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0e existing sparse imaging observation error estimationmethods are to usually estimate the error of each observation position by
substituting the error parameters into the iterative reconstruction process, which has a huge calculation cost. In this paper, by
analysing the relationship between imaging results of single-observation sampling data and error parameters, a SAR observation
error estimation method based on maximum relative projection matching is proposed. First, the method estimates the precise
position parameters of the reference position by the sparse reconstruction method of joint error parameters. Second, a relative
error estimation model is constructed based on the maximum correlation of base-space projection. Finally, the accurate error
parameters are estimated by the Broyden–Fletcher–Goldfarb–Shanno method. Simulation and measured data of microwave
anechoic chambers show that, compared to the existing methods, the proposed method has higher estimation accuracy, lower
noise sensitivity, and higher computational efficiency.

1. Introduction

Synthetic aperture radars (SARs) have been widely used in
military and civil fields due to their all-weather, all-day,
long-range, and high-resolution performance. High reso-
lution requires a large bandwidth and a large synthetic
aperture, which means high sampling rate and data volume
for traditional SAR imaging methods. Many similar pro-
cesses are employed in traditional imaging methods. 0us,
great progress in imaging resolution for traditional SAR
imaging methods is difficult to achieve. Sparse signal re-
construction and compression sensing technology have
begun to be widely used in SAR imaging in recent years. For
an echo signal that is obtained through sparse sampling or
sparse representation, the imaging scene can be accurately
reconstructed by optimising reconstruction algorithm. 0e
sparse image SAR method can obtain higher resolution than
the traditional methods [1–13].

Radar imaging depends on the geometric relationship
between the radar and the target. In some cases, such as the
motion error of the radar platform, mechanical jitter, and

missing of data acquisition, the observation position of the
radar sensor is changed [14–16]. Autofocusing methods can
be used to image the echo data with observation position
errors, but these methods do not apply to sparse sampling
data, and the computational efficiency is low [17–19]. For
sparse observation radar imaging and compressive sensing
radar imaging, a base-space matrix has to be constructed to
simulate the radar imaging process; thus, many scholars
have realised the compensation of observation errors by
optimising the base-space matrix [20–28]. Reference [24]
proposed a sparse reconstruction method with joint error
parameters, which built a base-space matrix of error pa-
rameters to reconstruct signals. 0is method can estimate
each observation position accurately, but the computing
complexity is extremely high. References [25, 26] improved
the sparse reconstruction method of joint error parameters
by dividing the data into several subapertures and con-
ducting unified position estimation and error compensation
for each subaperture. Although the subaperturemethods can
improve the efficiency of the method in references [25, 26],
they ignore the error variation within each subaperture and
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are unsuitable for the case of large spatial variation of po-
sition error. References [27, 28] improved the sparse re-
construction method of joint error parameters by phase
error correction for approximated observation; this method
can also improve the efficiency of the method in references
[25, 26], but the approximated observation model will cause
the decline in image quality.

0is study constructs an imagingmodel based on target’s
imaging scene sparse representation. By analysing the re-
lationship between observation error of each observation
position and base-space projection, a SAR observation error
estimation method based on maximum relative matching
degree of base-space projection is proposed. Firstly, it es-
timates the precise position parameters of the reference
position through the sparse reconstruction method of joint
error parameters. 0en, the maximum matching degree of
base-space projection between the estimating observation
positions and the reference position is taken as the evalu-
ation criterion, and the difference of the position error
between the estimating observation position and the ref-
erence position is estimated by the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method. Finally, the
precise observation error parameters are obtained by adding
the relative errors to the reference position error. Our
simulation results show that, compared with the existing
algorithms, the proposed method is more accurate, more
efficient, and more robust in a noisy environment compared
with the existing algorithms. Furthermore, by building a test
platform in the microwave anechoic chamber, we verified
the effectiveness of the proposed method for the data with
unknownmissing location and the feasibility of applying this
method in engineering.

2. Imaging Model

Radar imaging aims to determine the geometric relationship
between the radar and the target. 0is study mainly analyses
the influence of the change of radar observation position in
imaging, which assumes that the target is stationary relative
to the reference coordinate system in the imaging process.
0e radar observation position is known in general. How-
ever, due to the motion error or data acquisition missing,
determining the precise observation position parameters of
echo data is usually impossible. Sparse radar imaging or
compressive sensing radar imaging requires accurate sparse
representation of the target scene. 0erefore, accurately
estimating the position of the radar at each observation
sampling point is necessary to obtain reconstructed images
accurately.

In this study, the two-dimensional (2D) imaging is taken
as the model for analysis. 0e geometric model of radar
imaging process is shown in Figure 1. Let x, y, and z denote
the radar observation position coordinates, h is the vertical
distance from radar track to contour plane of the target, and
r0 is the vertical distance from center of the target scene to
y-axis. Let x′ and y′ denote the target scattering point’s
coordinates in 2D imaging scene. For the ideal observation
condition of radar imaging, radar motion path is a straight

line, so x � r0 and z � h are constant values. 0e distance r

from radar to target scattering point can be expressed as

r x, y, z, x′, y′( 􏼁 �

���������������������

r0 − x′( 􏼁
2

+ y − y′( 􏼁
2

+ h2
􏽱

. (1)

In this study, the transmitted signal is a stepped fre-
quency electromagnetic signal; let kr � 2πf/c denote the
wavenumber of transmitted signal, which is a variable. Let c

denote the velocity of light, f ∈ fmin, fmax􏼈 􏼉 denote the
frequency of transmitted signal, and fmin and fmax denote
the minimum frequency and maximum frequency of
transmitted signal. Let P denote the imaging scene; the echo
signal of all target scattering points in P can be expressed as

s kr, y( 􏼁 � B
P

I x′, y′( 􏼁e
− j2krrdx′ dy′, (2)

where I(x′, y′) is scattering intensity of the scattering point
with coordinates x′ and y′, To express equation (2) as a
matrix operation, the object imaging scene is discretized and
meshed. 0e scattering intensity distribution in imaging
scene is expressed as a matrix I; let s denote echo signal
matrix. To facilitate matrix operations, stretch I and s as
columns into a one-dimensional matrix. Ignoring the noise
in the signal, s can be expressed as

s � AI, (3)

where A � a1 a2 · · ·􏼂 􏼃 is base-space matrix, a � e− jkrr. For
the radar observation condition with error, the radar path is
not a fixed straight line, but a curve around the ideal straight
line.0erefore, the coordinates x, y, and z become variables.
Set ε � (δx, δy, δz) denotes the observation error, set
xε � r0 + δx, yε � y + δy, and zε � h + δz denote coordi-
nates of each observation position with error ε, and the
distance between the radar and the target is changed into
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0en, the echo signal with radar observation error can be
expressed as
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Figure 1: Imaging geometric model.
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Assume that the electromagnetic scattering intensity of
target is isotropic; the scattering intensity distribution in
imaging scene is also I in this radar imaging system. Set sε
denote the echo data matrix with observation error, and
construct the base-space matrixAε with error parameter ε; sε
can be expressed as

sε � AεI. (6)

3. Observation Error Estimation and
Sparse Imaging

3.1. Estimation Method Based on Joint Parameter Sparse
Reconstruction. Sparse radar imaging can be regarded as a
process of optimisation reconstruction through equation
(3). Let 􏽢I represent the estimated results of backscattering
coefficient; the reconstruction model can be expressed as

􏽢I � argmin
I

‖s − AI‖22. (7)

It can be seen from equation (6), to accurately calculate,
the base-space matrix must be constructed with accurate
error parameters. 0erefore, for each observation position,
the base-space matrix is constructed according to the error
parameters to be estimated, and the optimal solution of
backscattering coefficient 􏽢I and error 􏽢ε is obtained by solving
the problem as follows:

􏽢I,􏽢ε􏽮 􏽯 � argmin
I,ε

‖s − A(ε)I‖22, (8)

where ε � ε1 ε2 ...􏼂 􏼃 is the set of error parameters to be
estimated. As shown in equation (8), the sparse recon-
struction method of joint error parameters can accurately
estimate the error parameters and obtain higher imaging
results. However, there are 2 problems in this method. First,
the calculation cost is too high, each iteration needs a
complete sparse reconstruction process, and each observa-
tion position needs many iterations calculation, so the
calculation cost is huge. Second, because of the low amount
of each observation position data, it is difficult to guarantee
the accuracy. 0e subaperture estimation method can im-
prove the calculation speed, and the overall error estimation
accuracy of each subaperture can be improved, but the error
variation in each aperture is ignored.

3.2. EstimationMethod Based onMaximumMatching Degree
of Base-SpaceProjection. Time-frequency analysis methods are
commonly used in manoeuvring target imaging and spinning
target imaging. 0ese methods can quickly calculate the relative
shift of the target at different sampling times by analysing the
Doppler frequency of the signal. 0e present study assumes that
the target is relatively static and the radar has shifted to the ideal
trajectory. 0us, the position change of the radar can be esti-
mated by using the time-frequency methods. However, these

methods involve certain problems. Firstly, the accuracy is in-
sufficient for accurate sparse reconstruction. For the short-time
Fourier transform method, due to the use of the window
function, obtaining high time resolution and high-frequency
resolution at the same time is difficult, and the Wigner–Ville
distribution (WVD) method is susceptible to cross-term in-
terference in the case of multiple scattering points. Secondly, for
sparse or CS imaging, if the echo data is sparsely sampled or is
partially missing, the time-frequency analysis method often fails.

Time-frequency analysis method deduces the change of
spatial position from the change of frequency. As sparse
reconstruction depends on the geometric relationship be-
tween the target and the radar, the change of radar obser-
vation sampling position leads to the change of target
position after reconstruction. By calculating the target re-
construction position of each observation sampling position
signal, the change of the radar observation sampling position
can also be deduced reversely.

Because there is no doppler information, only 1D range
image can be obtained by the single observation echo data
imaging. From 1D range image, only range coordinates x′ of
the target can be obtained. When the radar is at an ideal
observation position, and the parameters x, y, and z of the
observation position are known, and the base-space matrix
of single observation position is constructed based on this
parameter, the range coordinates of the estimated results x̂′
are shown as follows:

x̂′ �
����������

r2 − y2 − z2
􏽱

− x.
(9)

When the real radar observation position changes, and
the real observation position parameters are unknown, if the
ideal position parameters are still used in base-space matrix,
the range coordinates of the estimated results x̂″ with error
are shown as follows:

x̂″ �

���������������

re( )2 − (y)2 − (z)2
􏽱

− x.
(10)

Compared to one-dimensional range image of the ideal
echo data, if the base-space matrix is constructed with ideal
parameters, each pulse in one-dimensional range image of
the nonideal echo data will have a translation, as shown in
Figure 2. 0erefore, based on minimum discrimination
between the imaging results with error parameters and the
ideal imaging results, the accurate error parameters can be
calculated by iterating.

A certain observation position is selected as the reference
position for accurate estimation and the ideal imaging result
is obtained. 0en by estimating the error parameters of all
other observation positions, the accurate radar motion path
can be obtained, as shown in Figure 3.

Using the sparse reconstruction method of joint error
parameters for accurate reconstruction has two problems.
0e first problem is that the time cost is extremely high, and
the second problem is that the results of sparse recon-
struction are generally discrete and sparse, thereby causing
difficulty in solving the maximum matching value through
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optimisation search such as gradient descent algorithm. To
solve these problems, the reconstruction model must be
modified. Equation (7) can be considered as the least-
squares estimation model, and the resulting estimator can be
expressed as

I � A(ε)HA(ε)􏼐 􏼑
− 1
A(ε)s. (11)

To use equation (11) directly to estimate the scene, a
necessary requirement is that the matrix A(ε)HA(ε) is in-
vertible. However, A(ε)HA(ε) is usually irreversible. 0us,
equation (11) is a sick equation that cannot be directly
solved. As (A(ε)HA(ε))− 1 does not exist, to approximately
solve equation (11), we can use A(ε)HA(ε) to cancel out the
ill-posed term, namely, bymultiplying both sides of equation
(11) by A(e)HA(e) [29], as shown in the following equation:

A(ε)HA(ε)I � A(ε)HA(ε) A(ε)HA(ε)􏼐 􏼑
− 1
A(ε)s. (12)

0e solution 􏽢I′ obtained by this method is
􏽢I′ � A(ε)HA(ε)I � A(ε)s. (13)

As shown in equation (13), 􏽢I′ is equivalent to the pro-
jection of the echo signal A on the base-space matrix.
0erefore, through this base-space projection method, the
approximate solution of the backscattering sparse of the
target scattering point can be obtained. A(ε)HA(ε) is a
matrix with sinc response [29]; thus, the base-space pro-
jection matrix is a reconstruction result with sinc response.
Sparse reconstruction is replaced by a base-space projection
matrix and is expressed as

􏽢I′(v) �〈A v, εv( 􏼁m×MN, s(v)m×1〉 � 􏽘
M

i�1
􏽘

N

j�1
〈zi,j v, εv( 􏼁, s(v)〉

� 􏽘
K

k�1
sin c xk

′ − Δx − Δδ( 􏼁.

(14)

Although the reconstruction result of equation (14) is
not an exact solution, its peak represents the same distance
direction delay as the exact solution.

0e preceding analysis shows that the deviation of the
reconstructed signals from different sampling positions is
directly dependent on the error of the sampling positions.
However, the accuracy positions of the scattering points
within the imaging scene are unknown in the real imaging
process. 0us, we cannot directly determine the offset. First,
we have to calculate the accurate error of the reference
position through the reconstruction method of joint error
parameters. 0en, we need to consider the result as the
benchmark and determine the accurate error of other ob-
servation sampling positions through the offset of imaging
results.

Based on the assumption that the first observation po-
sition is the reference position, the precise observation
position parameters are substituted into equation (14) to
solve the base-space projection matrix. 0en, the matching
degree between the base-space projection result at the vth
observation position and the base-space projection result at
the reference position is
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Figure 3: Process of position estimation method based on reference position coordinate and relative error.
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C(v) �〈 􏽢I′(1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
􏽢I′(v)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌〉. (15)

As the base-space projection matrix is a function with
sinc response, it has a side effect with two problems. Firstly,
side processing reduces the convergence speed of the op-
timisation algorithm. Secondly, when several scattering
points are close to one another, their side bars tend to
overlap and accumulate, thereby resulting in a side bar with
higher energy, as shown in Figure 4. As can be seen from
equation (15), the matching degree is the superposition of
the energy of the reference and iterative results. Based on the
assumption that a scattering point of another reconstruction
result happens to be located in the high side office, the
calculation of the matching degree will have errors that will
affect the estimation result.0erefore, to further improve the
estimation speed and accuracy, the reference results are
Gaussian weighted with the accurate reconstruction results
of equation (8), as shown in the following:

W � 􏽘
K

k�1
σk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

− g− xk( )
2λ2 , (16)

where σk � |Ik(1)/ max(I(1))| is the normalised result of
I(1), g represents the imaging scene, and λ is a constant. 0e
reconstruction result of the reference position after Gaussian
weighting is

􏽢I″(1) � 􏽢I′(1) · W � 􏽘
K

k�1

􏽢I′k(1) × σk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

− g− xk( )/2ρ2 . (17)

0e side lobes in the Gaussian weighted base-space
projection matrix are suppressed to eliminate the influence
of false scattering points on position estimation. To solve the
precise observation sampling position, the maximum
matching degree can be used as the criterion. Suppose the
optimisation estimation model can be expressed as

ε(v) � G(ε, s(v)) � argmin
ε

− 〈􏽢I″(1), 􏽢I′(v)〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

� argmin
ε

􏽘

K

k�1
− 􏽢I′k(v) × 􏽢I′k(1) × σk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

− g− xk( )/2ρ2⎧⎨

⎩

⎫⎬

⎭.

(18)

0e optimisation function of equation (18) is shown in
Figure 5. 0e wide range of solving methods includes trial
point, Newton, and quasi-Newton methods. 0e conver-
gence rate of the heuristic method is slow, while the cal-
culation of Newton’s method is complex and the
optimisation stability is not high. In this study, the BFGS
method is used to calculate the optimal solution of equation
(18), which is set as the current iteration position. 0en, the
next iteration position is

δρ+1 � δρ + aρηρ, (19)

where aρ is the step size. To ensure that the optimal solution
is not excluded, aρ must meet theWolfe–Powell criterion. ηρ
is the step number, which is calculated from equation (19):

ηρ � − Hρ∇G ερ, s(v)􏼐 􏼑, (20)

where Hρ is a positive definite matrix:

Hρ � Hρ− 1 −
Hρ− 1αρ− 1αT

ρ− 1Hρ− 1

αT
ρ− 1Hρ− 1αρ− 1

+
βρ− 1β

T
ρ− 1

βT
ρ− 1αρ− 1

, (21)

where αρ− 1 � ερ − ερ− 1, βρ− 1 � ∇C′(v, δρ) − ∇C′(v, δρ− 1).
0e error parameters ε(δx(v), δy(v), δz(v)) of the vth

observation sampling position are solved by the BFGS
method. Based on the assumption that the reference position
is the first observation sampling position, the accurate es-
timation result of each observation sampling position is

􏽢x(v) � 􏽢x(1) + δx(v),

􏽢y(v) � 􏽢y(1) + δy(v),

􏽢z(v) � 􏽢z(1) + δz(v), v � 2, 3, ..., n,

⎧⎪⎪⎨

⎪⎪⎩
(22)

(􏽢x(1), 􏽢y(1), 􏽢z(1)) � argmin
ε

‖s1 − A1(ε)I‖
2
2 is the precise

observation and sampling location solved by the sparse
reconstruction method with joint parameter errors.

4. Experiment Simulation and Verification

4.1. Experiment and Analysis of Computer Simulation Target.
0e 2D geometric distribution of the simulated target is
shown in Figure 6, where the number of scattered points is
28. 0e size of the imaging scene is 5× 5m, and the ideal
experimental parameters are set as follows: the transmitting
signal carrier frequency is 15GHz, the bandwidth is 3GHz,
the synthetic aperture length is 10m, the distance between
the center of the imaging scene and the radar moving track is
100m, and the radar antenna height is 0m. In generating
simulation data, certain errors were set for all three coor-
dinate components, and the search interval of 1m was taken
for all three coordinates in the experiment. Figure 7 shows
the estimation results of the proposed method for the three
position coordinates. 0e blue line in the figure indicates the
theoretical coordinate value, the black line represents the
actual coordinate value containing errors, and the red line
indicates the estimated result. 0e figure shows that the
method proposed in this paper can accurately estimate the
precise coordinates of the radar accurately at each obser-
vation position.

Figure 8 shows the comparison of orthogonal matching
pursuit (OMP) reconstructed images with different
methods. Figure 8(a) presents the reconstruction results of
the base-space matrix constructed with ideal experimental
parameters. Figure 8(b) uses the estimated observation
position parameters, where the target scattering point has
been accurately reconstructed. To compare the results of the
proposed method with those of other mature methods,
Figures 8(c)–8(f), respectively, adopt the point-by-point
estimation method of joint error parameters (denoted as
point-by-point method), the subaperture estimation method
of joint error parameters (denoted as subaperture method),
the phase error correction method for approximated ob-
servation-based compressed sensing radar imaging (denoted
as phase error correction method), and the proposed
method to process the simulation data through the OMP
algorithm. Under the error condition set in this study, the
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point-by-point method and the proposed method can ef-
fectively reconstruct the target, and the subaperture method
and the phase error correction method can also reconstruct
the target, but there is a little position deviation of some
scattering points in imaging results.

To compare the four methods’ imaging accurately, the
quantitative analysis of their processing results is reported in
the first and second rows of Table 1. 0e table indicates that
the estimation accuracy of the proposed method is slightly
lower than that of point-by-point method but higher than
that of subaperture method and phase error correction
method. 0e OMP reconstruction result of the proposed
method is basically the same as that of point-by-point
method but higher than that of subaperture method and
phase error correction method.

To compare the four methods’ computation com-
plexity, set the size of observation matrix to M × N, set the
number of observation positions to L, and set the number
of subapertures to U − 1(U≪L). 0e computation com-
plexity of sparse reconstruction is O[MNlog(MN)]. As-
sume that the computation complexity of search algorithm
in four methods is O(H), and the computational com-
plexity of the four methods is reported in the third row of
Table 1. 0e point-by-point method has the highest
computational complexity; through some approximation,
the computational complexity of subaperture method and
phase error correction method is lower than point-by-
point method. 0e proposed method has the lowest
computational complexity, because we use base-space
projection matching to replace the sparse reconstruction

Estimated location
Real location
Ideal location

105 110 115

99.98

99.99

99.95

100

100.05

Lo
ca

tio
n

100 15050 200 2500
Azimuth sampling point

(a)

Estimated location
Real location
Ideal location

140 145 150 1551.2
1.4
1.6
1.8

2
2.2

–6

–4

–2

0

2

4

6

8

Lo
ca

tio
n

100 15050 200 2500
Azimuth sampling point

(b)

Estimated location
Real location
Ideal location

94 98 102

0.21

0.215

0.22

–0.2

0

0.2

0.4

Lo
ca

tio
n

100 150 25050 200
Azimuth sampling point

(c)
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in error estimation, which could greatly reduce the amount
of computation.

To compare the speed of four methods further, the
calculation time of four methods is reported in the fourth
row of Table 1. In this experiment, the size of the simulation
data is 256× 256, the grid size of the imaging scene is
101× 101, the number of samples in the three position
coordinates to be searched is 51, and the computer processor
used for data processing is Intel Core I7-8700K. On the data
processing time, point-by-point method takes about 20
times as long as the proposed method, subaperture method
takes about 5 times as long as the proposed method, and
phase error correction method takes about 8 times as long as
the proposed method. 0e reason for the long calculation
time of these three methods is that the point-by-point
method, the subaperture method, and the phase error
correction method all need the accurate sparse recon-
struction in each iterative calculation.

To test the effects of the four methods in a noisy en-
vironment, different degrees of white noise were added to
the simulation data. 0e estimation errors of the four

methods vary with the noise level, as shown in Figure 9. As
the figure shows, the estimation error of the four methods
between 0 dB and –10 dB has a small change, but the es-
timation errors of point-by-point method and subaperture
method are more obvious than that of the method pro-
posed in this paper. 0e estimated errors of the four
methods start to show a relatively obvious increase
between –10 dB and –15 dB, but the increase range of the
estimated errors of the proposed method is still less than
that of the point-by-point method, subaperture method,
and phase error correction method. Figure 10 shows the
OMP image reconstruction with the addition of –5 dB
Gaussian white noise. When the noise is –5 dB, the effects
of subaperture method, point-by-point method, and phase
error correction method are not significantly different.
Figure 11 shows the OMP image reconstruction with the
addition of –10 dB Gaussian white noise. When the noise is
–10 dB, the effects of the point-by-point method, sub-
aperture method, and phase error correction method de-
crease considerably, but the effect of the proposed method
only shows a small change, which indicates that the
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Figure 8: OMP reconstruction results with different location estimationmethods. (a)0e target model. (b)0e result with ideal parameters.
(c) 0e result with point-by-point method estimated parameters. (d) 0e result with subaperture method estimated parameters. (e) 0e
result with phase error correction method estimated parameters. (f ) 0e result with proposed method estimated parameters.

Table 1: Performance comparison of four methods.

Point-by-point method Subaperture method Phase error correction method Proposed method
MSE of location 1.014e − 04 4.382e − 04 2.632e − 04 1.298e − 04
MSE of imaging result 1.232e − 05 3.612e − 05 1.936e − 05 1.359e − 05

Computation complexity O[3LHMN log(MN)] O[3UHMN log(MN)] O[LHMN log(MN)] O
3HMN +

3HMN log(MN)
􏼢 􏼣

Elapsed time 11768.25 s 2520.67 s 4122.53 s 516.19 s
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proposed method is highly robust in the noisy environ-
ment. 0e reason is that the point-by-point method,
subaperture method, and phase error correction method

rely on complete sparse reconstruction, and the sparse
reconstruction is sensitive to noise, while the base-space
projection in this method is less sensitive to noise.
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Figure 10: Comparison of OMP reconstruction results of four methods in –5 dB Gaussian white noise environment. (a)0e result of point-
by-point method. (b) 0e result of subaperture method. (c) 0e result of phase error correction method. (d) 0e result of the proposed
method.
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Figure 9: Relationship between estimated accuracy of four methods and noise level.
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4.2. Experiment and Analysis ofMeasured Data inMicrowave
Anechoic Chamber. To verify the engineering feasibility of
the proposed method, we built a SAR semi-physical simu-
lation system in the microwave anechoic chamber. Figure 12
shows the overall system framework, including the sampling
frame, vector network analyser, sending and receiving an-
tenna, and target scene. 0e vector network analyser and
antenna move along the guide rail for radar aperture

synthesis, and the target consists of five metal balls. 0e
experimental parameters are reported in Table 2.

Due to the ideal test conditions of the anechoic chamber,
no position error occurs in the antenna movement process.
To test the proposed method, the known ideal parameters
are not used in the data processing, but a certain range of
parameters are set for accurate estimation. Set the search
range of x coordinate to be 1.95–2.05m, y coordinate to be
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Figure 11: Comparison of OMP reconstruction results of four methods in –10 dB Gaussian white noise environment. (a) 0e result of
point-by-point method. (b)0e result of subaperture method. (c)0e result of phase error correctionmethod. (d)0e result of the proposed
method.
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Figure 12: Microwave anechoic chamber test system framework.
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− 0.5–0.5m, and z coordinate to be − 0.1–0.1m. Different
from the echo data of computer simulation, the azimuthal
sampling of the microwave anechoic chamber experimental
data contains multiple synthetic apertures. 0erefore, the
aperture division is adopted in the processing, and the

reference location is selected for each aperture to estimate.
Figure 13 shows the position estimation results of the three
coordinates. Although a small local fluctuation is observed,
the estimated results are basically consistent with the overall
actual position. Figure 14(a) shows the OMP reconstruction

Table 2: Parameters of microwave anechoic chamber SAR simulation system.

Parameter Unit Value
Minimum frequency GHz 8
Maximum frequency GHz 12
Frequency space GHz 0.04
Scan length m 1
Scanning interval mm 20
Antenna height m 0
Test distance m 2

Real location
Estimated location
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2
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Figure 13: Estimation results of observation position. (a) x coordinates. (b) y coordinates. (c) z coordinates.
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Figure 14: Comparison of OMP imaging results. (a) With ideal parameters. (b) With estimated parameters.
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result with ideal parameters, and Figure 14(b) indicates the
OMP reconstruction result with estimated parameters.

If a part of echo data is missing and the locations of the
missing data are unknown, the proposed method can esti-
mate the unknown of the lost data. 0e real missing loca-
tions and the estimated missing locations by the proposed
method are shown in Figure 15; the proposed method can
accurately estimate the missing locations. To construct the
base-space matrix for unknown missing locations’ data, it is
assumed that the data is sampled at equal intervals between
− 0.5 and 0.5, and the OMP reconstruction results are shown
in Figure 16(a). 0e figure indicates that scattering points of
the reconstructed image are defocused. To estimate the exact
locations of the missing data, the azimuth positions (y co-
ordinate) of the echo signal are estimated, and then the
locations of the missing data are obtained through com-
parison with the ideal azimuth position parameters. 0e
experimental simulation results show that the locations of
the missing data estimated by the proposed method are the
same as the experimental setting. 0e OMP reconstruction
results are presented in Figure 16(b). 0e figure shows that
the positions of the five metal balls are all accurately
estimated.

5. Conclusion

In this study, a reference position and relative error strategy
is used to estimate observation position. 0e base-space
projection matrix of the observation position is calculated by
constructing a single azimuth observation matrix with error
parameters. 0e matching degree between the reference
position and estimated position is used as a criterion to
calculate the relative error. 0en the parameters of each
observation position are obtained by adding the relative
error to the reference position. 0is method is based on the
premise of maintaining high estimation accuracy. Compared
with the existing method, the proposed method greatly
improves the operation efficiency greatly, which has better
antinoise performance. 0e validity and engineering feasi-
bility of the proposed method are verified by data obtained
from computer simulation and microwave anechoic
chamber simulation.
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