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*e performance of the conventional beamforming for angle-of-arrival (AOA) estimation algorithm under measurement
uncertainty is analyzed. Gaussian random variables are used for modeling measurement noises. Analytic expression of the
mean square error (MSE) is obtained via Taylor series expansion. In traditional performance analysis, estimation accuracy in
terms of the MSEs is usually obtained from the Monte Carlo simulation, which is computationally intensive especially for large
number of repetitions in the Monte Carlo simulation. For reliable MSE in the Monte Carlo simulation, the number of
repetitions should be very large. To circumvent this problem, analytic performance analysis which is less computationally
intensive than the Monte Carlo simulation-based performance analysis is proposed in this paper. After some approximations,
we derive the closed form expression of the mean square error (MSE) for each incident signal. *e validity of the derived
expressions is shown by comparing an analytic MSE with an empirical MSEs. *e Cramer–Rao bound is also used to further
validate the derived analytic expression.

1. Introduction

1.1. Preliminary. Determination of the angle-of-arrival
(AOA) [1, 2] of signal has been of interest to the signal
processing community. *e application of the study ranges
from military to civilian applications. Beamforming algo-
rithm [3, 4], MUSIC (Multiple Signal Classification) algo-
rithm [5], ESPRIT (Estimation of Signal Parameters via
Rotational Invariance Techniques) algorithm [6], and ML
(Maximum Likelihood) algorithm [7] have been the main
algorithms for AOA estimation.

Beamforming algorithm is the basic AOA algorithm,
whose merit is the low computational cost [2–4]. In
beamforming algorithm, signals from certain directions are
added constructively by forming a weighted sum of the array
outputs. *e antenna is steered to different directions by
varying the array weights.

In this paper, performance analysis of conventional
beamforming algorithm for direction-of-arrival (DOA) es-
timation is considered. Many studies have been conducted
on conventional beamforming-based DOA estimation al-
gorithm [8–19].

We address quantitative study on how much estima-
tion error occurs due to an additive noise on each array
antenna element. Explicit expression of mean-squared
error (MSE) in terms of a standard deviation of an additive
noise will be derived. In this paper, performance analysis of
azimuth estimation using uniform linear array (ULA) is
presented.

*e estimate with no superscript and the estimate with
the superscript (u� 1) differ due to the first approximation
since the first approximation is applied in getting the esti-
mate with the superscript (u� 1). Note that no approxi-
mation is applied in getting the estimate with no superscript.
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Similarly, why the estimate with the superscript (u� 1)
and the estimate with the superscript (u� 1, v) differ is due to
the second approximation since the first approximation and
the second approximations are applied in getting the esti-
mate with the superscript (u� 1, v).

Based on these observations, by comparing these three
estimates, we can easily determine which approximation
results in the dominant approximation error. To the best of
our knowledge, no previous performance analyses have
shown this intuition and no previous study presented these
explicit expressions of the azimuth estimation error and the
MSE of the azimuth estimate in terms of the statistics of an
additive noise.

In this paper, Gaussian noise is used to model mea-
surement uncertainty. *e effect of Gaussian noise on the
accuracy of the azimuth estimate is rigorously derived for
DOA estimation. Furthermore, a closed-form expression of
the MSE of the estimate is derived. In comparison with the
previous studies on the performance analysis of the con-
ventional beamforming algorithm, a more explicit repre-
sentation of the MSE of the estimate is proposed in this
paper.

Many previous studies on the conventional beam-
forming algorithm focused on how the performance of the
conventional beamforming algorithm can be improved by
proposing new algorithms or by modifying the ML DOA
estimation algorithm. Note that our contribution in this
paper does not lie in how much improvement can be
achieved by proposing an improved beamforming DOA
algorithm. Our contribution is on computational cost re-
duction in getting the MSE of an existing conventional
beamforming algorithm by adopting an analytic approach,
rather than the Monte Carlo simulation-based MSE under
measurement uncertainty which can be modeled as
Gaussian distributed.*at is, the proposed scheme describes
how analytic MSE can be obtained with much less com-
putational complexity than the Monte Carlo simulation-
based MSE.

*e proposed scheme can be used in predicting how
accurate the estimate of the conventional beamforming
algorithm is without computationally intensive Monte Carlo
simulation. *e performance of the conventional beam-
forming algorithm depends on various parameters including

the number of snapshots, the number antenna elements in
the array, interelement spacing between adjacent antenna
elements, and the SNR. *erefore, Monte Carlo simulations
for different values of the various parameters can be com-
putationally intensive. *erefore, the scheme presented in
this paper can be adopted to predict the accuracy of the
conventional beamforming-based DOA estimation algo-
rithm for different values of various parameters.

In Table 1, the mathematical and statistical theories used
for the performance analysis are illustrated. In Table 1,
advantages of the proposed scheme have been described.
More specifically, in Table 1, the advantage of the proposed
analytical performance analysis over the Monte Carlo
simulation-based empirical performance analysis is de-
scribed. In addition, the advantage of the proposed analytical
performance analysis over the existing analytical perfor-
mance analysis method is described.

Our contribution in this manuscript does not lie in how
much improvement can be achieved by proposing a new
algorithm. Our contribution in this paper is to show that the
MSE can be analytically derived rather than empirically. In
analytic performance analysis, statistics of an additive noise,
rather than noise itself, has been exploited to get the MSE of
AOA estimates. On the contrary, in Monte Carlo simulation,
difference noises for each repetition results in different AOA
estimates, which implies that noise itself, rather than sta-
tistics of noises, is used in the Monte Carlo simulation.

In this paper, for convenience sake, measurement noises
are modeled as Gaussian random variables. However, it is
quite straightforward to extend to the case where the noises
are modeled as different random variables as long as the
moments of the random variables are available.

2. Derivation of Analytic Expressions of
Estimation Error and Mean Square Error

2.1. Conventional Beamforming Algorithm. In conventional
beamforming algorithm for AOA estimation, the array
output power is computed as the arrival angle varies, and the
angles corresponding to the maximum values in the output
power distribution are considered to be the true directions of
arrival. AOAs are selected from the angles at which the
following output achieves the maximum:
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H
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􏽘
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k�1
ak
∗
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k�1
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where θ is the arrival angle of an interest and R̂ is the ML
(Maximum Likelihood) estimate of the array output co-
variancematrixR.*at is, we evaluate (1) as a function of the
arrived angle at discrete values, and find θ at which F(θ) is
the maximized.

We consider the performance analysis of the conven-
tional beamforming algorithm for multiple incident signals
in this paper. In the absence of noise, the incident signal on
the array antenna elements can be written as, for i � 1, . . . , L,
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, (2)

where L is the number of snapshots. Equation (2) can be
compactly written in the matrix and vector form as
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*e noisy array response, denoted by x′(ti), can be
expressed as
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(4)

In matrix and vector form,(4) can be expressed as

x′ ti( 􏼁 � a θ1( 􏼁s1 ti( 􏼁 + a θ2( 􏼁s2 ti( 􏼁 + · · · + a θN( 􏼁sN ti( 􏼁 + n ti( 􏼁. (5)

Noiseless array responses due to the nth incident signal,
sn(t), are denoted by x(n)(t):

x(n)
ti( 􏼁 ≡ a θn( 􏼁sn ti( 􏼁. (6)

*e sample covariance matrices associated with x(ti)

and x′(ti) are defined as
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Note that, in (7) and (8), all the incident signals are taken
into account.

Let R̂(n) denotes the sample covariance matrices asso-
ciated with the nth incident signal for noiseless case. Sim-
ilarly, R̂′(n) denotes the sample covariance matrix associated
with the nth incident signal for noisy case. Sample covari-
ance matrix associated with the nth incident signal can be
expressed as
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From (9), it is can be easily shown that the entries of R̂(n)
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*edifference between R̂′ in (8) and R̂(n) in (9) is defined
as δR̂:
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. (11)

Let θ(0)
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signal. *e entries of δR̂(n) can be expressed as
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For noiseless case, AOA of each signal is estimated from
the angle satisfying
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θ
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(θ), (13)

where is defined as
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Table 1: Mathematical foundation and advantage of the proposed scheme.

Mathematical foundation of the proposed scheme Statistical distribution of various kinds of perturbations
Higher order Taylor series expansion

Empirical performance analysis

Repetitive execution based on different
realization of perturbation of each parameter

New Monte Carlo simulation for each statistical
distribtion of perturbation

Proposed analytical performance analysis

Based on the statistics of perturbation
rather than realizations of perturbation

Easy to accommodate various distributions of perturbations
via known statistics of the distributions
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Note that Pkl(θ) in (14) is defined as

Pkl(θ) � exp j ψl(θ) − ψk(θ)( 􏼁( 􏼁 � exp j
2π
λ
Δ sin θ(l − k)􏼒 􏼓.

(15)

(13) follows from the fact that the AOA is obtained from the
angle maximizing F(n)(θ). *e angle maximizing F(n)(θ)

can be obtained from

d
dθ

F
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(θ) � 0. (16)

In the case of noisy response, AOA is estimated from the
angle satisfying
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(17) follows from the fact that the AOA is obtained from the
angle maximizing F′(θ). *e angle maximizing F′(θ) can be
given by

d
dθ

F′(θ) � 0. (19)

2.2. Closed-Form Expression of Estimation Error. In the
absence of an additive noise, the estimates of the AOAs
should satisfy
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where fkl(θ) is defined from

fkl(θ) �
d

dθ
Pkl(θ). (21)

Similarly, when there is an additive noise, the estimates
of the AOAs, θ̂n, are determined from the angle satisfying
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Using fkl(θ) in (20), (22) is given by

fkl(θ) � exp j
2π
λ
Δ sin θ(l − k)􏼒 􏼓 j

2π
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Δ cos θ(l − k)􏼒 􏼓. (23)

Let δθn represent estimation errors of the nth incident
signal:

θ̂n � θ(0)
n + δθn, (24)

where θ̂n is an estimate of the nth incident signal and θ̂
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n is
the true azimuth of the nth incident signal.

Substituting (24) in (20), we have
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where the superscript (u � 1) denotes that the first-order
Taylor series expansion is adopted. We can rewrite (26) as

􏽘

M

l�1
􏽘

M

k�1
fkl θ(0)

n􏼐 􏼑R̂
(n)

kl􏼒 􏼓 + 􏽘
M

l�1
􏽘

M

k�1
fkl θ(0)

n􏼐 􏼑δR̂
(n)

kl􏼒 􏼓 + δθ(u�1)
n 􏽘

M

l�1
􏽘

M

k�1

d
dθ

fkl(θ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 θ�θ(0)
n

R̂
(n)

kl􏼠 􏼡 + δθ(u�1)
n 􏽘

M

l�1
􏽘

M

k�1

d
dθ

fkl(θ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 θ�θ(0)
n
δR̂

(n)

kl􏼠 􏼡 � 0.

(27)
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Note that, from (20), the first term of the right-hand side
of (27) is identically zero. *erefore, (27) reduces to

δθ(u�1)
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where the superscript v indicates that the fourth term of the
RMS of (27) has been omitted. From (30), δθ(u�1,v)
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2.3. Closed-Form Expression of Mean Square Error. From
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n )2] is given by

E δθ(u�1,v)
n􏼐 􏼑

2
􏼔 􏼕 � E δθ(u�1,v)

n δθ(u�1,v)
n􏼐 􏼑

∗
􏼔 􏼕 � E

−􏽘
M

l�1􏽘
M

k�1 fkl θ(0)
n􏼐 􏼑δR̂

(n)

kl􏼒 􏼓

􏽘
M

l�1􏽘
M

k�1 (d/dθ)fkl(θ)
􏼌􏼌􏼌􏼌 θ�θ(0)

2
R̂

(n)

kl􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−􏽐
M
l�1􏽐

M
k�1 fkl θ(0)

n􏼐 􏼑δR̂
(n)

kl􏼒 􏼓

􏽐
M
l�1􏽐

M
k�1 (d/dθ)fkl(θ)

􏼌􏼌􏼌􏼌 θ�θ(0)
n

R̂
(n)

kl􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
􏽘

M

l�1􏽘
M

k�1􏽘
M

l′�1􏽘
M

k′�1fkl θ(0)
n􏼐 􏼑f
∗
k′l′ θ

(0)
n􏼐 􏼑E δR̂

(n)

kl δR̂
(n)

k′l′􏼒 􏼓
∗

􏼒 􏼓

􏽘
M

l�1􏽘
M

k�1􏽘
M

l′�1􏽘
M

k′�1(d/dθ)fkl(θ)
􏼌􏼌􏼌􏼌θ�θ(0)

n
(d/dθ)f

∗
k′l′(θ)

􏼌􏼌􏼌􏼌θ�θ(0)
n

R̂
(n)

kl R̂
(n)

k′l′􏼒 􏼓
∗ ,

(33)
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where the first equality holds since δθ(u�1,v)
n is real valued.

*e entries of E(δR̂
(n)

kl (δR̂
(n)

k′l′)
∗ ) in (33) can be found in the

A–D.

3. Cramer–Rao Bound

*e lower bound of the MSE for an unbiased estimator is
called the Cramer–Rao bound (CRB) [20]. *e CRB of each
parameter can be obtained from the diagonal entry of BSTO:

E Θ̂ − Θ(0)
􏽮 􏽯 Θ̂ − Θ(0)

􏽮 􏽯
T

􏼔 􏼕≥BSTO, (34)

Θ̂ � θ̂1 θ̂2 · · · θ̂N
􏽨 􏽩

T
,

Θ(0)
� θ(0)

1 θ(0)
2 · · · θ(0)

N
􏽨 􏽩

T
,

B−1
STO􏼐 􏼑

ij
�
2N

σ2
Re Tr AH

j P
⊥
AAiSA

HR− 1AS􏽮 􏽯􏽨 􏽩, i, j � 1, . . . , pN,

(35)

where N is the number of incident signals and p is the
number of parameters to be estimated for each incident
signal. For estimation of azimuth, p is equal to one. For
estimation of azimuth and elevation, p is equal to two. A is a
M by N matrix. Each column of A is an array vector as-
sociated with each incident signal. PA is a projection matrix
onto the column space of A. S is source covariance matrix,
and R is array covariance matrix.

4. Summary

In this section, the performance analysis scheme presented
in this paper is summarized. *e performance analysis
scheme and mathematical details on the performance
analysis are shown in Figure 1.

In Figure 2, it is clearly shown how the proposed scheme
is different from the existing method in [21]. In [21], an
implicit expression of estimation error is derived. Note that
Δα1 is a transformed variable of an azimuth, not the azimuth
itself. On the contrary, in this paper, explicit expressions of
estimation error of the azimuth itself and the MSE of the

azimuth itself have been derived, as shown in Figure 2. In
addition, it can be shown that the scheme presented in this
paper can be extended to the simultaneous estimation of
azimuth and elevation.

5. Numerical Results

*e parameters for simulation are as follows:

(1) Search range of azimuth (θ): −90° ∼ 90°

(2) Search step: 1∘

(3) *e number of incident signals (N): 2
(4) *e number of antennas (M): 10
(5) Distance between adjacent antenna elements: 0.3λ

and 0.5λ.

*e number of Monte Carlo simulation, T, is chosen to
be 10,000. *erefore, 10,000 Monte Carlo repetitions are
performed and the empirical MSEs are calculated:

E θ̂n
′ − θ(0)

n􏼐 􏼑
2

􏼔 􏼕 � E δθnδθ
∗
n􏼂 􏼃 �

1
T

􏽘

T

t�1
δθn( 􏼁(t)􏼐 􏼑

2
, (36)

E θ̂′
(u�1)

n − θ(0)
n􏼒 􏼓

2
􏼢 􏼣 � E δθ(u�1)

n δθ(u�1)
n􏼐 􏼑

∗
􏼔 􏼕 �

1
T

􏽘

T

t�1
δθ(u�1)

n􏼐 􏼑
(t)

􏼒 􏼓
2
, (37)

E θ̂′
(u�1,v)

n − θ(0)
n􏼒 􏼓

2
􏼢 􏼣 � E δθ(u�1,v)

n δθ(u�1,v)
n􏼐 􏼑

∗
􏼔 􏼕 �

1
T

􏽘

T

t�1
δθ(u�1,v)

n􏼐 􏼑
(t)

􏼒 􏼓
2
, (38)

where the subscript “(t)” denotes the tth repetition out of T

repetitions.

5.1. Estimation with Sensor Array of Elemental Distance 0.3 λ.
*e correlation coefficient between two incident signals is set
to be zero, which quantifies the correlation coefficient for

uncorrelated incident signals. Widely separated signals from
θ(0)
1 � −40° and θ(0)

2 � 65° are considered.
*e results for elemental distances of 0.3λ are illustrated

in Figures 3 and 4, respectively. Figure 3 illustrates how
MSEs change as the number of snapshots and the SNR
increase. In Figure 3, it is shown that the empirical MSEs of

θ̂
′(u�1)

1 and θ̂
′(u�1,v)

1 with respect to the number of snapshots
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are close to that of θ̂1′. It is also shown that the analytic MSE

of θ̂
′(u�1,v)

1 is in perfect agreement with the empirical MSE of

θ̂
′(u�1,v)

1 . Consistency of the analytic MSE with the CRB is
also illustrated in Figure 3, where T is equal to 10,000.

Figure 4 illustrates the validity of various derived ex-
pressions associated with the second incident signal by
comparing the analytic result with the simulation results. It
is also shown that the CRB is close to the analytic MSE and
the empirical MSEs.

It is also clear that the MSEs with the superscript “u � 1”
and the superscripts “u � 1, v” are quite close to that with no
approximation, which illustrates that two approximations

associated with superscript “u � 1, v” are valid. It is also
shown that the MSE of analytic result and the MSE of the
simulation results with superscript “(u � 1, v)” show good
agreement.*e decrease of MSEs with the increase of SNR is
quite clear for all the results.

5.2. Closely Spaced Incident Signals. In this section, it is
shown whether the proposed algorithm works for the
closedly spaced incident signals for elemental distances of
0.5λ.*e correlation coefficient between two incident signals
is set to be zero. Closely separated signals from θ(0)

1 � 60° and
θ(0)
2 � 65° are considered. In Figure 5, the results for ele-
mental distances of 0.5λ are illustrated.

Figure 1: Performance analysis of conventional beamforming.
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Figure 2: Comparison of the proposed scheme with the existing method.
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Figure 3: MSEs and CRB of the first incident signal.
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Figure 4: MSEs and CRB of the second incident signal.
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Figure 5: Continued.
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Figure 5: MSEs of analytic approach and that of Monte Carlo simulation-based approach (closely spaced signals from θ(0)
1 � 45° and

θ(0)
2 � 65°): (a) first incident signal (θ(0)
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2 � 65°) with respect to the SNRs for the number of snapshots of 128, (c) first incident signal (θ(0)
1 � 45°) with respect to the number of

snapshots for SNR� −5 dB, and (d) second incident signal (θ(0)
2 � 65°) with respect to the number of snapshots for SNR� −5 dB.
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Figure 6: Continued.
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It is confirmed in Figure 5 that the agreements between

the analytic MSEs and the empirical MSEs of θ̂
′(u�1,v)

1 . It is

also shown in Figure 5 that the empirical MSEs of θ̂
′(u�1)

1 and

θ̂
′(u�1,v)

1 are close to those of θ̂1′.

5.3. Fully Correlated Incident Signals. In this section, fully
correlated incident signals are considered. Fully correlated
signals refer to coherent signals, which usually occur in the
case of multipath environment. *e correlation coefficient
between two incident signals is set to be unity. *e true
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Figure 6: MSEs of analytic approach and that of Monte-Carlo simulation-based approach (coherent signals from θ(0)
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Figure 7: Execution time of analytic approach and that of Monte Carlo simulation-based approach with respect to the number of repetitions.

International Journal of Antennas and Propagation 11



incident angles are set to be θ(0)
1 � −45° and θ(0)

2 � 65°. In
Figure 6, the results for elemental distances of 0.5λ are il-
lustrated. It is shown in Figure 6 that the analytically ob-
tained MSEs are close to simulation-based MSEs, which
implies that the analytically obtained MSE can be used to see
how accurate the simulation-based estimates in the con-
ventional beamforming algorithm are.

5.4. Computational Complexity. Quantitative comparison of
computation time is presented in Section 5.4. Note that the
execution time is independent of whether the incident
signals are correlated or not. In addition, the execution time
is also independent of separation between the two incident
signals.*erefore, the computation time is arbitrarily shown
for the correlated closely spaced incident signals.

Figure 7 illustrates how computationally efficient the
proposed algorithm is. *e number of sensor is five, and the
number of snapshots is 32. *e search step of the Monte
Carlo simulation is 0.1 deg. *e execution times of the
simulation-based MSEs and analytic MSEs are illustrated
with respect to the number of repetitions. Note that the
execution time for analytically derived MSE is essentially
independent of the number of repetitions since only one
evaluation of expression (33) is necessary in the analytic
approach. On the contrary, in the simulation-based ap-
proach, the empirical MSEs are obtained from 1000, 10,000,
and 100,000 evaluations in (38). *erefore, the computa-
tional cost of the simulation-based performance analysis
increases with the increase of the number of repetitions.
Note that the number of repetitions, T, should be large to get
a reliable MES estimate.

It is clearly shown in Figure 5(d) that execution time for
theMonte Carlo simulation-basedMSE is much greater than
that for the analytically derived MSE even for the number of
repetitions of xx. Figure 7 illustrates that getting analytically
derived MSE is much less computationally intensive than
getting Monte Carlo simulation-based MSE, which justifies
why the analytically derived MSEs should be employed for
performance analysis.

6. Conclusions

In this paper, we propose a new performance analysis of the
conventional beamforming algorithm. For the conventional
beamforming algorithm, we derive closed-form expressions
of the estimates of the AOAs for small estimation error. *e
formulation accounts for various effects such as the finite
number of snapshots, SNR, and the number of repetitions.
*e formulation is based on the assumption that when the
estimation error is small, a cost function derived from the
conventional beamforming algorithm can be approximated
using the Taylor series expansion around the true incident
direction.We derive closed-form expressions of the errors of
the various estimates. In addition, closed-form expression of
the MSE of one of the estimates is derived. All the derived
expressions are validated using the numerical results and the
CRBs.

*e usefulness of the derived expression is that the MSEs
of the conventional beamforming algorithm can be available
from the derived expression without actually performing the
Monte Carlo simulation, which is illustrated in the nu-
merical results. By using the derived expression, we can get a
quantitative measure of how accurate the estimates are
without actually performing the Monte Carlo simulation.

It is shown in the numerical results that the proposed
scheme works both for uncorrelated incident signals and
coherent incident signals. *erefore, the computationally
intensive empirical MSEs are very close to the computa-
tionally efficient analytic MSEs even for coherent incident
signals, which imply that the analytically derived MSEs can
be used to quantify the estimation accuracy of the con-
ventional beamforming algorithm both for uncorrelated
incident signals and coherent incident signals.

It is also illustrated that the proposed scheme is valid for
the case of closely spaced incident signals. How closely
incident signals can be handled in the conventional
beamforming algorithm is highly dependent on the number
of sensors. Once the incident signals can be resolved in the
conventional beamforming algorithm, the proposed scheme
can be employed to get theMSEs of the estimates analytically
with much less computational complexity.

To avoid ambiguity, the elemental space between the
uniform linear array should be no greater than (λ/2). In this
paper, two cases of 0.5λ and 0.3λ are considered. *e
proposed scheme is validated for both elemental distances.

Notation

(·)T: Transpose matrix
(·)− 1: Inverse matrix
(·): Noiseless quantity
(·′): Noisy quantity
δ(·): Difference between the noisy

quantity and the corresponding
noiseless quantity

M: *e number of sensors
d: *e number of incident signals
L: *e number of snapshots
a(θ): Array vector associated with

azimuth θ
ai(θ): ith entry of a(θ)

kn � (sin θn, cos θn, 0): Unit vector describing the direction
of the incident signal

zm � ((m − 1)Δ, 0, 0): Coordinate of the mth antenna out
of M antennas

ψm(θ): *e phase at the mth antenna for
the incident from azimuth θ signal
with reference to the origin at (x �

0, y � 0, z � 0) when there is no
additive noise

x(ti): *e noiseless signals on the antenna
elements due to all the incident
signals

x′(ti): *e noisy signals on the antenna
elements due to all the incident
signals
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x(n)(ti): *e noiseless signals on the antenna
elements due to the nth incident
signal

R̂: Sample covariance matrix
associated with x(ti)

R̂kl: *e entries at the kth row and the
lth column of the R̂

R̂′: Sample covariance matrix
associated with x′(ti)

R̂kl
′: *e entries at the kth row and the

lth column of the R̂′
R̂

(n): Sample covariance matrix
associated with x(n)(ti)

R̂
(n)

kl : *e entries at the kth row and the
lth column of the R̂

(n)

F(·): *e cost function associated with R̂
F′(·): *e cost function associated with R̂′
F(n)(·): *e cost function associated with

R̂
(n)

(·)(u): *e uth order U-approximation via
the Taylor series

(·)(v): *e V-approximation based on the
fact that the smallest term out of
four terms has been omitted

(·)(t): *e quantity associated with tth
repetition out of T repetitions.

Appendix

A. Second-order Central Moment of Zero-mean
Complex Gaussian Random Variable with
Variance σ2

Depending on how a, b, d, and e are related, we define four
cases:

Case I: a � b and d � e

Case II: a≠ b and d � e

Case III: a � b and d≠ e

Case IV: a≠ b and d≠ e

(1) E[na(td)n∗b (te)]:

E na td( 􏼁n
∗
b te( 􏼁􏼂 􏼃 � E Re na td( 􏼁􏼂 􏼃 + jIm na td( 􏼁􏼂 􏼃􏼈 􏼉 Re nb te( 􏼁􏼂 􏼃 − jIm nb te( 􏼁􏼂 􏼃􏼈 􏼉􏼂 􏼃

� E Re na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃 − jRe na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃􏼂 + jIm na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃 +Im na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃􏼃.

(A.1)

For Case I, E[na(td)n∗b (te)] is given by

E na td( 􏼁n
∗
b te( 􏼁􏼂 􏼃 � E na td( 􏼁n

∗
a td( 􏼁􏼂 􏼃 � E Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃􏼂 􏼃 + E Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃􏼂 􏼃

− jE Re na td( 􏼁􏼂 􏼃EIm na td( 􏼁􏼂 􏼃􏼂 􏼃 + jE Im na td( 􏼁􏼂 􏼃ERe na td( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
+
σ2

2
− 0 + 0 � σ2.

(A.2)

Similarly, it can be shown that E[na(td)n∗b (te)] is
identically zero for Cases II–IV:

E na td( 􏼁n
∗
b te( 􏼁􏼂 􏼃 � 0, for Case II ∼ Case IV. (A.3)

Note that, in deriving (A.1)–(A.3), we used the fact
that the real part and the imaginary part of the noise
are independent and identically distributed with
N(0, (σ2/2)).

(2) E[n∗a(td)n∗b (te)]:
Using the same algebraic manipulation used in
evaluating E[na(td)n∗b (te)], it can be shown that
E[n∗a(td)n∗b (te)] is equal to zero for Cases I–IV:

E n
∗
a td( 􏼁n

∗
b te( 􏼁􏼂 􏼃 � 0, for Case I ∼ Case IV. (A.4)

(3) E[na(td)nb(te)]:

Using the same algebraic manipulation used in
evaluating E[na(td)n∗b (te)], it can be shown that
E[na(td)nb(te)] is equal to zero for Cases I–IV:

E na td( 􏼁nb te( 􏼁􏼂 􏼃 � 0, for Case I ∼ Case IV. (A.5)

B. Third-order Central Moment of Zero-mean
Complex Gaussian Random Variable with
Variance σ2

We define ten cases depending on how a, b, c, d, and e

are related:
Case I: a � b and b � c and e � d

Case II: a � b and b≠ c and e � d

Case III: a≠ b and b � c and e � d

Case IV: a � c and c≠ b and e � d
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CaseV: a≠ b and b≠ c and e � d

CaseVI: a � b and b � c and e≠d

CaseVII: a � b and b≠ c and e≠d

CaseVIII: a≠ b and b � c and e≠d

Case IX: a � c and c≠ b and e≠d

Case X: a≠ b and b≠ c and e≠ d

(1) E[na(td)n∗b (te)nc(te)]:

E na td( 􏼁n
∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � E Re na td( 􏼁􏼂 􏼃 + jIm na td( 􏼁􏼂 􏼃( 􏼁 Re nb te( 􏼁􏼂 􏼃 − jIm nb te( 􏼁􏼂 􏼃( 􏼁 Re nc te( 􏼁􏼂 􏼃 + jIm nc te( 􏼁􏼂 􏼃( 􏼁􏼂 􏼃

� E Re na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 + jE Re na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃

− jE Re na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 + jE Im na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃

+ E Re na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃 − E Im na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃

+ E Im na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 + jE Im na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃.

(B.1)

E[na(td)n∗b (te)nc(te)] for Case I is identically zero:

E na td( 􏼁n
∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � E na td( 􏼁n

∗
a td( 􏼁na td( 􏼁􏼂 􏼁 � E Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃􏼂 􏼃

+ jE Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃􏼂 􏼃E Im na td( 􏼁􏼂 􏼃􏼂 􏼃

− jE Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃􏼂 􏼃E Im na td( 􏼁􏼂 􏼃􏼂 􏼃 + jE Im na td( 􏼁􏼂 􏼃􏼂 􏼃E Re na td( 􏼁􏼂 􏼃Re na td( 􏼁􏼂 􏼃􏼂 􏼃

+ E Re na td( 􏼁􏼂 􏼃􏼂 􏼃E Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃􏼂 􏼃

− E Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃􏼂 􏼃E Re na td( 􏼁􏼂 􏼃􏼂 􏼃 + E Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃􏼂 􏼃E Re na td( 􏼁􏼂 􏼃􏼂 􏼃

+ jE Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃Im na td( 􏼁􏼂 􏼃􏼂 􏼃

� 0 + j
σ2

2
􏼠 􏼡 × 0 − j

σ2

2
􏼠 􏼡 × 0 + j

σ2

2
􏼠 􏼡 × 0 +

σ2

2
􏼠 􏼡 × 0 −

σ2

2
􏼠 􏼡 × 0 +

σ2

2
􏼠 􏼡 × 0 + j × 0 � 0.

(B.2)

Note that, in deriving (B.1) and (B.2), we used the fact
that the real part and the imaginary part of noise are
independent and identically distributed with
N(0, (σ2/2)).
Using the same manipulation used in obtaining (B.2), it
can be shown that E[na(td)n∗b (te)nc(te)] is identically
zero for Cases II–X:

E na td( 􏼁n
∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � 0 for Case II − Case X. (B.3)

From (B.2) and (B.3), E[na(td)n∗b (te)nc(te)] is zero for
all ten cases defined in Cases I–X:

E na td( 􏼁n
∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � 0, for Case I − CaseX. (B.4)

(2) E[n∗a(td)n∗b (te)nc(te)]:

E n
∗
a td( 􏼁n

∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � E Re na td( 􏼁􏼂 􏼃 − jIm na td( 􏼁􏼂 􏼃( 􏼁 Re nb te( 􏼁􏼂 􏼃 − jIm nb te( 􏼁􏼂 􏼃( 􏼁 Re ne te( 􏼁􏼂 􏼃 − jIm nc te( 􏼁􏼂 􏼃( 􏼁􏼂 􏼃

� E Re na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 + jE Re na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃

− jE Re na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 − jE Im na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃

+ E Re na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃 + E Im na td( 􏼁􏼂 􏼃Re nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃

− E Im na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Re nc te( 􏼁􏼂 􏼃􏼂 􏼃 − jE Im na td( 􏼁􏼂 􏼃Im nb te( 􏼁􏼂 􏼃Im nc te( 􏼁􏼂 􏼃􏼂 􏼃.

(B.5)
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In a similar way to obtain (B.4), we obtain

E n
∗
a td( 􏼁n

∗
b te( 􏼁nc te( 􏼁􏼂 􏼃 � 0 for Case I − Case X. (B.6)

C. Fourth-order Central Moment of Zero-mean
Complex Gaussian Random Variable with
Variance σ2

E nk ti( 􏼁n
∗
l ti( 􏼁n

∗
k′ ti′( 􏼁nl′ ti′( 􏼁􏼂 􏼃

� E Re nk ti( 􏼁􏼂 􏼃+jIm nk ti( 􏼁􏼂 􏼃􏼈 􏼉 Re nl ti( 􏼁􏼂 􏼃−jIm nl ti( 􏼁􏼂 􏼃􏼈 􏼉􏼂

· Re nk′ ti′( 􏼁􏼂 􏼃+jIm nk′ ti′( 􏼁􏼂 􏼃􏼈 􏼉 Re nl′ ti( 􏼁􏼂 􏼃+jIm nl′ ti( 􏼁􏼂 􏼃􏼈 􏼉􏼃.

(C.1)

(a) i � i′

For i � i′, (C.1) can be written as

􏽘

M

l�1
􏽘

M

k�1
fkl θ(0)

n􏼐 􏼑R̂
(n)

kl􏼒 􏼓 + 􏽘
M

l�1
􏽘

M

k�1
fkl θ(0)

n􏼐 􏼑δR̂
(n)

kl􏼒 􏼓

+ δθ(u�1)
n 􏽘

M

l�1
􏽘

M

k�1

d
dθ

fkl(θ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 θ�θ(0)
n

R̂
(n)

kl􏼠 􏼡

+ δθ(u�1)
n 􏽘

M

l�1
􏽘

M

k�1

d
dθ

fkl(θ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 θ�θ(0)
n
δR̂

(n)

kl􏼠 􏼡 � 0.

(C.2)

*e first term of (C.2) is given by (C.4), where the
results in Appendix A and Appendix B are used:

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 3
σ2

2
􏼠 􏼡

2

�
3
4
σ4, k � l, l � k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, k � l, l � k′, k′ ≠ l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, k � l, l � l′, l′ ≠ k′,

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, k � k′, k′ � l′, l′ ≠ l,

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, l � k′, k′ � l′, l′ ≠ k,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡

2

�
1
4
σ4, k � l, l≠ k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡

2

�
1
4
σ4, k � k′, k′ ≠ l, l � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡

2

�
1
4
σ4, k � l′, l′ ≠ l, l � k′,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, k � l, l≠ k′, k′ ≠ l′, l′ ≠ k,

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, k � k′, k′ ≠ l, l≠ l′, l′ ≠ k,

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, k � l′, l′ ≠ l, l≠ k′, k′ ≠ k,

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, l � k′, k′ ≠ k, k≠ l′, l′ ≠ k,

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, l � l′, l′ ≠ k, k≠ k′, k′ ≠ l,

E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃 �
σ2

2
􏼠 􏼡 × 0 � 0, k′ � l′, l′ ≠ k, k≠ l, l≠ k′,

E Re nk ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.3)
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E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk′ ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk′ ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk′ ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l≠ k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk′ ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.4)

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l′, l′ ≠ l, l � k′,

E Re nk ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.5)

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l≠ k′, k′ � l′,

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Re nk′ ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.6)

E Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � k′, k′ ≠ l, l � l′,

E Re nl ti( 􏼁􏼂 􏼃Re nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.7)

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l′, l′ ≠ l, l � k′,

E Re nl ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.8)
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E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃

�

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � l, l � k′, k′ � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 �
1
4
σ4, k � k′, k′ ≠ l, l � l′,

E Re nk ti( 􏼁􏼂 􏼃Re nk′ ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nl ti( 􏼁􏼂 􏼃Im nl′ ti( 􏼁􏼂 􏼃􏼂 􏼃 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.9)

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃Im nk′
ti( 􏼁􏼔 􏼕Im nl′

ti( 􏼁􏼔 􏼕􏼔 􏼕

�

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃Im nk′
ti( 􏼁􏼔 􏼕Im nl′

ti( 􏼁􏼔 􏼕􏼔 􏼕 �
3
4
σ4, k � l, l � k′, k′ � l′,

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃􏼂 􏼃E Im nk′
ti( 􏼁􏼔 􏼕Im nl′

ti( 􏼁􏼔 􏼕􏼔 􏼕 �
1
4
σ4, k � l, l≠ k′, k′ � l′,

E Im nk ti( 􏼁􏼂 􏼃Im nk′
ti( 􏼁􏼔 􏼕􏼔 􏼕E Im nl ti( 􏼁􏼂 􏼃Im nl′

ti( 􏼁􏼔 􏼕􏼔 􏼕 �
1
4
σ4, k � k′, k′ ≠ l, l � l′,

E Im nk ti( 􏼁􏼂 􏼃Im nl′
ti( 􏼁􏼔 􏼕􏼔 􏼕E Im nl ti( 􏼁􏼂 􏼃Im nk′

ti( 􏼁􏼔 􏼕􏼔 􏼕 �
1
4
σ4, k � l′, l′ ≠ l, l � k′,

E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃Im nk′
ti( 􏼁􏼔 􏼕Im nl′

ti( 􏼁􏼔 􏼕􏼔 􏼕 � 0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.10)

E nk ti( 􏼁n
∗
l ti( 􏼁n

∗
k′ ti( 􏼁nl′

ti( 􏼁􏼔 􏼕

�

3
4
σ4 +

1
4
σ4 −

1
4
σ4 +

1
4
σ4 +

1
4
σ4 −

1
4
σ4 +

1
4
σ4 +

3
4
σ4 � 2σ4, k � l, l � k′, k′ � l′,

1
4
σ4 +

1
4
σ4 +

1
4
σ4 +

1
4
σ4 � σ4, k � l, l≠ k′, k′ � l′,

1
4
σ4 +

1
4
σ4 +

1
4
σ4 +

1
4
σ4 � σ4, k � k′, k′ ≠ l, l � l′,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.11)

Using the same scheme in getting (C.4), the other
terms of (C.2) are given by (C.4)–(C.11). From

(C.4)–(C.10), E[nk(ti)n
∗
l (ti)n

∗
k′
(ti)nl′

(ti)] in (C.2) is
given by (C.11).
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(b) i≠ i′:

E nk ti( 􏼁n
∗
l ti( 􏼁n

∗
k′ ti′
􏼒 􏼓nl′

ti′
􏼒 􏼓􏼔 􏼕 � E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Re nk′

ti′
􏼒 􏼓􏼔 􏼕Re nl′

ti′
􏼒 􏼓􏼔 􏼕􏼔 􏼕

+ E Re nk ti( 􏼁􏼂 􏼃Re nl ti( 􏼁􏼂 􏼃Im nk′
ti′

􏼒 􏼓􏼔 􏼕Im nl′
ti′

􏼒 􏼓􏼔 􏼕􏼔 􏼕

+ E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃Re nk′
ti′

􏼒 􏼓􏼔 􏼕Re nl′
ti′

􏼒 􏼓􏼔 􏼕􏼔 􏼕

+ E Im nk ti( 􏼁􏼂 􏼃Im nl ti( 􏼁􏼂 􏼃Im nk′
ti′

􏼒 􏼓􏼔 􏼕Im nl′
ti′

􏼒 􏼓􏼔 􏼕􏼔 􏼕.

(C.12)

Using a similar way to get (C.11), for i≠ i′,
E[nk(ti)n

∗
l (ti)n

∗
k′
(ti′

)nl′
(ti′

)] is given by

E nk ti( 􏼁n
∗
l ti( 􏼁n

∗
k′ ti′
􏼒 􏼓nl′

ti′
􏼒 􏼓􏼔 􏼕 �

1
4
σ4 +

1
4
σ4 +

1
4
σ4 +

1
4
σ4 � σ4, k � l and l � k′ and k′ � l′( 􏼁,

1
4
σ4 +

1
4
σ4 +

1
4
σ4 +

1
4
σ4 � σ4, k � l and l≠ k′ and k′ � l′( 􏼁

0, (otherwise).

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.13)

D. Derivation of E[δ􏽢Rlkδ􏽢R
∗
l9k9]:

R̂
′
kl �

1
L

􏽘

L

i�1
xkti + ykti + nktix

∗
l ti + y

∗
l ti + n

∗
l ti

�
1
L

􏽘

L

i�1
xktix
∗
l ti + xktiy

∗
l ti + yktix

∗
l ti

+ yktiy
∗
l ti + xkti + yktin

∗
l ti + nktix

∗
l ti + y

∗
l ti + nktin

∗
l ti,

(D.1)

R̂kl �
1
L

􏽘

L

i�1
xktix
∗
l ti, (D.2)

δR̂kl �
1
L

􏽘

L

i�1
xktiy
∗
l ti + yktix

∗
l ti + yktiy

∗
l ti

+xkti + yktin
∗
l ti + nktix

∗
l ti + y

∗
l ti + nktin

∗
l ti.

(D.3)

From (D.3), due to the fact that noiseless signals are not
stochastic and that the real part and the imaginary part of

noise are zero-mean Gaussian distributed with variance
(σ2/2), E[δ􏽢Rklδ􏽢R

∗
k′l′] is given by
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E δR̂klδR̂
∗
k′l′􏽨 􏽩 �

1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tix
∗
k′ ti′yl′ti′

+ xktiy
∗
l tiy
∗
k′ ti′xl′ti′ + xktiy

∗
l tiy
∗
k′ ti′yl′ti′ + yktix

∗
l tix
∗
k′ ti′yl′ti′

+ yktix
∗
l tiy
∗
k′ ti′xl′ti′ + yktix

∗
l tiy
∗
k′ ti′yl′ti′ + yktiy

∗
l tix
∗
k′ ti′yl′ti′

+ yktiy
∗
l tiy
∗
k′ ti′xl′ ti′ + yktiy

∗
l tiy
∗
k′ ti′yl′ti′

+
1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tix
∗
k′ ti′ + y

∗
k′ ti′E nl′ti′􏼂 􏼃

+ xktiy
∗
l tixl′ti′ + yl′ti′E n

∗
k′ ti′􏼂 􏼃 + yktix

∗
l tix
∗
k′ ti′ + y

∗
k′ ti′E nl′ti′􏼂 􏼃

+ yktix
∗
l tixl′ti′ + yl′ti′E n

∗
k′ ti′􏼂 􏼃 + yktiy

∗
l tix
∗
k′ ti′ + y

∗
k′ ti′E nl′ti′􏼂 􏼃 + yktiy

∗
l tixl′ti′ + yl′ti′E n

∗
k′ ti′􏼂 􏼃

+ xkti + yktix
∗
k′ ti′yl′ ti′E n

∗
l ti􏼂 􏼃 + xkti + yktiy

∗
k′ ti′xl′ti′E n

∗
l ti􏼂 􏼃 + xkti + yktiy

∗
k′ ti′yl′ti′E n

∗
l ti􏼂 􏼃

+ x
∗
l ti + y

∗
l tix
∗
k′ ti′yl′ti′E nkti􏼂 􏼃 + x

∗
l ti + y

∗
l tiy
∗
k′ ti′xl′ti′E nkti􏼂 􏼃 + x

∗
l ti + y

∗
l tiy
∗
k′ ti′yl′ti′E nkti􏼂 􏼃

+
1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tiE n

∗
k′ ti′nl′ti′􏼂 􏼃

+ y
∗
k′ ti′xl′ti′E nktin

∗
l ti􏼂 􏼃 + y

∗
k′ ti′yl′ti′E nktin

∗
l ti􏼂 􏼃

+ yktiy
∗
l tiE n

∗
k′ ti′nl′ti′􏼂 􏼃 + xkti + yktix

∗
k′ ti′ + y

∗
k′ ti′

· E n
∗
l tinl′ti′􏼂 􏼃 + xkti + yktixl′ti′ + yl′ti′E n

∗
l tin
∗
k′ ti′􏼂 􏼃

+ x
∗
k′ ti′yl′ti′E nktin

∗
l ti􏼂 􏼃

+
1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xkti + yktiE n
∗
l tin
∗
k′ ti′nl′ti′􏼂 􏼃

+ x
∗
l ti + y

∗
l tiE nktin

∗
k′ ti′nl′ti′􏼂 􏼃 + x

∗
k′ ti′ + y

∗
k′ ti′E nktin

∗
l tinl′ti′􏼂 􏼃

+ xl′ti′ + yl′ti′E nktin
∗
l tin
∗
k′ ti′􏼂 􏼃

+
1
L
2 􏽘

L

i�1
􏽘

L

i′�1

E nktin
∗
l tin
∗
k′ ti′nl′ti′􏼂 􏼃. (D.4)

From Appendix A and Appendix B, it is shown that the
followings are identically zero:

xkti + yktixl′ti′ + yl′ti′E n
∗
l tin
∗
k′ ti′􏼂 􏼃 � 0,

x
∗
l ti + y

∗
l tix
∗
k′ ti′ + y

∗
k′ ti′E nktinl′ti′􏼂 􏼃 � 0,

xkti + yktiE n
∗
l tin
∗
k′ ti′nl′ti′􏼂 􏼃 � 0,

x
∗
l ti + y

∗
l tiE nktin

∗
k′ ti′nl′ti′􏼂 􏼃 � 0,

x
∗
k′ ti′ + y

∗
k′ ti′E nktin

∗
l tinl′ti′􏼂 􏼃 � 0,

xl′ti′ + yl′ti′E nktin
∗
l tin
∗
k′ ti′􏼂 􏼃 � 0.

(D.5)
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Use (D.5) in (D.4), and (D.4) is simplified to

E δR̂klδR̂
∗
k′l′􏽨 􏽩 �

1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tix
∗
k′ ti′yl′ti′ + xktiy

∗
l tiy
∗
k′ ti′xl′ti′

+ xktiy
∗
l tiy
∗
k′ ti′yl′ti′ + yktix

∗
l tix
∗
k′ ti′yl′ti′

+ yktix
∗
l tiy
∗
k′ ti′xl′ti′ + yktix

∗
l tiy
∗
k′ ti′yl′ti′ + yk

tiy
∗
l tix
∗
k′ ti′yl′ti′ + yktiy

∗
l tiy
∗
k′ ti′xl′ti′ + yktiy

∗
l tiy
∗
k′ ti′yl′ ti′

+
1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tiE n

∗
k′ ti′nl′ti′􏼂 􏼃 + yktix

∗
l tiE n

∗
k′ ti′nl′ti′􏼂 􏼃

+ yktiy
∗
l tiE n

∗
k′ ti′nl′ti′􏼂 􏼃 + xkti + yktix

∗
k′ ti′ + y

∗
k′ ti′

· E n
∗
l tinl′ti′􏼂 􏼃 + y

∗
k′ ti′yl′ti′E nktin

∗
l ti􏼂 􏼃

+ x
∗
l ti + y

∗
l tixl′ti′ + yl′ti′E nktin

∗
k′ ti′􏼂 􏼃 + y

∗
k′ ti′xl′ti′E nktin

∗
l ti􏼂 􏼃

+x
∗
k′ ti′yl′ti′E nktin

∗
k ti􏼂 􏼃 + E nktin

∗
l tin
∗
k′ ti′nl′ti′􏼂 􏼃,

(D.6)

where the second moment and the fourth moment in (D.6)
are derived in Appendix A and Appendix C, respectively.

Finally, E[(δ􏽢R)kl(δ􏽢R)
∗
k′l′] is given by

(1) k � l and l � k′ and k′ � l′:

1
L
2 􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l tix
∗
k′ ti′yl′ti′ + xktiy

∗
l tiy
∗
k′ ti′xl′ti′ + xktiy

∗
l tiy
∗
k′ ti′yl′ti′

+yktix
∗
l tix
∗
k′ ti′yl′ti′ + yktix

∗
l tiy
∗
k′ ti′xl′ ti′

+yktix
∗
l tiy
∗
k′ ti′yl′ti′ + yktiy

∗
l tix
∗
k′ ti′yl′ti′

+yktiy
∗
l tiy
∗
k′ ti′xl′ti′ + yktiy

∗
l tiy
∗
k′ ti′yl′ ti′

+
1
L
2 σ

2
􏽘

L

i�1
xktiy
∗
l ti + yktix

∗
l ti + yktiy

∗
l ti

+ xkti + yktix
∗
k′ ti + y

∗
k′ ti + x

∗
l ti + y

∗
l tixl′ti + yl′ti

+ x
∗
k′ tiyl′ ti + y

∗
k′ tixl′ti + y

∗
k′ tiyl′ti

+
1
L
2 σ

2
􏽘

L

i�1
􏽘

L

i′�1

xktiy
∗
l ti + yktix

∗
l ti + yktiy
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(2) k � l and l � k′ and k′ ≠ l′:
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(D.8)

(3) k � l and l � l′ and l′ ≠ k′:
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(D.9)

(4) k � k′ and k′ � l′ and l′ ≠ l:
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(5) l � k′ and k′ � l′ and l′ ≠ k:
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(6) k � l and l≠ k′ and k′ � l′:
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(7) k � k′ and k′ ≠ l and l � l′:
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(D.13)

(8) k � k′ and k′ ≠ l and l≠ l′ and l′:
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(9) k′ � l′ and l′ ≠ k and k≠ l and l≠ k′:
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(10) l � l′ and l′ ≠ k and k≠ k′ and k′ ≠ l:
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(11) k � l and l≠ k′ and k′ ≠ l′ and l′ ≠ k:
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(12) Otherwise,
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