. We used a shape-preserving piecewise
cubic interpolation (SPPCI) to increase the number of
samples of each dataset from 25 (datasets: “data3” and
“datal”) or 31 (dataset: “data2”) to 200. In addition, the
interpolated group of datasets was able to simulate a
“nonstop” measurement campaign, which is more desirable
than a “stop-and-go” campaign. Instead of having to stop at



each floor of a building to carry out the measurement, we
could use a device that allows continuous measurements to
be made (a receiver attached to a drone moving at constant
speed, for example) with no stops. However, our mea-
surement campaigns were of the “stop-and-go” type.

There are some steps that have to be taken to adjust the
ARIMA model. Firstly, it is necessary to determine if a
nonlinear transformation (e.g., logarithm transformation) of
the original series is necessary to stabilize its variance.
Secondly, the tendency of the original data must be calcu-
lated and isolated, if necessary, so that the adjustment of the
series can proceed without its tendency. Then, on the basis of
the ACF and PACEF analysis, it must be decided whether
differences in the series should be made. Finally, the type/
order of the ARIMA model will be obtained when the ACF
and PACF graphs make correct evaluations after the nec-
essary interventions in the original series. All these stages
follow the standard [15] approach when modelling with time
series, where it is necessary for the series that must be
adjusted to be stationary (or “close” to it). The original series
of graphs for the three datasets are shown in Figure 2, while
the graphs for the interpolated datasets are shown in
Figure 3.

In the process of achieving the best result for the pro-
posed modelling, we carried out a wide range of tests that
followed different stages. The diagram in Figure 4 shows all
the stages of the testing procedure followed in this study.
Optional stages are to take a nonlinear transformation and
taking differences on the original/interpolated series. These
stages are indicated in the diagram by dashed lines.

When analysing the diagram, it was noticed that the
decision about the interpolation was made right at the
beginning of the process required for this work. We did this
to simulate the two scenarios under consideration (i.e., the
“non-stop” and “stop-and-go” measurement campaigns)
and allow a more refined ARIMA estimate, as stated pre-
viously. We isolated the tendencies of the series, which is a
standard procedure for the ARIMA fitting and replicated in
the LS fitting to make a fair comparison between the fitting
methods. We, then, continued with the ARIMA fitting, by
analysing if a nonlinear transformation is necessary (that is
the reason for the dashed lines in this stage, since this stage is
optional). Following this, we analysed the ACF and PACF
functions of the series under study and decided whether to
take difference(s) or proceed to define the ARIMA model.
After the ARIMA fitting, we proceeded with the neural
network fitting, which is carried out by finding the difference
between the measured data and ARIMA estimates, i.e., the
residuals from the linear estimate. Finally, we obtained the
results of the modelling, which were ready for making
comparisons and reaching conclusions.

The optional stages in the diagram were tested and the
best results were obtained when dataset “data3” was used as a
calibration set (for both the interpolated and original
datasets) without nonlinear transformation, but isolating the
tendency and fitting the ARIMA to the series without it. This
means that the ARIMA coeflicients were calculated by only
using the “data3” group as an adjustment/training set.
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Groups “datal” and “data2” were only used for making
comparisons and estimates.

In Sections 3.1 and 3.2, we briefly explain how we carried
out the fitting by employing the LS method. This was carried
out to act as a counterpoint to the modelling, as it is a usual
procedure for tackling problems like this. We will, later,
compare this method with the LS and the ITU recom-
mendation P. 1546-5 in Section 4 of this study. In addition,
we explain in detail how we obtained the best linear results in
Sections 3.3 and 3.4. As for the neural network fittings, these
are described in Sections 3.5 and 3.6.

2.3. LS Fitting Methodology. To ensure a fair comparison is
made between the combined ARIMA and Neural Network
fitting, “data3” will be used as a calibration dataset and the
fitting procedure will be carried out in the series without its
tendency.

The general problem was represented by choosing a
recursive second order polynomial given by

fn=a1fr +ayfr, +as (4)

This represents a situation where the current value of f,
i.e., fj, depends on the two preceding values (based on the
adopted metric in the problem, of course), which is similar
to how the ARIMA model makes its estimates.

Equation (5) expresses the system of equations repre-
senting each value of f), from f; to f,. We consider values
f, and f, to be the first two values of the training dataset:

fi=afytaf +as

fa=afs+a,fy+a;s

(5)

fo=aifuatayf,,+as

System in equation (5) is incompatible, but a least square
solution can be obtained by minimizing the sum of squares
of the errors between the estimates and the (theoretically)
correct values, i.e., its residuals. The system with the errors is
given by

& =fi—(afy+af, +as)

& =fo—(aifs+af,+ay), 6)

&3 = fu—(a1fn +asfns+as).

Our problem, hence, is to minimize Y, .

It should be stressed that the original problem is linear,
but, since the matrices of the system that have to be min-
imized are dynamic, we have a nonlinear LS problem to
solve.

2.4. Neural Network Fitting. A neural network can be used
for fitting the difference between the ARIMA estimate and
the original data. That is, let L be the ARIMA estimate of one
measured dataset Z. We can write it as in

Z=L+N. (7)
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In equation (7), the nonlinear term of Z, which will be  element wise product between the biases and the weights and
fitted by the neural network, is represented by N. each neuron correspond to a training point. The neurons of
In this study, a radial basis function neural network with  the second layer normalizes the values previously found (see
two layers is employed. The neurons of the first layer makean =~ MATLAB documentation on newgrnn neural network [14]).
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FIGURE 5: Radial basis neural network diagram.

The activation function of the neural network is a
Gaussian function, given by equation (8). A general diagram
of this kind of network is shown in Figure 5.

(x—cj)z .
hj(x)zexp ————], j=1..,n (8)

2
20j

with # being the number of inputs in the network. In this
work, there is one neuron in the network for each training
point. The number of training points vary from the original
datasets and interpolated datasets.

From the diagram in Figure 5, we conclude that the
function for the nonlinear estimate N is given by

2
w; exp(—@>, j=1L..,n 9)

2
Zoj

N =

s

Il
—

J

with w; being the weights of the neural network. The dia-
gram of the representation of the network used in the
original datasets fitting is shown in Figure 6.

In the original datasets, eight of the twenty-five original
samples were used to train the network (as in Figure 6). With
regard to the interpolated datasets, we used 24 of the 200
available samples. We proceeded in this way to avoid
overtraining in the neural network. The boundary and the
central samples are always used as training points. The other
points are chosen at random. We used 1 as the spread value
of the neural network (the standard value for MATLAB).
The output of the network is, thus, interpolated (SCCIP) to
ensure that the final output vector has the same number of
elements as the measured data and the ARIMA vector.
Finally, the estimated values from the neural network N are
then added to the estimated ARIMA values which gives the
final model estimate for Z, which is in

Z=L+N. (10)

3. Results and Discussion

3.1. LS Fitting: Results of Original Samples. We used the
classical Levenberg-Marquardt [16] method to solve System
6. The values of the coefficients aj,j =1,2,3, where
a, = —-0.1904, a, = 1.0187, and a, = 0.0002 for the original
datasets. The Euclidean norm of residuals was 0.3302. The
graphs of the LS curves for the three original datasets
(calibration/training set and comparison sets) are shown in
Figure 7. The relative and RMS errors values for this LS
fitting are displayed on Table 3.

3.2. LS Fitting: Results of Interpolated Samples. By analogy,
we used a similar polynomial as in equation (4) (recursive of
the second order) for the interpolated datasets. This poly-
nomial is represented by f, (the symbol ~ in other variables
through this article indicate they are originated from in-
terpolated data). The analogous system to equation (6), after
the matrices had been minimized, resulted in the following
respective values of coefficients for f,: a; =0.9641,
a, = 1.9590, and @, = 0.0000.

The curves of each estimate for the interpolated datasets
are displayed in Figure 8. The relative and RMS errors values
for this LS fitting are given in Table 4.

We also tested the LS fitting using higher order poly-
nomials. In light of the behaviour of the curves, this possibility
is almost never considered. In the case of both the original and
interpolated dataset curves, the second order LS fitting ob-
tained good results. However, when the order of f was in-
creased for the interpolated datasets, the LS could not find the
optimal solution, no matter where the initial point was.
Furthermore, comments on this will be made in Section 4.
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FiGure 7: LS estimate for (a) “data3,” (b) “data2,” and (c) “datal.”

TaBLE 3: Relative and RMS errors values for LS fitting of original
datasets.

Dataset RMS Relative
“datal” 0.7096 0.0559
“data2” 0.1869 0.1662
“data3” 0.1247 2.8570

3.3. ARIMA Fitting: Results of Original Samples. Let Z; be
the mathematical notation for the original measured series
of “data3” datasets. When analysing its “Amplitude vs.
Mean” graph (see Figure 9), we decided not to take a log-
arithm transformation on Z; in order to proceed with the
ARIMA adjustment, even though the angular coeflicient of
the best linear fitting is not zero (as shown in the graph).

In view of the behaviour of all the measurement datasets
acquired, we decided to calculate and isolate the tendency of
all three series. In other words, fitting is carried out in the Z,
series without its tendency. The tendencies of Z, and Z,
series are also isolated, since the model estimates for both
datasets are made for these series without their tendencies
(i.e., they are reintegrated after the estimates to allow
comparisons to be made for the measured data). We ex-
amined the measured data without seasonal components
and concluded that Z; = L; + N3 and L; is

Ly=T;+as, (11)
with T; being the tendency for Z; and a5 the white noise.

We also took account of the polynomial tread line and
estimated it by means of the linear least squares method,

which resulted in T,. Therefore, the series that must be
estimated by the ARIMA model is represented by Y:

Y,=1,-T, (12)

In this case, the tendency is represented by a first degree
polynomial. Coefficients of the polynomials representing the
tendencies of Z,, Z,, and Z; are shown in Table 5. The
studied series without tendency (Y5, Y,, and Y,) are shown
in Figure 10. The estimated series will be called Y pJ=123.

Now, we can analyse the ACF and PACF graphs for Y,
(this is the training set) to determine if their behaviour
satisfies one ARIMA model. Figure 11 shows these graphs.

The main result at this stage is that the ACF plot moves
to zero rapidly. This means that further transformation to
the series is not necessary. The order of the ARIMA model
can be defined.

The ACF function also moves rapidly towards zero and
its behaviour is similar to a damped sinusoidal function, as
well as the PACF graph. The ACF behaviour indicates that
there is an autoregressive (AR) component in the model, and
as it is infinite (i.e., exists in all lags), this is a sign that no
moving average (MA) term is present. As PACF moves near
zero after lag 1, we have a first-order AR model. It can thus
be concluded that the best linear adjustment possible is an
ARIMA (1,0,0) model. Its ACF and PACF are shown in
Figure 12.

The adjusted/estimated ARIMA model is represented by

Y, =¢,Y,, +c (13)

with ¢ = 0.8587 and ¢ = —0.0011.
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TaBLE 4: Relative and RMS errors values for LS fitting of inter- originated from the estimation of equation (14) model when
polated datasets. applied to its own adjusted dataset, i.e., Z5:
‘I()atasef RMSE Relative error L,=Y,+T, (14)
datal 0.6532 0.0591
“data2” 0.3954 0.4718 By analogy with L;, we can write L, and L.
data3 0.1341 3.4521 Figure 13 shows, as well, the graphs of the estimations of

the ARIMA model to “data2” (fz) and “datal” (fl) datasets,

respectively, that is, the comparative subscenarios. All these
0.25 , , , , graphs also show the estimations of ITU-R P.1546-5 and LS
for each subscenario. Tables 6-8 show the relative and RMS
errors of both ARIMA, LS, and ITU estimations for every
020 F - subscenario.

OIS o 3.4. ARIMA Fitting: Results of Interpolated Samples. We have
the variables Z; and ?j, j =1,2,3, representing the inter-
polated measured series with and without their tendencies,
respectively.

The ARIMA adjustment process for the interpolated

0.1

0.05 e series gave, as its best result (Z; is the training series) an
o« ; ; ‘ ARIMA (4,0,0) model given by
° ° ° = ~ = ~ = ~ = ~ = _
00 (;1 0.2 0.3 0.4 Yh = ¢1Yh—1 + ¢2Yh—2 + ¢3Yh—3 + ¢4Yh—4 +6 (15)
o Ampvs. mean with @, = 3.1394, ¢, = —3.7423, ¢, = 2.0210, §, = —0.4191,
—— Linear fitting (y = 0.12x + 0.045) and € = 8.7149 x 107°,

The graphs of the best ARIMA adjustment to Z, and the
comparisons to Z, and Z, are shown in Figure 14. The
relative and RMS error for the interpolated datasets are
displayed on Tables 9-11.

FIGURE 9: Amplitude vs. mean graph for “data3” (Z;).

TaBLE 5: Linear tendency information y = ax + b coefficients a and

b values.

Dataset a b 3.5. Neural Network Fitting and Final Model Estimates:
“Jdatal” 5.7268 0.1479 Original Samples. Figure 15 shows the results for the ad-
“data2” 0.3731 0.0286 justed final model versus the adjustment dataset (“data3”)
“data3” 0.1431 0.0014 and its estimates for the “data2” and “datal” datasets, re-

spectively. These figures also show the ITU-R P.1546-5 and

LS estimates for all the subscenarios. Tables 12-14 show the

The graph with the best adjustment for the “data3”  relative and RMS errors values of the combined model, the
dataset is shown in Figure 13. This is the graph that LS, and ITU estimates for all the datasets.



International Journal of Antennas and Propagation

0.3
0.25
0.2
’é\ 0.15 —
S o1 £
o 0.05 2
0 m
-0.05
-0.1
-0.15
0 21 36 51 66 81
Height (m)
—— Dataset “data3” without
tendency
(a)

0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3

E (V/m)

36 51 81

Height (m)

66

21 36 51 66 9 111 21

Height (m)

81

—— Dataset “datal” without
tendency

(c)

—— Dataset “data2” without
tendency

(b)

FiGgure 10: Graph of (a) “data3” without tendency (Y3), (b) “data2” without tendency (Y,), and (c) “datal” without tendency (Y,).
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FIGURE 13: ARIMA estimation for (a) “data3” with tendency reintegrated (f3), (b) “data2” with tendency reintegrated (fz), and (c) “datal”

with tendency reintegrated (I,).
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TaBLE 6: ARIMA, ITU, and LS Relative and RMS errors for f3.

Dataset RMSE Relative error
ARIMA 0.0989 4.1562
LS 0.1247 2.8570
ITU 0.6577 21.4290

TasLE 7: ARIMA, ITU, and LS Relative and RMS errors for f,z.

Dataset RMSE Relative error
ARIMA 0.1376 0.1496
LS 0.1869 0.1662
ITU 0.6279 0.8601

TaBLE 8: ARIMA, ITU, and LS Relative and RMS errors for I1-

Dataset RMSE Relative error
ARIMA 0.9657 0.1090
LS 0.7096 0.0559
ITU 5.8504 0.7636
1 2 12
0.8
g
2
<3
2l
0
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»

FIGURE 14: ARIMA estimation for (a) “data3” with tendency reintegrated (Ii), (b) “data2” with tendency reintegrated (fz), and (c) “datal
with tendency reintegrated (L,).

TasLE 9: ARIMA, ITU, and LS Relative and RMS errors for f3.

Dataset RMSE Relative error
ARIMA 0.0906 0.9199

LS 0.1341 3.4521
ITU 0.6555 17.0699

TaBLE 10: ARIMA, ITU, and LS Relative and RMS errors for iz.

Dataset RMSE Relative error
ARIMA 0.2570 0.2975
LS 0.3954 0.4718

ITU 0.6356 0.8764
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TasLE 11: ARIMA, ITU, and LS Relative and RMS errors for fl.

11

Dataset RMSE Relative error
ARIMA 1.1983 0.1358
LS 0.6532 0.0591
ITU 5.8982 0.7663
1 2 12
08 b oo e 10
8
g 0.6 E g
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Q Q =)
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2
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ITU-R P.1546-5 estimation

--- LS estimation

—— ARIMA with network
ITU-R P.1546-5 estimation

--- LS estimation

(®)

—— ARIMA with network
ITU-R P.1546-5 estimation
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F1Gure 15: Comparison between measured data, ITU estimation, LS estimation, and proposed modelling curves for (a) “data3” subscenario,
(b) “data2” subscenario, and (c) “datal” subscenario.

TasLE 12: ARIMA, ARIMA with neural network, LS, and ITU errors for “data3.”

Dataset RMSE Relative error

ARIMA 0.0989 41562

ARIMA w/Net 0.0752 2.7348

LS 0.1247 2.8570

ITU 0.6577 21.4290
TaBLE 13: ARIMA, ARIMA with neural network, LS, and ITU errors for “data2.”

Dataset RMSE Relative error

ARIMA 0.1376 0.1496

ARIMA w/Net 0.1523 0.1582

LS 0.1869 0.1662

ITU 0.6279 0.8601
TaBLE 14: ARIMA, ARIMA with neural network, LS, and ITU errors for “datal.”

Dataset RMSE Relative error

ARIMA 0.9657 0.1090

ARIMA w/Net 1.0097 0.1164

LS 0.7096 0.0559

ITU 5.8504 0.7636
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FiGUre 16: Comparison between measured data, ITU estimation, LS estimation and proposed modelling curves for (a) “data3” subscenario,

(b) “data2” subscenario, and (c) “datal” subscenario.

TaBLE 15: ARIMA, ARIMA with neural network, LS, and ITU errors for “data3.”

Dataset RMSE Relative error

ARIMA 0.0906 0.9199

ARIMA w/Net 0.0605 1.1375

LS 0.1341 3.4521

ITU 0.6555 17.0699
TasLE 16: ARIMA, ARIMA with neural network, LS, and ITU errors for “data2.”

Dataset RMSE Relative error

ARIMA 0.2570 0.2975

ARIMA w/Net 0.2564 0.2928

LS 0.3954 0.4718

ITU 0.6356 0.8764
TasLE 17: ARIMA, ARIMA with neural network, LS, and ITU errors for “datal.”

Dataset RMSE Relative error

ARIMA 1.1983 0.1358

ARIMA w/Net 1.2206 0.1392

LS 0.6532 0.0591

ITU 5.8982 0.7663

3.6. Neural Network Fitting and Final Model Estimates: In-
terpolated Samples. By analogy, Figure 16 shows the results
for the fitting and estimates in the interpolated datasets and
their respective relative and RMS errors are shown in
Tables 15-17.

4. Conclusions

4.1. General Public Exposure to NIR. With regard to the
general public exposure to NIR, the values found for the
electric field do not exceed the limits currently in operation in

Brazil. On the contrary, they were significantly below the
limits referred to in the frequency that was analysed
(33.6805 V/m for electric field at 600 MHz). This means that
the ER ratio value is less than 1, which can be regarded as a
safe value by Brazilian standards. The greatest value of the ER
ratio in all the scenarios (taking account of both the original
and interpolated sets) was 0.3174 and was calculated through
the ratio between the greatest value measured for the “data 3”
dataset (10.6899 V/m) and the limit of 33.6805 V/m.

By using the planned modelling, any similar requirement
that might arise in the future does not necessarily involve the
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need for measurements since the model represents, to a
satisfactory extent, the electric field propagation in the
scenario and in the frequency in question. However, in a
situation where the estimates of the model are as close as (or
even closer to) the exposure limits than the error of the
model (whether RMS or relative) with regard to the training
set, there is a need for measurements and a cautious ap-
proach to the situation. Without measurements being re-
quired in every situation that raises doubts among the
public, the process of evaluating the exposure to NIR would
be less expensive, faster, and even more efficient. This helps
in providing a precise and rapid response and in improving
the service rendered by the regulatory agency.

4.2. Original Datasets. On the basis of the results of the 25
sample datasets (not interpolated), we observed that our
modelling system shows a significantly better result than the
commonly used ITU-R estimates. In the case of the “datal”
group, where the estimates of the model were worst, it was
still approximately 65% better than its ITU estimate (taking
into account the relative errors). It can, thus, be concluded
that the hybrid modelling achieves its goals with a high
degree of accuracy.

However, when compared with the “single” ARIMA
estimates, the combined ARIMA and neural network model
achieves slightly worse results. This suggests that the addi-
tional feature (combining the ARIMA model with a neural
network), in this particular problem, may not be necessary to
represent it in a precise way.

Although there is this slight difference between the
“single” and “combined” ARIMA models (as confirmed by
the relative/RMS error values), we think that the combined
model should be used in all cases, in view of its applicability
to other scenarios. In the case of this problem, for example,
in our view, both approaches (“single” and “combined”
ARIMA) are equivalent, as the difference in the errors is
slight. The largest RMSE difference in all the tested scenarios
is approximately 0.1 for the “data3” dataset without
interpolation.

Since this work comprises a case study, we think it
should be stressed that the “single” ARIMA model gave the
best results in this particular scenario. We expect, however,
that in other scenarios, the combined model may become
necessary, as it can represent nonlinear features, whereas the
“single” ARIMA modelling cannot. When compared with
the LS estimates (except for the “datal” dataset), the
combined modelling system achieved better results.

4.3. Interpolated Datasets. On the basis of an analysis of the
results obtained from 200 samples (interpolated datasets),
the same conclusions can be reached as with results from the
25 samples, but with a caveat; although the LS was able to
find an optimal solution to this problem, owing to the
number of samples there is a risk that this may not be feasible
in other scenarios. There may be too many alternatives for
the LS algorithm to search and its result may “explode.” This
also suggests that, in a desired scenario of “nonstop”
measurements, when a higher number of samples is
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naturally acquired, applying the classic LS fitting may not be
the best alternative, since there is risk that an optimal so-
lution will not be found. Nonetheless, the combined ARIMA
modelling system (or even the “single” one) does not have
this limitation and the neural network is able to model
nonlinear features that the “single” ARIMA model cannot.

5. Future Improvements on the Model

As future improvements to this study, we recommend the
following:

(1) Including other scenarios and frequencies through
measurement campaigns: this will enable the pro-
posed modelling to tackle a wider range of problems,
i.e., help to generalize the model

(2) Adding datasets from near-field measurement
campaigns: as it is, the proposed model cannot
predict near-field propagation situations, since the
training data consists of far-field measurement
information

(3) Implementing this modelling system through the
deployment of an applicative service on a mobile
device, such as a smartphone: we believe this ap-
plicative could be used by the general public to es-
timate electric field intensity in similar scenarios to
the one(s) studied here, when doubts about the
exposure to NIR arise
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