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In this paper, an improved propagator method (PM) is proposed by using a two-parallel array consisting of two uniform large-
spacing linear arrays. Because of the increase of element spacing, the mutual coupling between two sensors can be reduced. Firstly,
two matrices containing elevation angle information are obtained by PM. ,en, by performing EVD of the product of the two
matrices, the elevation angles of incident signals can be estimated without direction ambiguity. At last, the matrix product is used
again to obtain the estimations of azimuth angles. Compared with the existed PM algorithms based on conventional uniform two-
parallel linear array, the proposed PM algorithm based on the large-spacing linear arrays has higher estimation precision. Many
simulation experiments are presented to verify the effect of proposed scheme in reducing the mutual coupling and improving
estimation precision.

1. Introduction

Estimating the directions of arrival (DOA) of spatial signals
by sensors array has widespread application in wireless
communication [1] and multiple input multiple output
(MIMO) radar [2]. Two-dimensional (2D) DOA estimation
technology can obtain more angle information of spatial
signals, and it has higher practical significance than one-
dimensional (1D) DOA estimation technology. L-shaped
array and parallel array are frequently used array con-
structions for 2D DOA estimation. ,e L-shaped array
consists of two orthogonal linear arrays, based on which
many effective 2D DOA estimation algorithms [3, 4] were
proposed.

Being different from the L-shaped array, the parallel
array consists of multiple parallel linear arrays and has more
diverse array geometries. Many 2D DOA estimation algo-
rithms [5–10] were designed based on parallel arrays. In [5],
a DOA matrix algorithm was proposed to obtain the esti-
mations of the elevation and azimuth angles by using a two-
parallel linear array. In [6], the polynomial rooting tech-
nology was used for 2D DOA estimation based on a two-

parallel linear array. In [7], a rank-reduction algorithm
based on a three-parallel linear array has presented for 2D
DOA estimation. However, the three algorithms need to
perform eigenvalue decomposition (EVD) or singular value
decomposition (SVD) of covariance matrix. ,e propagator
method (PM) [8–13] gains extensive attention for the lower
computational complexity because it does not need to
perform EVD of covariance matrix. In [8], authors used PM
algorithm to estimate 2D DOA by multiple parallel linear
arrays. In [9], a modified 2D PM algorithm based on two-
parallel linear array was proposed for improving estimation
precision. In [10], another modified 2D PM algorithm based
on three-parallel linear array was proposed for reducing
computational complexity. In [11], PM algorithm was used
with the parallel factor analysis (PARAFAC) model to es-
timate the 2D DOA, where the PARAFAC model is solved
by circulative iteration.

But we should notice that all the algorithms [5–11] are
based on uniform array, the interval of adjacent sensors
cannot exceed half-wavelength of the incident signal. In fact,
mutual coupling inevitably exists between two sensors,
particularly for the closed two sensors. Aiming to extend
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array aperture and reduce mutual coupling, some nonuni-
form sparse array constructions such as nested array [14–17]
and coprime array [18–20] were proposed. Nested array
consists of multiple subarrays with different intervals.
Coprime array consists of two uniform linear arrays, and the
intervals of two subarrays are relevant to two mutual prime
integers. Compared with the uniform array, nonuniform
sparse arrays have extendable array aperture and higher
degree of freedom. For the sparse arrays [14–19], the interval
of adjacent sensors can exceed half a wavelength of the
incident signal which can reduce the mutual coupling.
Despite all these, in order to avoid direction ambiguity, the
minimum element spacing of these sparse arrays still cannot
exceed half-wavelength of the incident signal. Hence, it is
difficult to eliminate mutual coupling completely. In [20],
authors proposed an off-grid DOA estimation algorithm based
on an unfolded parallel coprime array. ,e mutual coupling of
array can be reduced to a great extent. In addition, for non-
uniform sparse arrays, constructing extended covariance matrix
is a universal method to exploit the potential virtual sensors. But
the computational complexity of the DOA estimation algo-
rithms is closely related to the order of covariance matrix. ,is
method can improve performance of angle estimation, but also
can increase computational complexity.

In this paper, we propose a two-parallel linear array
consisting of two uniform large-spacing linear arrays. ,e
element spacing is q units for one linear array and q+ 1 units
for the other linear array, where q is not smaller than 2.
Hence, the mutual coupling in one linear array can be
eliminated when q is selected properly. For avoiding di-
rection ambiguity, an improved 2D PM algorithm also is
proposed to estimate the elevation and azimuth angles.
Compared with the PM [8–10], the proposed algorithm has
two obvious advantages: (1) the proposed algorithm can
reduce the mutual coupling considerably due to the use of
large-spacing linear array; (2) the proposed algorithm has
higher estimation precision than PM [8–10], even if the
mutual coupling between sensors is ignored.

2. Array Received Model

Consider that two uniform large-spacing parallel arrays are
located on the xoz plane, as shown in Figure 1 ,e coor-
dinates of the N+ 1 sensors on z axis are 0, 0, 0{ },
0, 0, qd , . . . , 0, 0, qNd , where d � (λ/2), λ is the wave-
length of incident signal, and q(q<N) is any integer no less
than 2. ,e coordinates of the N sensors for the other
subarray are d, 0, 0{ }, d, 0, (q+1)d , . . .,
d, 0, (q + 1)(N − 2)d , d, 0, (q + 1)(N − 1)d . Figure 2
shows the construction of a 17-element large-spacing
two-parallel linear array with q= 2, and Figure 3 shows the
construction of a traditional 17-element two-parallel linear
array [8, 9].

If we assume that mutual coupling exists between two
sensors with the interval no further than d, we can see that
mutual coupling only exists in three pairs of sensors from
Figure 2. Obviously, from Figure 3, we can find that the
coupling effect exists between any adjacent sensors for the
conventional two-parallel linear array.

Suppose that K(K<N) far-field, uncorrelated, nar-
rowband signals received by the proposed array. We define
the elevation angle and azimuth angle of the kth signal as θk

and βk, respectively. Let received vectors by the two large-
spacing linear arrays be z(t) � [z1(t), z2(t), . . . ,

zN+1(t)]T ∈ C(N+1)×1, and x(t) � [x1(t), x2(t), . . . ,

xN(t)]T ∈ CN×1, respectively. If we ignore the effect of
mutual coupling, z(t) and x(t) can be written as [6, 10]

z(t) � A(θ)s(t) + nz(t),

x(t) � B(θ)Φ(β)s(t) + nx(t),
t � 1, 2, . . . , T, (1)

where θ� [θ1, . . . ,θK], β� [β1, . . . ,βK], A(θ) � [a(θ1),
. . . ,a(θK)] ∈C(N+1)×K, a(θk) � [1, e− (j2πqdcosθk/λ), . . . ,

e− (j2πq(N− 1)dcosθk/λ), e− (j2πqNdcosθk/λ)]T ∈C(N+1)×1, B(θ) �

[b(θ1), . . . ,b(θK)] ∈CN×K, b(θk) � [1, e− (j2π(q+1)dcosθk/λ),

. . . , e− (j2π(q+1)(N− 2)dcosθk/λ), e− (j2π(q+1)(N− 1)dcosθk/λ)]T ∈CN×1,
Φ� diag e− (j2πdcosβ1/λ), e− (j2π dcosβ2/λ), . . . , e− (j2πdcosβK/λ)},
nz(t) � [nz,1(t),nz,2(t), . . . ,nz,N+1(t)]T ∈C(N+1)×1, and
nx(t) � [nx,1(t),nx,2(t), . . . ,nx,N(t)]T ∈CN×1 are white
Gaussian noise vectors received by the two linear arrays.

Let y(t) �
z(t)

x(t)
 , then we have

y(t) �
A(θ)

B(θ)Φ(β)
 s(t) +

nz(t)

nx(t)
 . (2)

If we assume that mutual coupling exists in array, y(t)

can be expressed as [19, 20]

y(t) � M
A(θ)

B(θ)Φ(β)
 s(t) +

nz(t)

nx(t)
 , (3)
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Figure 1: Construction of proposed two-parallel linear array.
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where M � (mij)(2N+1)×(2N+1) is the mutual coupling matrix
and mij is the mutual coupling coefficient between the ith
sensor and the jth sensor. Here, we let the ith sensor be the
ith sensor of the first array for i≤N + 1 and be the (i − N− 1)
th sensor of the second array for i>N + 1.

,e total mutual coupling of an array can be reflected in
coupling leakage [17] as

CL(M) �
‖M − M‖F

‖M‖F

, (4)

where M � ( mij)(2N+1)×(2N+1) with
mij � 0 i≠ j

mij � mij i � j
 , and

‖·‖F is F-norm.
According to (4), it is easy to know that the mutual coupling

of proposed array is smaller than the traditional parallel array
[8–11] and larger than unfolded parallel coprime array [20]. But
just for the structural feature, the unfolded parallel coprime array
cannot be used directly in traditional algorithms such as PM
algorithm and estimation of signal parameters via rotational
invariance technique (ESPRIT) algorithm [21].

3. Description of Improved PM Algorithm

In this section, we introduce the improved PM algorithm based
on the proposed array and the algorithm description is based on
(2).

Denote the manifold matrix of the whole array as

C �
A(θ)

B(θ)Φ(β)
 . (5)

,ere must be a propagator matrix P ∈ CK×(2N+1− K)

satisfying [8–10]
C2 � PHC1, (6)

where C1 consists of the first K rows of matrix C and C2
consists of the last 2N+ 1 − K rows of matrix C.

Denote the covariance matrix R � E[y(t)yH(t)], and it
can be partitioned as R � R1 R2 , where R1 ∈ C(2N+1)×K

and R2 ∈ C(2N+1)×(2N+1− K).
,en, R can be estimated by R � (1/T) 

T
t�1 y(t)yH(t),

and P can be estimated by P � (R
H

1
R1)

− 1R
H

1
R2 as [8–10],

where T is the number of snapshots.
Construct a block matrix Po ∈ C(2N+1)×K:

Po �
IK

PH
  �

Pz

Px

 , (7)

where Pz is the firstN+ 1 rows of Po and Px is the lastN rows
of Po.

According to (7), we can obtain
PoC1 � C. (8)

Combining (7) with (8), we can know

Pz � A(θ)C− 1
1 ,

Px � B(θ)Φ(β)C− 1
1 .

⎧⎨

⎩ (9)

Denote A1(θ) as the first N rows of matrix A(θ), A2(θ)

as the last N rows of matrix A(θ), B1(θ) as the first N − 1
rows of matrix B(θ), and B2(θ) as the last N − 1 rows of
matrix B(θ), then we have
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Figure 2: Two uniform large-spacing parallel linear arrays (q� 2).
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Figure 3: Two uniform parallel linear arrays [8, 9].

International Journal of Antennas and Propagation 3



P1 � A1(θ)C− 1
1 ,

P2 � A2(θ)C− 1
1 ,

P3 � B1(θ)Φ(β)C− 1
1 ,

P4 � B2(θ)Φ(β)C− 1
1 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

where P1is the firstN rows of Pz, P2 is the lastN rows of Pz, P3
is the first N − 1 rows of Px and P4 is the last N − 1 rows of Px.

Denote the matrix Ψ1(θ) � diag e− (j2πqdcosθ1/λ),

e− (j2πqdcosθ2/λ), . . . , e− (j2πqdcosθK/λ)}, Ψ2(θ) �

diag e− (j2π(q+1)dcosθ1/λ), e− (j2π(q+1) d cos θ2/λ), . . . ,

e− (j2π(q+1)dcosθK/λ)}, and Ψ(θ) � diag e− (j2π dcosθ1/λ),

e− (j2πdcosθ2/λ), . . . , e− (j2πdcosθK/λ)}, then we can know

P+
2P1 � C1Ψ− 1

1 (θ)C− 1
1 ,

P+
3P4 � C1Ψ2(θ)C− 1

1 .

⎧⎨

⎩ (11)

According to formula (11), we can get

P+
2P1P

+
3P4

� C1Ψ
− 1
1 (θ)C− 1

1 C1Ψ2(θ)C− 1
1

� C1Ψ
− 1
1 (θ)Ψ2(θ)C− 1

1

� C1Ψ(θ)C− 1
1 .

(12)

According to formula (12), we have

PzP
+
2P1P

+
3P4

� A(θ)C− 1
1 C1Ψ

− 1
1 (θ)C− 1

1 C1Ψ2(θ)C− 1
1

� A(θ)Ψ(θ)C− 1
1 ,

(13)

PxP
+
2P1P

+
3P4

� B(θ)Φ(β)C− 1
1 C1Ψ

− 1
1 (θ)C− 1

1 C1Ψ2(θ)C− 1
1

� B(θ)Φ(β)Ψ(θ)C− 1
1 .

(14)

Denote two vectors e1s ∈ Cq×1(s � 0, 1, . . . , q − 1) and
e2s ∈ C(q+1)×1(s � 0, 1, . . . , q), where the (s+ 1)th compo-
nent of e1s or e2s is 1, and all the other elements are zeros.
,en, we can construct a q(N + 1) × (N + 1) matrix E1s �

IN+1 ⊗ e1s and a N(q + 1) × N matrix E2s � IN⊗e2s.
Using formulae (13) and (14), we can obtain twomatrices

Pnewz � 

q− 1

s�0
E1sPz P+

1P2P
+
4P3( 

s
� A(θ)C− 1

1 ,

Pnewx � 

q

s�0
E2sPx P+

1P2P
+
4P3( 

s
� B(θ)Φ(β)C− 1

1 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where A(θ) � [a(θ1), . . . , a(θK)] ∈ Cq(N+1)×K,
a(θk) � [1, e− (j2πdcosθk/λ), . . . , e− (j2π(q(N+1)− 1)dcosθk/λ)]T ∈
Cq(N+1)×1, B(θ) � [b(θ1), . . . , b(θK)] ∈ CN(q+1)×K and
b(θk) � [1, e− (j2πdcosθk/λ), . . . , e− (j2π[(q+1)N− 1]dcosθk/λ)]T ∈
CN(q+1)×1.

Denote a matrix

Pnewx
′ � Pnewx(1: q(N + 1), :), (16)

where Pnewx(1: q(N + 1), : ) consists of the first q(N+ 1)
rows of Pnewx.

Combining (15) with (16), we have

P+
newzPnewx
′ � C1Φ(β)C− 1

1 . (17)

Performing EVD of P+
2P1P+

3P4 and P+
newzPnewx
′ can ob-

tain the eigenvalues of the two matrices. Let the eigenvalues
of P+

2P1P+
3P4 and P+

newzPnewx
′ be λ1, λ2, . . . , λK and

c1, c2, . . . , cK, then we can get the estimation of θk, βk as

θk � arccos −
λangle λk( 

2π d
 , (18)

βk � arccos −
λangle ck( 

2π d
 . (19)

Using the pairingmethod [8], we can get the matched 2D
DOA estimations.

According to (14), we can know that the row number of
Pnewz and Pnewx

′ are larger than Pz and Px. Hence, the
construction of Pnewz and Pnewx

′ also can see the process of
adding the virtual sensors of array. For traditional non-
uniform array, spatial smoothing algorithm [14] is the
widely used method to obtain extended covariance matrix.
And DOA is estimated by dealing with the extended co-
variance matrix in some existing algorithm. Certainly, this
process is different from the proposed algorithm.

4. Complexity Analysis

In this section, the complexity of proposed algorithm is
compared with PM [8–10]. Suppose that the two-parallel
array consisting of an (L+ 1)-element linear array and an L-
element linear array for the proposed algorithm and PM
[8, 9]. Consider an (L+ 1)-element linear array and two L/2-
element linear arrays for PM [10]. Assume that L≪T, so we
only consider the complexity of main step for four PM
algorithms. Both the complexity of PM [9] and proposed PM
are O (2L + 1)2T . ,e complexity of PM [8] and PM [10] is
O (3L)2T  and O L(L + 1)T{ }, respectively. Figure 4 lists the
comparison of complexity versus snapshots with L� 10.
Figure 5 lists the comparison of complexity versus the
number of sensors with T� 500.

5. Simulation

In this section, we perform several groups of simulation
experiments to confirm the outstanding effectiveness of
proposed algorithm in reducing coupling and improving
estimation precision. In [9], authors have proved that the
accuracy of PM [8] is lower than PM [9], and complexity of
PM [8] is higher than PM [9]. Hence, we only compare the
proposed algorithm with PM [9, 10]. In the first three ex-
periments, assume that a 21-element two-parallel array is
used for the PM [9] and the proposed PM algorithm, and a
21-element three-parallel array are used for PM [10]. Sup-
pose that the elevation and azimuth angles of three signals
are [θ1, θ2, θ3] � [50∘, 60∘, 70∘] and
[β1, β2, β3] � [40∘, 50∘, 60∘]. Denote θkj and βkj as the esti-
mations of θk and βk in the jth experiment, respectively. For
the sake of fair comparison, only accurate pairing estimation
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results are given in the experiment.We denote the root mean
square error (RMSE) of 2D DOA estimation as

RMSE �

������������������������������

1
KJ



J

j�1


K

k�1

θkj − θk 
2

+ βkj − βk 
2

 




, (20)

where J= 1000 is the number of repeated experiments.
Firstly, we compare the estimation precision of three PM

algorithms in the absence of mutual coupling. Figure 6 lists
the comparison result of RMSE for three PM algorithms and
CRLB [9] versus SNR with 500 snapshots. Figure 7 lists the
comparison result of RMSE for three PM algorithms and
CRLB versus the number of snapshots with 5 dB SNR.
According to the results shown in the two figures, we can see
that the estimation precision of proposed PM and PM [9] is
far higher than the PM [10], and the estimation precision of
proposed PM is slightly higher than PM [9] under high SNR.

But the proposed PM algorithm shows significant advantage
when the SNR is lower, which can be seen from Figure 6.

Secondly, we compare the performance of the proposed
method for different q in the absence of mutual coupling.
Figure 8 lists the comparison result of RMSE versus SNR
with 500 snapshots. Figure 9 lists the comparison result of
RMSE for different q versus the number of snapshots with
5 dB SNR. ,e results in the two figures indicate that the
performance of the proposed method can be improved
slightly as the growth of q. Combining the results of Fig-
ures 8 and 9, we can know that the estimation precision can
be improved as the extension of aperture under the same
number of sensors. Since the row number of Pnewz, Pnewx

′ is
larger than Pz, Px, it is reasonable to find that the proposed
algorithm can improve the estimation precision.

,irdly, we compare the estimation performance of the
PM algorithm [9] and proposed algorithm in the appearance
of mutual coupling. We only suppose that the mutual
coupling effect only exist between two sensors with the
interval no further than d. Let c1 � 0.1ejπ be the mutual
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coupling coefficient between two sensors with interval d, and
c0 � 1 be the self-couple coefficient. Fix SNR at 15 dB and the
number of snapshots at 500. Figures 10 and 11 display 100
estimation results of proposed algorithm and PM algorithm
[9], respectively. It is clear to see that the estimation error of
proposed PM is smaller than the PM [9]. ,e results also can
prove the effectiveness of the proposed array in reducing
mutual coupling.

At last, we test the estimation performance of proposed
algorithm for more signals with small interval.

Assume that the proposed array consists of a 25-element
array and a 26-element array. Suppose that the elevation and
azimuth angles of fifteen signals are [θ1,θ2,θ3,θ4,θ5, θ6,θ7,
θ8,θ9,θ10,θ11,θ12,θ13,θ14,θ15] � [10∘,15∘,20∘,25∘,30∘,35∘,40∘,
45∘,50∘,55∘,60∘,65∘,70∘,75∘,80∘] and [β1,β2,β3,β4, β5,β6,β7,
β8,β9,β10,β11,β12,β13,β14,β15] � [5∘,10∘,45∘,25∘,20∘, 30∘,35∘,
40∘,15∘,75∘,55∘,50∘,65∘,70∘,60∘]. Fix SNR at 20dB and the
number of snapshots at 1000. Figure 12 displays 100
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Figure 10: DOA estimation results of the proposed method with
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estimation results of the proposed algorithm. ,e result in
this figure can show that the proposed algorithm can dis-
tinguish many signals with small interval, but it needs a large
number of sensors.

6. Conclusion

In this paper, we have proposed an improved 2D PM al-
gorithm with a two-parallel array consisting of two uniform
linear arrays, the spacing of which is larger than half a
wavelength of the incident signal. ,e proposed algorithm
has higher estimation precision than many existed 2D PM
algorithms. Due to the large-spacing of proposed array,
mutual coupling can be reduced. ,e proposed algorithm
has better performance than the traditional algorithm under
mutual coupling. But because no decoupling algorithm is
used for the proposed algorithm, the error of the DOA
estimate is still significant under mutual coupling. In future
research, according to the proposed two-parallel array, we
will work for presenting the decoupling algorithm like
[22, 23].

Data Availability

In this paper, we use simulation to test the performance of
proposed algorithm. Hence, all data are generated by sim-
ulation. ,e simulation data used to support the findings of
this study are available from the corresponding author upon
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Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (51877015 and U1831117), the Co-
operation Agreement Foundation by the Department of
Science and Technology of Guizhou Province of China (LH
[2017]7320 and LH[2017]7321), the Innovation Group
Major Research Program Funded by Guizhou Provincial
Education Department (KY[2016]051), the Foundation of
Top-notch Talents by Education Department of Guizhou
Province of China (KY[2018]075), and PhD Research
Startup Foundation of Tongren University (trxyDH1710).

References

[1] J. Su, Z. Sheng, V. C. M. Leung, and Y. Chen, “Energy efficient
tag identification algorithms for RFID: survey, motivation and
new design,” IEEE Wireless Communications, vol. 26, no. 3,
pp. 118–124, 2019.

[2] J. Shi, G. Hu, X. Zhang, F. Sun, W. Zheng, and Y. Xiao,
“Generalized co-primeMIMO radar for DOA estimation with
enhanced degrees of freedom,” IEEE Sensors Journal, vol. 18,
no. 3, pp. 1203–1212, 2018.

[3] S. Liu, L. Yang, D. Li, and H. Cao, “Subspace extension al-
gorithm for 2D DOA estimation with L-shaped sparse array,”

Multidimensional Systems and Signal Processing, vol. 28, no. 1,
pp. 315–327, 2017.

[4] N. Tayem andH.M.Kwon, “L-shape 2-dimensional arrival angle
estimation with propagator method,” IEEE Transactions on
Antennas and Propagation, vol. 53, no. 5, pp. 1662–1630, 2005.

[5] Q. Y. Yin, L. H. Zou, and R. W. Newcomb, “A high resolution
approach to 2-D signal parameter estimation-DOA matrix
method,” Journal of China Institute of Communications,
vol. 12, no. 4, pp. 1–7, 1991.

[6] T. Xia, Y. Zheng, Q. Wan, and X. Wang, “Decoupled esti-
mation of 2-D angles of arrival using two parallel uniform
linear arrays,” IEEE Transactions on Antennas and Propa-
gation, vol. 55, no. 9, pp. 2627–2632, 2007.

[7] Y. Zhang, X. Xu, Y. A. Sheikh, and Z. Ye, “A rank-reduction
based 2-D DOA estimation algorithm for three parallel
uniform linear arrays,” Signal Processing, vol. 120, pp. 305–
310, 2016.

[8] Y. Wu, G. Liao, and H. C. So, “A fast algorithm for 2-D
direction-of-arrival estimation,” Signal Processing, vol. 83,
no. 8, pp. 1827–1831, 2003.

[9] J. Li, X. Zhang, and H. Chen, “Improved two-dimensional
DOA estimation algorithm for two-parallel uniform linear
arrays using propagator method,” Signal Processing, vol. 92,
no. 12, pp. 3032–3038, 2012.

[10] L. Yang, S. Liu, D. Li, H. L. Cao, and Q. P. Jiang, “Fast 2D
DOA estimation algorithm by an array manifold matching
method with parallel linear arrays,” Sensors, vol. 16, no. 3,
p. 274, 2016.

[11] N. Tayem, K. Majeed, and A. A. Hussain, “Propagator method
using PARAFAC model for two dimensional source locali-
zation,” Radioengineering, vol. 27, no. 3, pp. 770–775, 2018.

[12] S. Marcos, A. Marsal, and M. Benidir, “,e propagator
method for source bearing estimation,” Signal Processing,
vol. 42, no. 2, pp. 121–138, 1995.

[13] S. Liu, L. Yang, J. H. Huang, and Q. P. Jiang, “Generalization
propagator method for DOA estimation,” Progress in Elec-
tromagnetics Research M, vol. 37, pp. 119–125, 2014.

[14] M. Yang, A. M. Haimovich, X. Yuan, L. Sun, and B. Chen, “A
unified array geometry composed of multiple identical sub-
arrays with hole-free difference coarrays for underdetermined
DOA estimation,” IEEE Access, vol. 6, pp. 14238–14254, 2018.

[15] C.-L. Liu and P. P. Vaidyanathan, “Super nested arrays: linear
sparse arrays with reduced mutual coupling—part I: funda-
mentals,” IEEE Transactions on Signal Processing, vol. 64,
no. 15, pp. 3997–4012, 2016.

[16] C.-L. Liu and P. P. Vaidyanathan, “Super nested arrays: linear
sparse arrays with reduced mutual coupling—part II: high-
order extensions,” IEEE Transactions on Signal Processing,
vol. 64, no. 16, pp. 4203–4217, 2016.

[17] J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented nested
arrays with enhanced DOF and reduced mutual coupling,”
IEEE Transactions on Signal Processing, vol. 65, no. 21,
pp. 5549–5563, 2017.

[18] W. Zheng, X. Zhang, P. Gong, and H. Zhai, “DOA estimation
for co-prime linear arrays: an ambiguity-free method in-
volving full DOFs,” IEEE Communications Letters, vol. 22,
no. 3, pp. 562–565, 2018.

[19] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the
MUSIC algorithm,” in Proceedings of theDigital Signal Processing
Workshop and IEEE Signal Processing Education Workshop
(DSP/SPE), pp. 289–294, Sedona, AZ, USA, January 2011.

[20] J. Li, Y. Li, and X. Zhang, “Two-dimensional off-grid DOA
estimation using unfolded parallel coprime array,” IEEE
Communications Letters, vol. 22, no. 12, pp. 2495–2498, 2018.

International Journal of Antennas and Propagation 7



[21] R. Roy and T. Kailath, “ESPRIT-estimation of signal pa-
rameters via rotational invariance techniques,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37,
no. 7, pp. 984–995, 1989.

[22] Z. Ye and C. Liu, “On the resiliency of music direction finding
against antenna sensor coupling,” IEEE Transactions on
Antennas and Propagation, vol. 56, no. 2, pp. 371–380, 2008.

[23] S. Liu, J. Zhao, and Z. Xiao, “DOA estimation with sparse
array under unknown mutual coupling,” Progress in Elec-
tromagnetics Research Letters, vol. 70, pp. 147–153, 2017.

8 International Journal of Antennas and Propagation


