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A differentially fed dual-polarized antenna with low cross-polarization is proposed for sub-6GHz applications. )e main patch is
fed through two pairs of symmetrical ports, and annular-ring slits are etched around the feedings. )e broadband 180° phase
shifter provides a stable differential feeding structure, and a 1mm thick radome with a parasitic patch printed on its inner surface
is utilized to expand the impedance bandwidth. )e impedance bandwidth of the proposed antenna ranges from 3.3 to 6.0 GHz,
covering the entire sub-6GHz band. )e 4-element antenna array features low profile, wide bandwidth, low cross-polarization
level, and stable gain over the entire operating band.)e prototype of the antenna array is fabricated andmeasured, and the design
is well validated by experimental results.

1. Introduction

)e 3rd Generation Partnership Project (3GPP) has rec-
ommended the sub-6GHz bands (3.3–4.2GHz and
4.4–5GHz) [1, 2] and mm-wave frequency bands
(24.25–29.5GHz) [3] as the 5G New Radio (NR) bands.
Compared with mm-wave band, sub-6GHz band has the
advantages of less signal attenuation, long transmission
distance, and being not easy to be blocked. )erefore, the
sub-6GHz band is more suitable to ensure outdoor signal
coverage. On this basis, in order to make full use of spectrum
resource, polarization diversity technology has been widely
used. As a transmitting or receiving antenna in these
communication systems, dual-polarized antenna design is
preferred, since it can increase the channel capacity and
reduce the multipath fading effect. Meanwhile, low cross-
polarization level and high isolation between feeding ports
are required, because multiple-input ports are necessary to
achieve the dual polarization. )us, a dual-polarized an-
tenna/array working at sub-6GHz band with low cross-
polarization and high isolation is worth studying.

)ere have been many antenna designs reported for sub-
6GHz applications in recent years [4–21], which can be
divided into two types approximately: crossed-dipole an-
tennas and patch antennas. )e crossed-dipole antennas
usually have the advantage of wide bandwidth; however, due
to the limit of the perfect electric conductor (PEC) reflector,
these antennas usually have a relatively high profile around
0.25λ0 (λ0 is the free-space wavelength at the center fre-
quency). In [5], a low profile differentially fed dual-polar-
ization antenna is proposed for 5G microcell
communications. By introducing an artificial magnetic
conductor (AMC) reflector that is composed of annular
patches, the profile can be reduced to 0.13λ0. However, the
AMC structure increases the cost of fabrication, which limits
mass production. Meanwhile, patch antennas have also
received extensive attention due to its advantages of low
profile and low cost. In [17], a differentially driven dual-
polarized patch antenna that utilizes the intersected open-
loop resonators is proposed for wireless communication
systems. In [19], a dual-band dual-polarization filtering
antenna is achieved by employing the coupled resonator
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Figure 1: Configuration of the antenna element.

Table 1: Optimum dimensions of the antenna element (unit: mm).

Parameter W1 W2 D1 P1 H1 H2 H3

Values 12.5 13.2 1 5.2 3 1.5 1
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Figure 2: Four-port network and differential two-port network model of the antenna element.
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technique. However, due to the low profile and planar
configuration, patch antennas normally face the problem of
limited bandwidth, which makes it difficult to meet the
bandwidth requirement for sub-6GHz applications. In [20],
combined with differential feeding scheme, a dual-polarized
antenna achieves a wider bandwidth of 26% (3–3.9GHz)
with low profile of 0.13λ0; however, this bandwidth is still not
adequate to cover the entire sub-6GHz band.

In this paper, the design of a broadband dual-polarized
antenna that works stably throughout the entire sub-
6 GHz band is proposed. Not only has the effect of the
radome been taken into consideration in the design, but
also the radome structure is utilized to expand the im-
pedance bandwidth of the antenna. )is integrated design
results in a very wide bandwidth ranging from 3.3 to
6 GHz. Owing to the differential feeding technique, the
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Figure 3: Simulated (S)ddAA, Zin, and Smith chart of the single-layer patch antenna.
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Figure 4: Continued.
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Figure 4: Simulated (S)ddAA, Zin, and Smith chart of different antennas.
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Figure 5: Parametric studies of the proposed antenna by changing the values of (a) W2, (b) H2, and (c) H3.
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Figure 6: Current distributions on the main patch and the parasitic patch when port A is fed differentially: (a) main patch and (b) parasitic
patch.
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1 × 4 antenna array possesses low cross-polarization, high
isolation, stable gain, and radiation pattern within the
entire frequency band.

2. Antenna Design

2.1. Antenna Element. Figure 1 shows the geometry of the
antenna element. )e main radiator is a square patch that is
printed on an FR4 substrate (εr � 4.4, tanδ � 0.02) with the
thickness H1. )e patch has the side length of W1 and is

differentially fed through four ports (named ports 1 to 4).
Each port is P1 distant from the patch’s center and is
connected to the ground via a metallized via hole. In ad-
dition, an annular-ring slit with the inner diameter D1 is
etched from the patch around each via hole for convenient
tuning of the antenna’s input impedance. Above the main
patch, an FR4 slab with the thickness H3 is used as the
radome to protect the antenna from outside environments.
To maintain a low profile of the entire antenna structure, the
space H2 between the radome and the main radiator should
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not be large. )erefore, due to the close proximity between
them, the radome has significant effects on the radiation
performance of the main patch. However, in this design, we
utilize the positive role of the radome and print a parasitic
square patch with the side lengthW2 on the inner surface of
it to build a stacked patch structure for bandwidth expan-
sion. )rough exhaustive parametric study, the optimum
dimensions of the antenna element are obtained and listed in
Table 1 for reference.

2.2. Working Principle. Since the antenna is fed differentially
through two pairs of symmetrical ports, the proposed antenna
is a single-ended four-port network, as shown in Figure 2(a).
According to the definition of S-parameters, we have

[b] � [S][a]. (1)

At the same time, when ports 1 and 2 are excited with
equal magnitude and 180° phase difference, they can be
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Figure 9: Simulated radiation patterns of the antenna at two different frequencies. (a) 3.5GHz; (b) 5GHz.
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considered as a pair of differential port (named port A) [22].
Similarly, ports 3 and 4 can also be regarded as the differ-
ential port B. As defined in [22], the antenna is actually a
two-port differential network, as shown in Figure 2(b). At
this time, we have

bdA

bdB

􏼢 􏼣 �
SddAA SddAB

SddBA SddBB
􏼢 􏼣 ·

adA

adB

􏼢 􏼣, (2)

where

bdA � b1 − b2,

bdB � b3 − b4,

adA � a1 − a2,

adB � a3 − a4.

(3)

Considering the differential port A, when ports 1 and 2
are differentially excited while port 3 and 4 are connected to
50Ω loadings, the differential S-parameters can be defined:
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On the basis of the above discussion, the antenna
design can be carried out as follows: First, only single-
layer patch antenna is considered, as shown in Figure 3,
Ref1. )e length of the main patch is W1 � 12.5 mm,
which is about 1/2 λg at 5.3 GHz (λg is the guided
wavelength). On this basis, annular-ring slits are etched
around the feedings [23], as shown in Figure 4, Ref2. )e
annular-ring slits change the impedance characteristics
of the feeding point, causing the input impedance curve

of the antenna surrounding the origin on the Smith chart.
Next, a radome is added above the main patch, as shown
in Figure 4, Ref3. As shown in Figures 4(b) and 4(c), the
radome has the effect of impedance matching, thereby
improving the impedance bandwidth of the antenna. As
shown in Figure 4(a), the antenna shown in Ref3 is still
poorly matched at low frequencies (3.3–3.5 GHz).
For this reason, a large-sized parasitic patch is printed on
the lower surface of the radome, thereby improving
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the impedance matching at low frequencies, which makes
the antenna cover the entire sub-6 GHz band. )e
parametric studies of the antenna parameters are shown
in Figure 5.

)e current distribution on the patch is relatively
consistent throughout the entire frequency band, and no
high-order modes were generated. Taking 5 GHz as an
example, the current distribution is shown in Figure 6.
When port A is differentially fed, the current direction is
along the x-direction; and, symmetrically, when port B is
differentially fed, the current direction is along the y-di-
rection. )ereby, two orthogonally polarized waves are
generated. Meanwhile, the proposed antenna has a high
port isolation, as shown in Figure 7. Because the antenna
structure is symmetrical, S31 equals S41 and S32 is equal to
S42 according to the network theory. )us, SddBA should be
zero from equation (4), which means that high isolation is a
natural result of the differential feeding scheme. Figure 6
can also be used to illustrate this point, in which when the
differential port A is fed, the current near ports 3 and 4 is
completely symmetrical. )is indicates that the potential
difference between the two ports is zero, and no current will
flow into ports 3 and 4, which leads to a high isolation
between two differential ports.

Figure 8 shows the simulated gain and cross-polari-
zation level of the antenna at the broadside direction. Due
to the differential feeding, on the two half patches, the
direction of the currents that are orthogonal to the main
currents is opposite, so the cross-polarization radiation can
be very low. Within the entire sub-6 GHz band, the cross-
polarization level is less than −45 dB. )e simulated ra-
diation pattern of the antenna at two typical frequencies in
the 5G NR band is shown in Figure 9, and the maximum

cross-polarization is observed to be less than −36 dB within
the space of solid angle θ≤ 60°.

2.3. Feeding Network. As seen in the last subsection, the
antenna will maintain very stable performance if the feeding
provides ideal differential signal. )erefore, it is extremely
important for the feeding network to output two stable
signals with equal magnitude and reverse phase within a very
wide band that can cover the entire sub-6GHz frequencies.
In this design, we use the feeding network that is shown in
Figure 10. )e network consists of a simple T-type power
divider with one phase shifter cascading on each of the two
output branches. )e phase shifter adopts a transition
structure from microstrip line to ground slot [24]. As shown
in Figure 11, the current transmits along the microstrip line
(A1–B1 or A2–B2) and then couples to the slot through a
microstrip-slot transition structure at point B1 or B2 and
then transmits along the slot (B1–C1 or B2–C2) until it is
coupled to the microstrip line at point C1 or C2. Since the
coupling direction is opposite at C1 and C2 with reference to
the direction of electric field (marked as + and – in Fig-
ure 11), 180° phase difference is introduced between the two
branches. Moreover, the total length of the two branches is
approximately identical (A1–D1 and A2–D2), so, compared
with traditional phase shifters, the output signals at the end
of two branches (i.e., at the points D1 and D2) have the same
magnitude and 180° phase difference almost independent of
frequency. In addition, the impedance matching of the
structure can be finely tuned by changing the radius of the
circular stub (R1 and R2), as shown in Figure 12. )e
simulated S-parameters of the feeding network are shown in
Figure 13. It is seen that the transmission loss ranges from
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−3.60 to −3.13 dB, which is mainly due to the relatively large
dielectric loss of the low-cost FR4 substrate (tanδ � 0.02).
Within the entire frequency band, the return loss is better
than 12 dB and the phase difference of the two output ports
is 180°± 0.8°, which shows very stable broadband phase shift
performance.

3. Antenna Array and Results

As shown in Figure 14, a 4-element linear array is designed,
and the prototype is fabricated and measured for possible
use in sub-6GHz applications. )e interelement spacing is
40mm, corresponding to 0.62λ0 (λ0 is the free-space

Differential port A

Differential port B

Z

X Y

(a)

(b) (c)

(d)

Figure 14: Simulation model and fabricated prototype of the 1× 4 antenna array. (a) Simulation model, (b) top view, (c) back view, and
(d) side view of the fabricated prototype.

International Journal of Antennas and Propagation 13



wavelength at the center frequency 4.65GHz of the sub-
6GHz band). All the measurements are carried out using
the multiprobe wireless communication test system Ray-
Zone 1800. Figure 15 shows the simulated and measured S-
parameters of the antenna array. It is seen that the mea-
sured results agree well with the simulated ones, and
throughout the 3.3–6.0 GHz frequency range the measured
reflection coefficients at the two feeding ports are less than
−10 dB and the port isolation is greater than 33 dB. )e
simulated and measured peak gain and total efficiency of

the array, when only the differential port A is fed and the
other port is connected to a matched load, are shown in
Figure 16. )e measured cross-polarization is lower than
−30 dB within the entire frequency band. Compared to the
simulation results of the antenna element, both the cross-
polarization level and the port isolation are slightly deteriorated
due to the feeding network because it introduces asymmetry
between two ports in some extent, which may raise the cross-
polarization radiation and reduce the port isolation. It is also
found in Figure 16 that the total efficiency of the antenna
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maintains above 65% within the entire operating frequency
band despite the use of low-cost FR4 substrate with large
dielectric loss. Figure 17 shows the radiation patterns of the
proposed array at two different frequencies 3.5 and 5.0GHz
when only the differential port A is fed, in which the xoz-plane
is defined as the V-plane (vertical plane) and the yoz-plane is
defined as the H-plane (horizontal plane). It is clear that the
radiation pattern is stable and the cross-polarization level is
lower than −35dB at the two frequencies.

Table 2 shows comparison of the measured perfor-
mance of the proposed antenna array with the existing
works. Compared with the previous designs, the pro-
posed antenna has the widest bandwidth from 3.3 to
6.0 GHz, which can cover the entire sub-6 GHz band. It
also has the lowest cross-polarization level, which is
−30 dB. At the same time, it has acceptable gain and
efficiency compared with [5, 19]. )e proposed antenna
retains low profile even with the radome being
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Figure 17: Simulated and measured radiation patterns of the antenna array at (a) 3.5 GHz and (b) 5.0GHz.
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considered, which makes the present design a potential
base-station antenna.

4. Conclusion

A broadband dual-polarized antenna array covering the
entire sub-6GHz band is proposed. In the design of antenna
element and array, the advantageous side of the dielectric
radome is utilized, and a parasitic patch is etched on its inner
surface, which greatly expands the bandwidth of the an-
tenna. )e use of differential feeding technique, square-
shaped main and parasitic patches, and broadband feeding
network maintains good symmetry of the antenna structure,
resulting in very low cross-polarization level and high iso-
lation between feeding ports within the entire frequency
band. Experimental results verify the proposed design, and
the antenna array may be a good candidate for base-station
applications.
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