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*is study sets out an empirical hybrid autoregressive integrated moving average (ARIMA) and artificial neural network (ANN)
model designed to estimate electromagnetic wave propagation in densely forested urban areas. Received signal power intensity
data was acquired through measurement campaigns carried out in the Metropolitan Area of Belém (MAB), in the Brazilian Amazon.
Comparisons were made between estimates from classical least squares (LS) fitting and ITU (International Telecommunication Union)
recommendation P.1546-5.*e results indicate themodel is, at least, 44%more precise than every ITU estimate and, in some situations,
is at least 11% better than an LS estimate, depending on the respective values of the relative error (RE).

1. Introduction

*is study examines a hybrid ARIMA-ANN model inspired
by [1] a model to predict received signal power intensity at a
receiver (Rx) location as a function of the distance to the
transmitter (Tx). *is study is based on the Brazilian digital
television (DTV) frequency range and looks at the special
case of a densely forested and urbanized city in the Amazon
region.

Television (TV) still is one of the most significant means
of communication and, in view of this, is of crucial im-
portance as a source of entertainment and information.
Since it includes DTV transmission, which operates in a
different frequency range from analogic TV transmission, a
performance analysis of received signal power is required for
both frequency ranges. Nonetheless, it should be taken into
account that there is a scarcity of wave propagation models
in the literature adapted for towns and cities in the Amazon
region or those near the Equator line. Weather itself is a key

factor in the effectiveness of telecommunication services in
this kind of region, as shown in [2].

Some other studies related to what we propose in this
work can be seen in [3–11]. In the study by Liangping and
Sternberg, two approaches are proposed to predict the Peak
Signal-to-Noise Ratio (PSNR) in video transmissions. Both
rely on time series modelling and both can achieve satis-
factory results, compared with the performance of the usual
mean ormedian algorithms.*e work in [4] shows an ARIMA
model used to address an electromagnetic propagation
problem. It is one of the few works that use this type of
modelling to tackle a problem of this kind. In [5], a hybrid
ARIMA-ANN (where the ANN works as a generalized re-
gressor) is proposed to predict the incidence of hepatitis in
Heng County, China. *e results were compared with the
single ARIMA and single ANN estimates. *e authors of [6]
propose a hybrid SARIMA (Seasonal ARIMA) and nonlinear
autoregressive neural network (NARNN) for forecasting the
incidence of hand-foot-and-mouth disease in Chenzen, China.
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In study [7], the authors propose a hybrid ARIMA and
support vector machines (SVM) neural networks for fore-
casting stock prices. In [8], the authors propose a technique
for time series forecasting where models from state space
(ETS) modelling for exponential smoothing are combined
with a neural network. *e aim is to enable the authors to
obtain different combinations of linear or nonlinear patterns
in a time series more easily. Comparisons were made be-
tween a single ARIMA, a single ETS, a multilayer perceptron
neural network, and some ARIMA-ANN, and the planned
modelling achieved good results.

*e authors of [9] put forward a hybrid ARIMA-ANN
model which, before being fitted, takes note of the volatility
of the studied series. *e results obtained outperform those
of the ARIMA, ANN, and ARIMA-ANN models. *e work
in [10] devises a hybrid evolutionary system comprising a
simple exponential filter for smoothing, ARIMA, autore-
gressive (AR) linear models and a support vector regression
(SVR) model. *e authors employ a particle swarm optimi-
zation method to select the order of the AR model, SVR pa-
rameters, and the number of lags in the time series.*e authors
claim their results are promising in the domain of forecasting.
Finally, the study includes a review of various hybridmodelling
techniques applied to time series forecasting [11].

*e studies outlined above show the wide range of
applications of both time series models, neural networks and
hybrid approaches. However, only one of these works di-
rectly tackles the problem of electromagnetic propagation
modelling by means of any kind of time series models.

*is work aims to illustrate an alternative strategy for
addressing electromagnetic propagation problems to
achieve satisfactorily results. *e results of this work show
the feasibility of the proposed model. Comparisons with
classical LS fitting and ITU recommendation P. 1546-5,
which treats on wave propagation in frequencies from
30MHz to 3GHz, were performed, using relative error (RE)
and root-mean-square error (RMSE) errors values as
benchmarks.

2. The Proposed Model

Time series is a sequence of observations taken sequentially
in time [12], or, in other words, an outcome of a stochastic
process. An intrinsic feature of a time series is that, typically,
adjacent observations are dependent. *e same concept can
be extended to any kind of observations that follow a se-
quential pattern, not necessarily in time. One example is the
datasets for the predictions in this study, where the “dis-
tance” variable is used to replace the “time” variable.

Models of the ARIMA type are linear. *is means that
they are able to give a satisfactory description of a series in
which the main information is represented in linear terms.
However, there are some limitations to the range of problems
that can be tackled using ARIMA models. One way to get
around this problem is to use a hybrid modelling technique, as
in this study. *e hybrid model proposed here was influenced
by [1] and consists of a hybrid ARIMA-ANN technique.

Basically, we use the ARIMA model to make a first
adjustment on the analysed series to represent its linear

information. *en, we adjust the residuals of the ARIMA
fitting with the nonlinear technique (in this work, it is a
generalized regressor neural network). *e necessary cal-
culations and programs were carried out on MATLAB
software, by means of internal functions, both for ARIMA
and the ANN.

Owing to the empirical nature of the proposed model,
data regarding scenarios different than the one studied in
this work are crucial to generalize the possibilities of ap-
plications for this modelling.

3. Measurement Campaign

*e data used in this work was acquired through mea-
surement campaigns in the surrounding area of the city of
Belém (north of Brazil). Data were obtained from a single
transmitter, which operates in the frequency range of 518.14
to 524.14MHz. *ese points were divided into three groups
called radials, namely, radial 1 (angle of 30°), radial 2 (angle
of 45°), and radial 3 (angle of 80°). *ey are shown in
Figure 1. *e first point of each radial is located at a
minimum distance of 1 km from the origin.

*e DTV transmitter is located at a height of 114.58m
from the ground at a central, inhabited, and urbanized
neighbourhood of Belém. Receiver antenna was situated at a
height of 1.5m from the ground, on the roof of a car (in
order to simulate the scenario of a DTV service user),
properly isolated from its body. Measurements were carried
out in the morning, when there was clear weather and the
temperature was approx. 30°C. Traffic was normal as well,
that is, there were no traffic jams around the measurement
points.

4. Data Handling

*e results of this study were obtained by following the series
of steps shown in Figure 2. As shown in the diagram, there is
an interpolation branch in the testing process. We did this
for two reasons: first, to increase the number of samples for
each measured dataset, which allows the ARIMA model to
work with more samples and, thus, refine its adjustments.
We used a shape-preserving piecewise cubic interpolation
(here abbreviated as SPPCI) to increase the number of
samples of each dataset to 200 (two hundred).

In addition, the interpolated group of datasets is able to
simulate a “no stop” measurement campaign scenario,
which is usually more desirable than a “stop-and-go”
campaign scenario, where it is necessary to stop at every
measured point to acquire data. Our measurement cam-
paigns were of the “stop-and-go” type. Since there are no
stops on a “no stop” campaign, ideally, the receiver antenna
operates at a constant speed through the measured radial,
where it is continuously acquiring data. *is is a desirable
measurement scenario, since it is faster and, usually, less
expensive than a “stop-and-go” measurement campaign. In
this type of measurement scenario, the number of samples
acquired is naturally higher, since the receiver is always
acquiring information.

2 International Journal of Antennas and Propagation



Original data

Interpolation

Tendency
calculation

Nonlinear
transformation

ACF and PACF
analysis

Difference(s)

ARIMA definition

ARIMA estimate

Neural network

No interpolation

Tendency
calculation

Nonlinear
transformation

ACF and PACF
analysis

Difference(s)

LSLS

ARIMA definition

ARIMA estimate

Neural network

Final results and
comparisons

Figure 2: All the steps followed in the fitting process. Optional steps in dashed lines.

Figure 1: Measured points. Radials 1, 2, and 3 (adapted from [2]).
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In this work, we divided the procedures in two groups:
“original datasets,” whose number of samples for each series
are not increased, and “interpolated datasets,” that are the
interpolated versions of the original series. *ey will be
addressed in this manner from now on when exposing
results and making comparisons.

*e two groups of datasets (original and interpolated)
undergo the same procedures, in order to obtain the results.
In addition, after analysing the studied datasets, we decided
to isolate the trend in every dataset before both the LS and
ARIMA fitting. In the case of the ARIMA fitting, it is a
predicted measure to make the studied series stationary [12].
With regard to the LS fitting, we proceeded in this way as
well so that a fair comparison could be made with the
proposed modelling. We calculated a linear tendency for
each dataset, carried out the adjustments for the series and,
before comparing the results, these tendencies were rein-
tegrated to the estimated curves.

5. ARIMA Fitting Methodology

*e ARIMA fitting methodology was based on the auto-
correlation function (ACF) and partial autocorrelation
function (PACF) analysis of the studied series [12]. It should
be noted that, when using the ARIMA model, the (usual)
variable “time” is replaced with the “distance” variable. In
other words, it is assumed that the received signal power
intensity in one point depends on the previous values,
according to the chosen metric (in this case, the distance to
from Rx to Tx).

Before an ARIMA model can be fitted, the series that
needs to be adjusted must be stationary. Manipulations of
the series such as nonlinear transformations (e.g., loga-
rithmic transformations), differences and attempts to isolate
its tendency are the usual ways of turning a nonstationary
series into a stationary series [12]. After ensuring that the
analysed series is stationary, we proceed to an analysis of
ACF and PACF. When these functions behave like that of a
stationary process, we can define the order of the ARIMA
model [12]. As indicated by the diagram in Figure 2, the
“nonlinear transformation” and the “differences” steps in the
series are optional steps for the data of this work. When
analysing other datasets or fitting this modelling on another
problem, these steps may become mandatory.

6. LS Fitting Methodology

Aiming a fair comparison between the proposed hybrid
model and the LS method, we chose to represent the studied
scenario, an equation similar as the one of an ARIMAmodel,
that is, a recursive polynomial. In this work, we chose a
second-order polynomial when applying the LS method (see
equation (1)).

fh � a1 fk−1 + a2 fk−2 + a3. (1)

*e coefficients ai, i � 1, 2, 3, of equation (1) were de-
termined by using an LS method solved by means of a
Levenberg–Marquardt [13] algorithm. However, the LS
method has some limitations, especially if the analysed

dataset contains a large number of samples. In these situ-
ations, the LS methods may not be able to find, directly, an
optimal solution (or may take a long time finding it), owing
to the huge size of the search area. As a means of overcoming
these problems, the authors recommend fitting an ARIMA
(or the proposed hybrid ARIMA-ANN) model as an al-
ternative to the LS method (it is the objective of this work,
after all).

7. Neural Network Fitting Methodology

When refining the results obtained from the ARIMAmodel,
it is possible to complement the ARIMA adjustment with a
nonlinear methodology (in this case, an ANN) to fit the
nonlinear part of the datasets, which are not fitted in an
ARIMA model. When complemented with the ARIMA
fitting, we call it a “combined model” (CM).

In this study, we employ a radial basis function (RBF)
ANN with two layers with a Gaussian activation function.
*is ANN works as a generalized regressor. A theoretical
diagram of a generalized regressor is shown in Figure 3. *e
neurons of the first layer make an element-wise product
between the biases and the weights and each neuron cor-
respond to a training point. *e neurons of the second layer
normalize the values previously found (see MATLAB
documentation on newgrnn neural network [14]). In the
original training dataset, eight of the twenty-five original
samples were used to train the network (as in Figure 4).With
regard to the interpolated datasets, we used 24 of the 200
available samples. We proceeded in this way to avoid
overfitting the ANN, since its adjustment must be used in
other datasets as well. *e boundaries and the central
samples are always used as fitting points. *e other points
are chosen at random. We used 1 as the spread value of the
neural network. *e output of the network is, thus, inter-
polated (SCCIP) to ensure that the final output vector has
the same number of elements as the measured data and the
ARIMA vector.

In Figure 3, h(x) is the activation function, w are the
weights, x are the inputs, n is the number of inputs, andf(x)

is the exit function. *e diagram of the architecture of the
ANN used in the original datasets fitting is shown in
Figure 4.

8. Results

*e results are divided into two groups, depending on what
type of dataset was used (whether original or interpolated).
*e best results were obtained by using the “radial 2” dataset
as a training set. *e “radial 1” and “radial 3” datasets were
used for purposes of comparison.

8.1. Least Squares Fitting:OriginalDatasets. *e LS fitting on
the problem originated from equation (1), for the “radial 2”
dataset, resulted in a1 � 0.2893, a2 � 0.4927 and
α3 � −19.5619. *e Euclidean norm of residuals was
17.9024. *e graphs with the LS estimated curves are shown
along with other results of this work in Figure 5. Table 1
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Figure 5: Graphs of the combined ARIMA model adjust for radial 2 (a) and estimates for radial 3 (b) and 1 (c).
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shows the relative and RMS errors for the LS fitting in the
three radials.

8.2. Least Squares Fitting: Interpolated Datasets. By analogy,
in the case of the interpolated datasets, we have
a1 � −0.9876, a2 � 1.9863 and α3 � −0.1023. *e Euclidean
norm of residuals was 1.1923. Figure 6 shows the graphs of
the measured interpolated datasets and the LS estimations.
Table 2 shows both the relative and RMS errors for the LS
fitting in the three interpolated datasets.

We also tested the LS fitting using higher-order poly-
nomials. *e second-order LS fitting obtained good results
for both the original and interpolated dataset curves.
However, when the order of f was increased for the in-
terpolated datasets, the LS could not find an optimal so-
lution, no matter the choice of initial point.

8.3. ARIMA Fitting: Original Datasets. Let Z2 be the
mathematical notation for the original measured series of
the “radial 2” dataset. We examined the measured data
without seasonal components. Since we also isolated its
trend, as described above, we concluded that Z2 � L2 + N2,
with L2 representing the linear term of Z2 and N2 its
nonlinear term.*e ARIMA adjustment is made for L2.*at
said, we also have L2 � T2 + α2, where T2 is the tendency for
Z2 and α2 its white noise (in which may be some nonlinear
information). Since the linear trend was calculated before, by
means of an LS method, we have 􏽢T2 as an estimate for this
tendency. *erefore, the series that must be estimated by the
ARIMA model is represented by Y2 in Y2 � L2 − 􏽢T2. *e
estimated series will be called 􏽢Y2 and is represented by
􏽢Y2 � 􏽢L2 − 􏽢T2. *e mathematical representations for the
“radial 3” and “radial 1” series were obtained in an analogous
way, and their estimated series are called 􏽢Y3 and 􏽢Y1, respec-
tively. After analyzing the ACF and PACF graphs for the series
under study, we decided to employ an ARIMA (2, 0, 0) model
to fit the training data. *is is represented by equation (2).

Yh � ϕ1 Yh−1 + ϕ2Yh−2 + c, (2)

where ϕ1 � −0.0310998, ϕ2 � −0.543184, and c � −0.35095.
*e graph with the best adjustment for the “radial 2”

dataset is shown in Figure 5.*is is the graph that originated
from the estimate of (2) when applied to its own adjustment
dataset, i.e., Z2, as in 􏽢L2 � 􏽢Y2 + 􏽢T2. By analogy with 􏽢L2, we
can write 􏽢L3 and 􏽢L1. In addition, Figure 5 shows, as well, the
graphs of the estimates of the ARIMA model for the “radial
3” and “radial 1” datasets as well. All these graphs also show
the estimates of the ITU and LS method for each radial.

Table 1 shows the relative and RMS errors of the ARIMA, LS,
and ITU estimates for the three radials studied in this work.

8.4. ARIMA Fitting: Interpolated Datasets. We represent
variables that are originated from interpolated datasets with
the symbol “∼” above the variable letter, as seen when
comparing equation (3) with equation (2). When proceeding
in an analogous way to the original datasets group, the fitting
process for the interpolated series gave, as its best result, an
ARIMA (4, 0, 0) model expressed as in equation (4).

􏽥Yh � 􏽥ϕ1 􏽥Yh−1 + 􏽥ϕ2 􏽥Yh−2 + 􏽥ϕ3 􏽥Yh−3 + 􏽥ϕ4 􏽥Yh−4 + 􏽥c, (3)

where 􏽥ϕ1 � 3.30286, 􏽥ϕ2 � −4.08633, 􏽥ϕ3 � 2.24252,
􏽥ϕ4 � −0.461087, and 􏽥c � −0.000971798. *e graphs with the
ARIMA results for interpolated data are shown in Figure 6.
*e relative and RMS error for the interpolated datasets are
displayed in Table 2.

8.5. Neural Network Fitting: Original Samples. We fitted a
neural network for the difference between the ARIMA estimate
and the original data. *at is, let 􏽢L be the ARIMA estimate of
one measured dataset Z. *is can be written as in equation (4).

Z � 􏽢L + N. (4)

In equation (4), the nonlinear term of Z, which will be
fitted by the neural network, is represented by N.

In this study, we use RBF with two layers from an in-
ternal generalized regressor function of MATLAB
(newgrnn). It has a Gaussian activation function, and the
network estimate 􏽢N is given by equation (5).

􏽢N � 􏽘
n

j�1
wj exp −

x − cj􏼐 􏼑
2

2σ2j
⎛⎝ ⎞⎠, j � 1, . . . , n. (5)

In the original training dataset, we used four of the
twelve original samples to train the network, so that the N2
(non-linear part of Z2 dataset, which is the training set)
group could be fitted. Finally, the estimated values from the
neural network 􏽢N are then added to the estimated ARIMA
values, so we have the final estimation model for 􏽢Z, which is
given by equation (6).

􏽢Z � 􏽢L + 􏽢N. (6)

In the case of the original datasets, the adjustment for
“radial 2” and the estimates for “radial 3” and “radial 1”
datasets are shown in Figure 5. Table 1 shows the relative and
RMS errors values of every type of modelling compared in
this work (for the original datasets).

Table 1: RE and RMSE values for original datasets.

Radial 2 Radial 3 Radial 1
RE RMSE RE RMSE RE RMSE

ARIMA 0.0459 5.0659 0.0484 3.7714 0.1391 8.8801
CM 0.0469 5.2547 0.0713 5.5169 0.1593 10.232
LS 0.0474 5.0775 0.1127 7.9867 0.1971 15.199
ITU 0.5237 38.882 0.6731 38.346 0.5753 37.256
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8.6. Neural Network Fitting: Interpolated Samples.
Analogously, Figure 6 shows the results for the fitting and
estimations on the interpolated datasets, and their respective
relative and RMS errors are shown in Table 2.

8.7. Complementary Results. *e abovementioned results
show that the proposed hybrid modelling has a slight worse
result than the single ARIMA fitting.*ere is evidence in the
literature that this is, in fact, possible and even expected,
sometimes, such as exposed in [15, 16]. Aiming to solve this
problem, we can tackle the problem differently. In this work,
we apply three other possibilities of combinations and
calculations in the nonlinear fitting stage.*e first possibility
consists on using an algorithm to find the best value for the
spread variable of the ANN already used here, as this is the
only variable that can be changed in the original architecture
of the ANN used so far. We chose a search method of the
“for” type between values from 0.3 to 1, with a step of 0.1.We
expect that the best value found is 0.3, since this makes the
ANN fitting closer to the training points. *e second

possibility consists in developing another ANN, but using an
architecture inspired in [15].*e third possibility is to test other
combinations for 􏽢L and 􏽢N using the ANN of the second al-
ternative to calculate 􏽢Z.We test the sum combination (􏽢L + 􏽢N),
the element-wise product (array element) combination (􏽢L ×

􏽢N) and the exponential combination (􏽢L
(􏽢N/max(􏽢N))

). *e terms
􏽢L and 􏽢N are vectors. *e linear calculation is not modified in
any way, as well as the hybrid nature of the proposed mod-
elling. All the tests executed in this subsection involve changes
in the nonlinear calculation stage, since the first round of tests
was not as good as expected.

*e graphs of the estimates for the spread searched and
the ANN inspired by [ARTIGOMAIS FÁCIL], called “ANN
#2,” are shown in Figure 7. *e architecture of ANN #2 is
shown in Figure 8. *e RMSE values for both sets of esti-
mates as shown in Table 3.

*e architecture of ANN#2 is very different from the
generalized regressor used on the first set of calculations of
the last subsections. It now has the sigmoid function (see
equation (7)) as its hidden layer activation function (there
are two hidden layers) and the training method is the
Levenberg–Marquardt. *e last layer has a purelin function,
which normalizes the values of the ANN aiming to make the
output value range the same of the input, since, internally,
the ANN may work with a different range of values. *e
inputs and outputs are now matrices of two columns and n

lines, with n being the quantity of samples of each vector.*e
first column of the input matrix is a vector with elements
valued from 1 to n, that is, the “X axis.” *e second column is
the target, i.e., the values which the ANNneeds to fit.*is setup
provided significant better results than the standardized
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Figure 6: Graphs of combined ARIMA model adjust for radial 2 (a) and estimates for radial 3 (b) and 1 (c).

Table 2: RE and RMSE values for interpolated datasets.

Radial 2 Radial 3 Radial 1
RE RMSE RE RMSE RE RMSE

ARIMA 0.0635 5.8653 0.1019 6.2009 0.0624 4.3491
CM 0.0650 6.3012 0.1183 7.6129 0.0982 7.4572
LS 0.1701 15.088 0.5020 31.829 0.3564 26.320
ITU 0.5155 38.436 0.6544 36.402 0.5820 38.393
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generalized regressor ANN used before, as confirmed by
the RMSE values on Table 3. We applied the same new
type of input (two-column matrices, instead of a single
vector) to the RBF ANN used with the spread search
technique as follows:

Sig(x) �
1

1 + e−x
. (7)

We want to stress that, in Figures 9(d)–9(f ), the spread
searched ANN and the ANN#2 networks obtained the same

result, since the red dots are exactly on the green curve,
which is almost invisible. We can conclude that either the
ANN#2 or the spread searched generalized regressor were
able to improve the first results (Figures 5 and 6 and Tables 1
and 2).

Curiously, the best spread value obtained from
the “for” technique was 1, differently from what we
expected. *is value was the same used before and the
standard value from MATLAB. *us, we conclude that
the new inputs in the generalized regressor were the key
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Figure 7: Graphs of ANN #2 and spread searched fittings for original radial 2 (a); original radial 3 (b); original radial 1 (c); interpolated
radial 2 (d); interpolated radial 3 (e);and interpolated radial 1 (f ).
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Figure 8: ANN#2 diagram [14].

Table 3: RMSE values for ANN#2 and spread searched ANN tests.

Hybrid modelling Radial 2 Radial 3 Radial 1
RMSE (dB) RMSE (dB) RMSE (dB)

Original ARIMA-ANN#2 0.7227 1.0602 2.7523
Interpolated ARIMA-ANN#2 3.2126 7.1481 5.1963
Original ARIMA-spread-searched-ANN 0.7227 1.0602 2.7523
Interpolated ARIMA-spread-searched-ANN 3.2126 7.1481 5.1963
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Figure 9: Sum combination for original radial 2 (a); original radial 3 (b); original radial 1 (c); interpolated radial 2 (d); interpolated radial 3
(e);and interpolated radial 1 (f ).
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Figure 10: Continued.
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Figure 10: Product combination for original radial 2 (a); original radial 3 (b); original radial 1 (c); interpolated radial 2 (d); interpolated
radial 3 (e);and interpolated radial 1 (f ).
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Figure 11: Exponential combination for original radial 2 (a); original radial 3 (b); original radial 1 (c); interpolated radial 2 (d); interpolated
radial 3 (e);and interpolated radial 1 (f ).
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factor to the improvement of the results when using the
RBF ANN.

Regarding the combination tests for 􏽢L and 􏽢N, their
graphs and RMSE values are shown in Figures 9–11 and
Table 4, respectively.

From the graphs in Figures 9–11 and results in Ta-
ble 4, we conclude that for the given datasets, the best
combination for the linear and nonlinear terms is, in-
deed, a sum. Different from [15], we judged not necessary
to let the ANN decide what combination was better. We
chose, previously, some combinations deemed more
probable of giving good results and tested, since we have
empirical data and the proposed model does not have
terms for environmental or physical influences (at least
not yet).

9. Conclusions

When the original datasets are considered, the single
ARIMA adjustment is, at least, equivalent to the usual LS
fitting. In addition, it seems to be unnecessary to tackle this
specific problem by complementing it with the ANN to fit
the non-linear terms of the studied series, since when the
network is applied, there is a slight increase in errors. Re-
garding the interpolated datasets, the LS fitting was not able
to adjust to the training set properly.*is was possibly due to
the increased number of samples, which increases the size of
the search area. *e ARIMA fitting was, at least, 11% better
than the LS fitting (it should be emphasized that this 11%
improvement was found in the training set). In the sets used
for comparison, the benefits of the ARIMA fitting were
much greater than this. In a similar way to the original
datasets, it is apparently not necessary to complement it with
the ANN fitting, since the errors also increase slightly for
radials 2 and 3, and there is a bigger rise for radial 1.

From the first set of results, we chose to make other tests,
inspired in the literature, with another architecture of ANN
and by varying the spread value on the generalized regressor
initially applied to this problem. *ese changes provided
better results, improving significantly its reliability (for the
studied datasets).

As future improvements to this work, the authors intend
to acquire data from different areas, in order to improve the
generality of the proposed model. It may, although, imply on
changing its mathematical formulation, since the ARIMA
fitting depends, basically, on the training series. Another way
of improving this model is to isolate the weather influence. It

would be done by measuring each point again on the rainy
season, as in [2], and analysing the series acquired on this
second measurement campaign. A third suggestion on how
to improve this study is testing another hybrid technique in
the same problem and assessing if there is onemore suited to
the electromagnetic propagation modelling.
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