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An increasing number of vehicles make spectrum resources face serious challenges in vehicular cognitive small-cell networks.-e
means of spectrum sharing can greatly alleviate this pressure. In this paper, we introduce a supermodular game theoretic approach
to analyze the problem of spectrum sharing. -e small-cell BS (primary service provider, PSP) and the vehicle (secondary service
provider, SSP) can share the spectrum, where the PSP can sell idle spectrum resources to the SSP. -is is taken as a spectrum
trading market, and a Bertrand competition model is considered to depict this phenomenon. Different PSPs compete with each
other to maximize their individual profits. -e Bertrand competition model can be proved as a supermodular game, and the
corresponding Nash equilibrium (NE) solution is provided as the optimal price solution. Hence, an improved genetic simulated
annealing algorithm is designed to achieve NE. Simulation results demonstrate that the NE point for the price of the primary
service provider exists. -e change of the exogenous variable is also analyzed on the equilibrium point.

1. Introduction

With the improvement of people’s living standards and the
continuous development of vehicular networks technolo-
gies, more and more people choose to buy a car as a means
of transportation [1]. -e explosive growth of the number
of vehicles directly changes the traditional car network
communication. Increased vehicle data business and
bandwidth-hungry applications in Long Term Evolution
Vehicle-to-Everything (LTE-V2X) networks are a chal-
lengeable problem, and inappropriate handling way will cause
quality of service (QoS) deterioration [2]. Hence, reasonable
use of base station (BS) resource and cognitive radio can
effectively improve QoS of vehicular communication for
small-cell networks. In this context, vehicle as unlicensed user
can adopt idle frequency bands which are not occupied by

licensed users through trading to enhance the utilization of
spectrum and capacity of small-cell networks. For spectrum
trading, the price of spectrum resource is the key consider-
ation based on licensed and unlicensed users.

Game theory is an effective tool to help analyze strategy
selection problem. In fact, many works adopt it to study and
analyze spectrum sharing problem. -e spectrum sharing
problem can be translated into the spectrum trading problem
with different types, such as market equilibrium and cooper-
ative and competitive market, and the price with analysis of the
proposed spectrummarket equilibrium has been studied in [3].
In [4] and [5], the authors studied the spectrum sharing
problem for two PSPs and multiple PSPs on solving com-
petitive market, respectively. Most of these works are carried
out on cognitive networks, and fewer applications are in small-
cell networks, especially for vehicular communication.
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-e explosive growth in the mobile devices puts a heavy
burden on the vehicular networks in terms of increased
spectrum resources and operational costs. Scarcity of
spectrum resources has always been an important challenge
for vehicular communication. Inspired by [6], we consider
spectrum trading between PSPs and SSPs to improve
spectrum efficiency and utilization in this paper. We utilize
the smooth supermodular game theory to model the
spectrum sharing issue from the perspective of spectrum
price. Also, we derive the solution of spectrum pricing
model. To the best of our knowledge, these problems have
not been studied in existing literature.

-emain contributions of this paper are listed as follows:

(1) We propose the Bertrand competition model on
spectrum sharing problem between small-cell BSs
and vehicles in vehicular cognitive small-cell net-
works. Furthermore, the proposed Bertrand com-
petition game model is verified as a supermodular
game in detail.

(2) We present the solution of the Bertrand competition
model. Specifically, we can adopt genetic simulated
annealing algorithm to decide the NE of Bertrand
competitionmodel quickly andmaintain the optimal
spectrum efficiency and utilization.

(3) Based on numerical results, we verify that the pro-
posed Bertrand competition model can solve the
spectrum sharing problem of the vehicular cognitive
small-cell networks. We also find out that the
spectrum replacement coefficient brings significant
influences on the spectrum price in the process of
Bertrand competition game.

-e rest of this paper is organized as follows. Section 2
describes the related works that address the spectrum
sharing problem in cognitive small-cell networks. In order to
promote our research, the basic theoretical knowledge is
given in Section 3 to facilitate researchers’ reading. In
Section 4, we provide the scenario description and system
model of Bertrand competition between the PSP and the
SSP. Based on Section 4, Section 5 discusses the solution of
the proposed spectrum pricing model. In Section 6, simu-
lation results display the numerical performance analysis.
Finally, Section 7 summarizes and concludes this paper.

2. Related Works

Cognitive radio techniques can be introduced to be applied
to spectrum access networks [7]. Spectrum management
technology satisfies requirements of users in cognitive radio
networks by adjusting and controlling the spectrum access
network. Generally, researchers designed an optimization
problem to find the optimal solution which could improve
the utility for the users [8]. Reference [9] analyzed secondary
user using a continuous-time Markov chain model to im-
prove the performance of cognitive radio networks. Sub-
sequently, game theory as an effective tool for spectrum
management was used in cognitive radio networks [10, 11],
such as rate control [12] and power control [13]. A game

theory adaptive spectrum allocation scheme was presented
for cognitive radio networks [14]. -e cooperative compe-
tition process of the players was displayed in the game.
However, these works did not consider the price problem of
the players for spectrum trading in the cognitive radio
networks.

For the spectrum trading problem, the spectrum re-
source allocation and the price of spectrum are related to
each other.-e service provider wants to get the maximizing
benefit and the user wants to get the most benefits on QoS
and price. In [15], a spectrum allocation algorithm based on
static gamemodel was proposed in cognitive radio networks.
In particular, the utility function was given by the dynamic
pricing function and cost function of the primary user.
Reference [16] considered transmission rate and reliability in
designed utility maximization scheme with price. In [17],
price-based resource allocation schemes were investigated
for femtocell networks. A Stackelberg game approach was
proposed to maximize the joint utility with the macrocell
and femtocell networks on interference power constraint.
Reference [18] studied resource allocation in wireless ad hoc
networks and proposed price-based resource allocation al-
gorithm to achieve an optimal resource allocation and
fairness among competing users. However, these works only
considered the spectrum price problems in static spectrum
access scenarios. -en, some researchers studied the
problem of price in dynamic spectrum scenario [19–21].
Reference [19] described resource allocation based on space,
time, and frequency for cognitive radio wireless networks. It
formulated the new cognitive radio system for the primary
user transmission and gave the corresponding dynamic
resource allocation solution. In heterogeneous applications
networks, [20] designed resource allocation algorithm by
making online control decisions for a virtualized data center.
-e proposed optimal resource allocation algorithm could
improve joint utility of the heterogeneous applications
throughput of the data center. Cloud computing technology
could assist the users achieve their requirements for resource
usage. Based on cloud computing [21], authors proposed a
dynamic data allocation method according to application
demands and further designed the concept of green com-
puting to optimize the number of users. However, these
works did not discuss the effect of equilibrium and stability
of the competition with the users on pricing.

Most works in cognitive radio networks considered
competition and taken spectrum sharing into noncooper-
ative game account [22–25]. In [22], the authors considered
interaction between the spectrum holder, the service pro-
vider, and the user to propose a three-layer spectrum al-
location model for dynamic spectrum access networks. Yang
et al. [23] designed a market-based model for primary users
and secondary users and proposed a pricing-based spectrum
allocation mechanism to enhance spectrum utilization and
revenue in cognitive radio networks.-is method has higher
complexity and lower spectrum utilization due to the pricing
contention. To address this issue, one novel pricing-based
spectrum allocation scheme was designed in [24] to reduce
complexity and to enhance spectrum utilization. -e pri-
mary user’s utility and its revenue were also studied in [24]
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when the spectrum of primary user was controllable. -ese
previous works considered the primary user’s revenue ig-
noring the case of secondary users in trading market. Hence,
Li et al. [25] studied the choice of the secondary users facing
different spectrum qualities. It focused on the optimal
pricing solution in secondary buyers by designing a novel
spectrum pricing mechanism for secondary users according
to their selection preferences. -ese works considered
pricing and spectrum allocation by formulating an opti-
mization problem. However, other applications in spectrum
allocation would be useful to help reader to further solve the
spectrum sharing problem.

More recently, the interest in cellular-based vehicular
networks research had been dramatically investigated [26].
As far as we know, the spectrum resource applications in
vehicular communication had been widely discussed by the
authors in [27, 28]. In cellular networks, device-to-device
(D2D) technology can provide efficient and reliable vehic-
ular communications. -e high-speed movement charac-
teristic of the vehicle brings great challenges for spectrum
sharing and power allocation due to large-scale fading
channel information. Liang et al. [27] proposed an optimal
resource allocation algorithm which was robust to channel
information in vehicular networks. Meanwhile, this paper
considered sum capacity of all vehicle-to-infrastructure
(V2I) links and taken it as an optimization objective to
enhance V2I link throughput. Traffic safety and efficiency are
important considerations in vehicular networks. Vehicle
platooning could improve these two aspects by sharing and
exchanging control information among vehicles. In [28], a
resource allocation algorithm based on platoon and users’
transmission rate was proposed to improve spectrum re-
source utilization and the platoon stability. Zhang et al. [29]
focused on V2I communication scenario and proposed a
joint power and subcarrier allocationmechanism to improve
QoS of vehicular networks. Cellular V2X communication
has been studied in [30], which proposed two modes on LTE
vehicular communications. -e native features for time-
division LTE were also given for the centralized architecture,
and the radio resource allocation scheme was optimized for
better supporting V2I communication. Note that these
previous works considered resource allocation in cellular-
based vehicular networks. However, most proposed schemes
were complicated and few works analyzed the spectrum
sharing issues for vehicular communication in cognitive
small-cell networks.

3. Preliminary Knowledge

3.1. Supermodular Game. -e supermodular game pro-
vided a general method based on the lattice planning for
analyzing games with complementary strategies [31].
Hence, it did not require the convexity and the differen-
tiability hypothesis in the traditional optimization theory,
but only a certain order structure of the strategy space and
certain weak continuity and monotonicity of the objective
function were needed. It had a pure strategy Nash equi-
librium, and the Nash equilibrium set also had a certain
order structure.

-e following describes some properties of the super-
modular game: In setΦ, there are any two elements, x and y,
and their upper and lower bounds are all in setΦ. -e upper
bound is marked as x∨ y and the lower bound is denoted as
x∧ y. Hence, set Φ is called lattice. f is the function which is
from the lattice S to real number R, denoted by f: S⟶R. If
∀x, y ∈Φ,

f(x) + f(y)≤f(x ∧ y) + f(x ∨ y), (1)

then f (x) is a supermodular function in set Φ. Furthermore,
if log f (x) is a supermodular function, f (x) is a log-
supermodular function. Supermodular functions are widely
used in various disciplines, such as economics and engi-
neering science. For economic price market, super-
modularity represents a complementary investment in the
economy. Here, the supermodularity is taken as cardinal
property as the value range of the function is the set of real
numbers R. In addition, the quasi-supermodularity is the
supermodular ordinal numbers corresponding to the car-
dinal supermodular numbers [32]. IfΦ1 is a lattice andΦ2 is
a poset, there is a function mapping relationship, f:
Φ1⟶Φ2. For any two elements x′ and x″, if f (x′ ∧ x″)< f
(x′),

f x″( <f x′∨x″( , (2)

then function f (x) is a quasi-supermodular function in set
Φ1. Apparently, if one function is a supermodular function,
it must also be a quasi-supermodular function.

In supermodular game, increasing difference is another
important concept. Supposing Φ1 and Φ2 are two lattices,
there is a function mapping relationship, f: Φ1 ×Φ2. For any
two elements x and x′, x≥ x′, in set Φ1, f (x, y)− f (x′, y) has
incremental relationship for any element y in set Φ2.
-erefore, function f (x, y) has increasing difference on (x, y).

Assume that the game strategy space is continuous; the
real number R has the usual order relationship. In the n
dimension Euclid space, x≥ y ⇒ xi≥ yi, i ∈ {1, 2, . . ., n} for
vectors x� (x1, . . ., xn) and y� (y1, . . ., yn). Generally, the
object function is smooth supermodular. -e following
lemmas describe the relationship between supermodular
and increasing difference on object smoothness function.

Lemma 1 (see [33]). If and only if the function f has in-
creasing difference in Rn (increasing difference in multiple
variables means having an increasing difference in any two
pairs of variables), f is supermodular function.

Lemma 2 (see [33]). For a interval W � [x, x] in Euclid
space Rn, if the function f: Rn⟶R is twice continuously
differentiable in an open interval including W, then the
necessary and sufficient condition for f to be a supermodular
function on W is

z2f(x, y)

zxizxj

≥ 0, ∀i≠ j. (3)

In short, the requirement of supermodularity is very
simple for a twice differentiable function. It only requires
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that the cross partial derivative is nonnegative, the second-
order partial derivative is not required, and the concave of
the function is not needed. Section 3.2 will further elaborate
the characteristics of the smooth supermodular game.

3.2. Smooth Supermodular Game. Supposing that a non-
cooperative game Ω � N, Φi i∈N, fi i∈N , Φi ∈ Rki , N
denotes the number of players in a game, the subscripts are
denoted by i and j, and there are ki strategy elements for the
player i, subscripted by n andm.Φi is the strategy set for each
player i, and fi is a supermodular function which represents a
relationship betweenΦi and real number field R, f:Φi⟶R.
x and y represent any two elements in set Φi. If game Ω
satisfies the following conditions,

(1) Φi is the closed interval in Rki ;
(2) fi is twice continuously differentiable in Φi;
(3) fi is supermodular on Φi, that is,

z2fi(x, y)

zxin
zxim

≥ 0, (4)

where n≠m, 1≤ n, m≤ i;
(4) fi has increasing differences in (Φi, Φj), that is,

z2fi(x, y)

zxin
zxjm

≥ 0, (5)

where j≠ i, 1≤ n≤ ki, 1≤m≤ kj,

then Ω is a smooth supermodular game.

4. Scenario Description and System Model

4.1. Scenario Description. To improve spectrum resources
scarcity and efficiency, it is a beneficial method to share
spectrum among multiple users in wireless networks. -e
users compete for spectrum resources in order to maximize
their own benefits. Against this background, one typical
spectrum sharing model with vehicular communication for
cognitive small-cell networks is depicted in Figure 1. Small-
cell BSs are randomly deployed in small-cell networks, and
every small-cell network has only one small-cell BS, which
has the same transmission power, to provide services for
attaching a few vehicles. -e moving vehicle enters one
small-cell network and builds communication link to small-
cell BSs. We assume the vehicle has a large amount of burst
data that needs to be transmitted. -en, the vehicle can
charge small-cell BS for idle frequency spectrum resource
usage to enhance data transmission efficiency. For the
convenience of the following description, the small-cell BS is
referred to as PSP and the vehicle is referred to as secondary
service provider (SSP). -e SSP requests leased spectrum
and the PSPs can sell their idle spectrum resources to the
SSP. So far, a spectrum tradingmarket is formed. In this way,
the SSP can lease spectrum of multiple PSPs.We assume that

different PSPs know about each other’s existence and
compete with each other to maximize their individual
profits.

In spectrum sharing model of cognitive small-cell net-
works, there are N PSPs, and the PSP i, i ∈ {1, 2, . . ., N}, has
its own Bown

i spectrum bandwidth to serveMi primary users
(PU). -e price of unit spectrum with Bown

i is denoted by pi.
When SSP agrees to the pi of PSP i, it will adopt the idle
spectrum resource of the corresponding PSP. In Additive
White Gaussian Noise (AWGN) channel, an SSP adopts
adaptive modulation for data transmission in communi-
cation link.

4.2. Wireless Communication. Based on transmission
channel quality, the transmission rate of the SSP, by
adjusting the corresponding channel parameter settings, will
be changed. Hence, the spectral efficiency (bits/sec/Hz) can
be expressed as [34]

ki � log2 1 + Kci( , (6)

where ci is signal-to-noise ratio (SNR) between the SSP and
the ith PSP, K � 1.5/ln(0.2/BERtar

i ), and BERtar
i is the target

bit error rate (BER) of the ith PSP.

4.3. Price Problem Model. As described in Section 4.1, the
spectrum sharing problem in this paper can be designed as
the competitive pricing model. As the PSP is aware of the
existence of other PSPs, all of the PSPs compete with each
other to maximize their individual profit in trading market.
Each PSP has a selfish character, only considers its own
profits, and performs spectrum resource management
according to its own information and policies. Obviously, all
PSPs compete for price. -erefore, one PSP could set a price

Small-cell BS

Vehicle

Communication link

Figure 1: Spectrum sharing model of cognitive small-cell
networks.
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on its own spectrum to maximize its individual profit when
the spectrum price in networks is given by the other PSPs.
-is is a strategy choice problem.

5. Solution of Spectrum Pricing Models

5.1. Demand Function of the SSP. To calculate spectrum
demand, we consider the quadratic utility function [35] and
design the demand function; that is,

Di( p
→

, ε) � wik
s
i − pi + ε

j≠i
pj, (7)

where the price vector p
→ has element pi composition, wi is

weight parameter, the product of wi and ks
i represents the

market capacity of the spectrum Bown
i , ks

i denotes the
transmission spectral efficiency of the SSP, and ε denotes
the spectrum replacement factor. -at is, the value of ε
reflects spectral similarity and shows whether SSP can switch
between different PSP spectra (0≤ ε≤1). When ε� 0, the
spectrum of different PSP is completely different and SSP
cannot switch between different PSP spectra, and when ε� 1,
the opposite case is true.

5.2. Profit Function of the PSP. For Bertrand game, there is
no cooperation between PSPs, and strategy variable is the
price vector p

→. Hence, the profit function of the PSP can be
calculated as

ui( p
→

, ε) � pi − ci( Di( p
→

, ε)− di B
req
i − k

s
i

Bown
i − Di( p

→
, ε)

Mi

 

2

,

(8)

where ci is the unit spectrum of the Di( p
→

, d), di is the
difference factor, and B

req
i is the PSP connection required

bandwidth. We know from the system model that the PSP i,
i ∈ {1, 2, . . ., N} has a size of Bown

i spectrum and it serves Mi
PU.

Hence, the item piDi( p
→

, ε) indicates the profit from
sharing the spectrum with SSP from the PSP’s rental
spectrum, and the item ciDi( p

→
, ε) denotes the cost of the

PSP i for renting out spectrum Di( p
→

, ε). Obviously, the cost
of PSP consumption is due to sharing the spectrum with the
SSP, resulting in a QoS performance degradation of PU.

5.3. Supermodular Game Argumentation. Combining the
conditions satisfied by the smooth supermodular game, it is
easy to judge that equation (8) satisfies the two smooth
supermodular game conditions (1) and (2).

First, the first-order derivative of profit function ui( p
→

, ε)
is derived as follows:

zui( p
→

, ε)
zpi

� Di( p
→

, ε) + pi − ci( 
zDi( p

→
, ε)

zpi

− 2
dik

s
i

Mi

B
req
i(

− k
s
i

Bown
i − Di( p

→
, ε)

Mi

 ×
zDi( p

→
, ε)

zpi

.

(9)

By equation (7), the following equality is derived:

zDi( p
→

, ε)
zpi

� −1, (10)

zDi( p
→

, ε)
zpj

� ε. (11)

By substituting equations (10) and (11) into (9), the
second derivative of profit function ui( p

→
, ε) on p

→ is
expressed as

z2ui( p
→

, ε)
zpizpj

� 1 + 2di

ks
i

Mi

 

2
⎛⎝ ⎞⎠ε. (12)

Obviously, (1 + 2di(ks
i /Mi)

2)ε≥ 0, so condition (3) with
smooth supermodular game is satisfied.

Finally, the second derivative of profit function ui( p
→

, ε)
on pi and ε is denoted as

z2ui( p
→

, ε)
zpizε

� 1 + 2di

ks
i

Mi

 

2
⎛⎝ ⎞⎠ 

j≠i
pj. (13)

From equation (13), (1 + 2di(ks
i /Mi)

2)j≠ipj ≥ 0, con-
dition (4) is also satisfied for ε. In conclusion, the game is
smooth supermodular game. -ere are a largest and a
smallest NE in pure strategies and they are nondecreasing
functions of the parameter ε.

According to the basic concept of smooth supermodel
game [33], the game with profit function in equation (8) is a
supermodular game on Bertrand competition. So, the largest
and smallest NE price (zui( p

→
, ε)/zpi � 0) for PSP i on pure

strategies exist and are nondecreasing functions.

5.4. Solution of NE. To solve for pi in equation (9), the re-
action function method is applied. -at is, the best strategy
for the PSP (pi) is determined by the strategy of the other
PSPs. -e set of price on the other PSPs is p

→
−i,

p
→

� p
→

−i ∪ pi . p
→

−i indicates the vector of all PSPs in {1, 2,
. . ., i, . . ., N} except for the PSP i. -e reaction function is
defined as

πi p
→

−i  � argmax
pi

ui p
→

−i∪ pi ; ε . (14)

If and only if

p
∗
i � πi p

→∗
−i , ∀i, (15)

then, p
→∗

� p∗1 , p∗2 , ·, p∗i , ·, p∗N  denotes NE of bidding
game, where p

→
−i
∗ is the best strategy set of the PSP j (j≠ i). In

a nutshell, the PSPs can obtain an optimal benefit when
equation (15) holds. -e price at this time can be regarded as
the optimal pricing.

From the above analysis, the computational complexity
of solving equilibrium points is greatly reduced. Different
from traditional game theory methodology, the second-
order partial derivative and the concaveness of the profit
function are not noticed. In this paper, we only consider the
nonnegativity condition of the profit function with cross
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partial derivative. Furthermore, the impact of the spectrum
replacement factor on price strategies has also been analyzed
accordingly.

5.5. Improved Genetic Simulated Annealing Algorithm.
-e genetic algorithm has underdeveloped solution preci-
sion on optimization function. However, it is suitable for
nonlinear, nonconvex optimization function as a global
search algorithm. Obviously, equation (14) is a nonlinear
optimization problem, and the genetic algorithm can ef-
fectively solve this problem. -e simulated annealing al-
gorithm can be introduced to avoid the search process from
falling into the local optimal solution as it has strong local
search ability. In this paper, an improved genetic simulated
annealing algorithm, which combines the genetic algorithm
with the simulated annealing algorithm, is designed to be
applied to cognitive small-cell networks. -e individual
choice in the genetic algorithm is replaced by annealing
selection to avoid falling into local optimal solution.

Based on the proposed algorithm, the optimal solutions
with equation (14) will be reached. -e algorithm flowchart is
given in Figure 2. Compared with the traditional genetic al-
gorithm, the proposed improved genetic simulated annealing
algorithm searches for the global optimal solution starting from
a set of randomly generated initial solutions. In the process of
performing genetic operations such as selection, crossover, and
mutation, the annealing operation is performed independently
on the individual, and the results are taken as individuals in the
next generation population. -is process is iterated until a
certain convergence condition is reached.

In the following, the specific working process of the
proposed genetic simulated annealing algorithm is given in
Algorithm 1. It is worth noting that this algorithm is a direct
application to the analysis of spectrum sharing problems
because it is easy to understand. A simple and summarized
comparison between traditional genetic algorithms and the
proposed genetic simulated annealing algorithm is ignored
as a result of the limited scope of this article. -e discussions
and comparisons of the main contents which are based on
this algorithm will be discussed in detail.

6. Simulation Results

-is part simulates and discusses the proposed equilibrium
game market. -e system model with spectrum sharing of
cognitive small-cell networks is considered in Figure 1.We only
consider the ability difference for the spectrum sharing system,
but the utility functions of all the PSPs are the same. -ere are
four PSPs, and each PSP hasMi� 10 vehicles (as PU). -e total
available bandwidth of PSPs is 200MHz, and the service rate
required for each PSP connection is 2Mbps. -e target BER is
set as 10−4, and the weight parameter for each the PSP is the
same, wi � 20. -e received SNR of the SSP is variable in
10∼20dB. -e value of the spectrum replacement coefficient
(difference factor) is variable in 0.0∼1.0. Some of these pa-
rameters may change in a specific simulation environment.

-e price per spectrum unit versus iteration for four
primary services is analyzed in Figure 3. Due to the demand

for change and profit competition for the PSPs, price is
varied for all iterations and it only changes at a fixed value
for each iteration. Obviously, the price increases with the
number of iterations until a stable state (NE) is reached
when difference factor ε� 0.5. In this case, any primary
service of the PSP cannot improve its own profit, despite
increasing its price. Finally, the four primary services at these
prices will share their spectrum with the SSP.

Figure 4 depicts the price versus the iteration times on
different spectrum replacement factor ε for one primary
service. It is shown that the gain achieved by the proposed
genetic simulated annealing algorithm becomes more sig-
nificant as the number of iterations becomes larger. -e
price will show a significant difference as the number of
iterations increases. -e price increases as ε increases, and
the price increase is obvious when ε takes more than 0.5.-is
result is also verified in Table 1.

Specifically, the spectrum replacement factor, ε, causes
some influence on price in the process of spectrum game,
and the results are shown in Table 1. Apparently, the price

Start

Randomly generate the
initial population

Calculate the fitness value

EndWhether the condition
is satisfied

Selecting and producing the
new generation

Mutation and cross over
operation

Calculae the fitness value

Select some excellent
individuals for simulated

annealing

Figure 2: Algorithm operation flow.
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of PSP increases drastically as the value of ε increases. -at
is because the increase of ε makes the SSP easier to switch
between different PSP spectra. Increased spectrum demand
causes price increases. We can get the interesting result that
the price for different PSPs get a sudden increase when
ε� 0.5. -is can provide us with a reference when designing
a Bertrand competition in cognitive small-cell networks. It
is worth noting that the pricing results are optimal and the
PSPs obtain maximum benefits on different ε when
PU � 10. As these results represent an optimal strategy, it is
necessary to reveal convergence determined by the real
situation.

Figure 5 shows the impact of different ε, where ε varies
from 0 to 1 at intervals of 0.1, on the equilibrium game
market to reach a stable state when the price follows iteration
changing gradually. Expectedly, the supermodularity of
profit function on substitutability coefficient ε could achieve
relative statics. In general, small changes in parameters could
cause changes in equilibrium points due to feedback among
the different player’s strategies. However, it can be seen from
the analysis that the supermodularity only tells us the impact
of ε on price strategies p

→, not an accurate value. In others

words, the supermodularity has weak comparative statics on
ε. When ε gradually increases, it implies that the SSP (ve-
hicle) can switch easily to select suitable frequency spectrum
at different PSPs, and the price in equilibrium point also
increases correspondingly.
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Figure 4: -e relationship between price and iteration on different
ε for one PSP.
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Figure 3: -e relationship between price and iteration on ε� 0.5
for four PSPs.

(1) Initialization: set the evolution algebra counter to 0. Set the initial value of the population which includes all random sets of
strategies (genes), and give the initial annealing temperature.

(2) Calculate current population fitness and population statistics, and further evaluate fitness by price bounds that defined the demand
function.

(3) Use elite selection mechanism to choose the fittest strategy on a higher value according to profit function.
(4) Apply crossover and mutation on individuals by adaptive probability, and then preserve optimal operation to generate new

individual of price strategy (offspring).
(5) Take the individuals in step 3 as input to perform simulated annealing operation, and replace dissatisfied individuals.
(6) Sort the results after performing the simulated annealing algorithm, and take the optimal results as a new population.
(7) Evaluate individuals by profit function and judge convergence conditions. If the current loop parameter does not satisfy the

convergence condition, go to step 2. Conversely, the solution process is completed if the convergence condition is met.

ALGORITHM 1:-e proposed genetic simulated annealing algorithm.

Table 1: -e NE of price on different ε when PU� 10.

ϵ
Price

PSP 1 PSP 2 PSP 3 PSP 4
0 99.5416 98.7094 97.9625 97.2969
0.1 118.4523 118.5935 118.7114 118.8165
0.2 147.3622 148.8369 150.1316 151.2892
0.3 196.7404 200.3302 203.4803 206.2608
0.4 299.3002 307.0919 313.9299 319.9368
0.5 609.3385 631.8402 651.8418 669.7440
0.6 2.2154e+ 03 2.3716e+ 03 2.5255e+ 03 2.6782e+ 03
0.7 1.4127e+ 04 1.6060e+ 04 1.8200e+ 04 2.0582e+ 04
0.8 1.0813e+ 05 1.3118e+ 05 1.5905e+ 05 1.9284e+ 05
0.9 7.9598e+ 05 1.0259e+ 06 1.3242e+ 06 1.7125e+ 06
1 5.2995e+ 06 7.2197e+ 06 9.8695e+ 06 1.3541e+ 07
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-e impact of the number of PSPs on spectrum price is
displayed in Figure 6. For convenient observation, we give
the statistical results when the number of iterations is 20.
Other simulation conditions are unchanged. -e spectrum
price is gradually decreasing with the increase in the number
of PSPs due to higher competition. In spite of increasing the
spectrum demand, the PSPs need to reduce their price
during competition with each other in order to attract more
spectrum demand from the SSP. -is can maximize their
own interests.

When weight parameter and SNR at the SSP are fixed, the
price of the PSP increases with the increase in the spectral
substitution coefficient. -e significant change in price is at
about 0.8 for spectral substitution coefficient.-is shows that,
as the spectral substitution increases, the degree of spectrum
difference decreases. -is result is displayed in Figure 7.

7. Conclusions

In this paper, the spectrum trading between the PSP and the
SSP is considered as a noncooperative game. During the game,
the players are PSPs, the unit spectrum price is the strategy, and
the implementation of the corresponding strategy in the game
of the PSP is the benefit. A Bertrand model is adopted to
analyze the competition process. All PSPs compete with each
other to achieve the highest individual profits. -e super-
modular concept is introduced to simplify analysis, and further
the established Bertrand competitionmodel is proved to follow
the supermodular model. Meanwhile, the solution of NE point
is also developed for the spectrum pricing model, and a genetic
simulated annealing algorithm on NE solution is proposed.
Finally, we provide the existence of NE with the spectrum unit
price for the PSPs and the comparative static analysis is also
described on the relationship between the price in NE and the
corresponding coefficient.

In future work, the applications of the novel idea related
with the genetic algorithm and some improved genetic al-
gorithms in solving spectrum sharing problems will be
analyzed and discussed in detail.
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