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Dipole antennas over the boundary between two different media have been widely used in the fields of geophysics exploration,
oceanography, and submerged communication. In this paper, an analytical method is proposed to analyse the near-zone field at
the extremely low frequency (ELF)/super low frequency (SLF) range due to a vertical magnetic dipole (VMD). For the lack of
feasible analytical techniques to derive the components exactly, two reasonable assumptions are introduced depending on the
quasi-static definition and the equivalent infinitesimal theory. Final expressions of the electromagnetic field components are in
terms of exponential functions. By comparisons with direct numerical solutions and exact results in a special case, the correctness
and effectiveness of the proposed quasi-static approximation are demonstrated. Simulations show that the smallest validity limit
always occurs for component H2z, and the value of k2ρ should be no greater than 0.6 in order to keep a good consistency.

1. Introduction

+e propagation properties of extremely low frequency
(ELF: 3–30Hz) and super low frequency (SLF: 30–300Hz)
waves over the boundary between two different media have
been extensively investigated for many years because of their
useful applications in geophysics exploration, oceanography,
overwater or underwater communication, and so on. For
example, the US system Seafarer, operated at the frequency
of 78Hz [1], while the Russian one, called ZEVS, operated at
the frequency of 82Hz [2]. +ese systems have been used to
communicate from a fixed station on the sea surface with a
submarine traveling close to the ocean floor since 1990s
[3, 4]. +e original expression of this problem can date back
to 1909 by Sommerfeld in his classic literature [5]. Subse-
quently, Norton proposed simple formulas and graphs in
1936 [6]. Following their works, many other progresses were
made on numerical [7, 8] and analytical solutions [9–15] at a
large propagation distance of kρ≫ 1, where k represents the
wave number and ρ is the propagation distance.

Evidently, in practical physical models such as a dipole
source on the interface between two different media like air

and Earth or sea water and rock, the electric propagation
distance for the ELF/SLF ranges is usually very small,
namely, kρ≪ 1. Sommerfeld integrals are used for field
components which can be expressed in terms of the de-
rivatives of integrals including the Bessel function. Due to
the divergence terms in Sommerfeld integrals, the investi-
gation of ELF/SLF near-zone field is still not well developed
yet. In the recent work by Xu et al. [16], a new quasi-static
technique is used for analyzing the near-zone field radiated
by a horizontal electric dipole near the sea-rock boundary.
+is new development rekindled our interest in investigating
the magnetic-dipole excitation problem.

Several investigations of simplifying formulas had been
made by Banos and Wesley [17]. +ey obtained approx-
imation solutions suitable for both near and far fields in
terms of Hertz potentials. Based on their efforts, Durrani
[18, 19] addressed the sufficiently accurate but relatively
simple field components in the sea produced by vertical
and horizontal dipoles (both electric and magnetic types)
under reasonable limitations. Also of interest is the sat-
isfactory communication range between air and sea. Later
on, in a series of papers by Bannister [20, 21], previous
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theoretical work like [22] was well summarized, and all
field components for these four different types of dipoles
located on the boundary were presented over the quasi-
static range. In recent years, some near-field research has
gradually been carried out both analytically [23–25] and
numerically [26]. Particularly in 2010, Parise [27] estab-
lished the exact closed-form expressions of the electro-
magnetic field components excited by a vertical magnetic
dipole lying on the surface of a flat and homogeneous lossy
half-space, but unfortunately Hρ is still in terms of Bessel
functions, and these formulas are valid only when both of
the dipole source and the observation point are embedded
on the boundary. In many practical applications, both the
dipole source and the receiving point may be located near
the boundary. However, the corresponding study on this
near-field radiation of a vertical magnetic dipole is still in
the dark. Since it is a formidable task to calculate it ac-
curately by existing analytical methods, in this paper, we
will attempt to extend the work by Xu et al. [16] and
evaluate the integrals in purpose of deriving new ap-
proximation formulas.

Note that the propagation distance of interest is up to
dozens of kilometers, in this case, the propagation path via
the reflection of the ionosphere is much longer than that
along the Earth’s surface. Hence, the effect of the ionosphere
can be neglected and a simple half-space flat model is
established. At ELF/SLF ranges, media such as sea water/
ground/Earth are always regarded as highly lossy ones, while
the air is lossless. So, the ratio of the wave numbers is far
smaller than 1, i.e., kair/|kmedia|≪ 1. Furthermore, usually
the heights of both the dipole source and the receiving point
are much smaller than the horizontal distance, i.e., d≪ ρ and
z≪ ρ. +e following are some concrete evaluations and

simplifications. Comparisons with direct numerical simu-
lations and exact solutions are also carried out from both the
amplitude and phase angle aspects eventually. +e time
dependence eiωt is assumed and suppressed throughout the
analysis.

2. Formulations

+e geometry and notations of the physical model are shown
in Figure 1. It consists of a loop antenna (viewed as a vertical
magnetic dipole) situated at a distance d, above a half-
infinite conducting space. Cartesian and cylindrical coor-
dinates are introduced with z directed upwards through the
dipole, and the radius ρ is taken horizontally in the x-y plane
on the surface.+e air characterized by the parameters ε2, μ2,
and σ2 occupies the upper space (z≥ 0), and the lossy
medium (like seawater or Earth) characterized by the pa-
rameters ε1, μ1, and σ1 occupies the lower space (z≤ 0). It is
assumed that both regions are nonmagnetic so that
μ1 � μ2 � μ0.

2.1. Integral Expressions for the Field Excited by an ELF/SLF
VMD. When its size is small enough compared with the
propagation distance and free-space wavelength, it is a fairly
common-sense idea to regard a small current loop as a
vertical magnetic dipole (VMD) [28]. We identify IdS as the
magnetic dipole moment, where I denotes the loop circu-
lating current and dS represents the area of the loop. With a
similar method by King [29], the integrals for the compo-
nents of the electromagnetic field in Region 2 can be written
as follows:
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, n � 1, 2. (4)

It is noted that the upper sign “+” in (2) corresponds to
z> d, and the lower sign “− ” corresponds to 0< z<d, re-
spectively. And the square root in (4) is taken in the first
quadrant.

+e first two terms in formulas (1)–(3) stand for the
direct wave and the ideal reflected wave. Meanwhile, the

third term represents the lateral wave. +us, these formulas
can be rewritten in the following forms:

E2φ(ρ, z) � E
d
2φ(ρ, z) + E

i
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l
2φ(ρ, z),
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i
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l
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(5)

In the above integrals, the direct-field and reflect-field
terms can be derived via the method presented in the
monograph by King et al. [15].
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+e direct-field components are
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+e reflect-field components are
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where
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+e rest lateral-wave terms are defined by
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Figure 1: Excitation of an ELF/SLF VMD above a lossy half-space.
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where M � c1 + c2. It should be pointed out that these
formulas contain Bessel functions, whose integrands are
highly oscillatory in the near-zone. +erefore, a novel ap-
proximation approach is required to be taken into con-
sideration in the following subsection.

2.2. Simplifications of the Lateral-Wave Terms under the
Equivalent Infinitesimal >eory. For the beginning of sim-
plification, we should figure out the definition of “quasi-
static” or “near-field” involved in this paper. It is defined as
the situation where the distance from the source to the
observation point is far less than a wavelength (kρ≪ 1)

[15, 18]. Typically, if the frequency remains invariable,
distances satisfying this condition contain the “near-field”;
otherwise, if the distance is fixed, qualified frequencies form
the “quasi-static” state.

It is readily understood from the definition, when the
“quasi-static” assumption is considered, ω⟶ 0 and
k2ρ≪ 1 hold. Under this circumstance, contribution of the
Sommerfeld integrals in (9)–(11) is mainly from the inte-
gration path where λ≫ k2. +erefore, the parameter c2 can
be expressed as follows:
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k2
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≈ iλ. (12)

Normally, the medium in Region 1 is highly conductive
when compared with air in Region 2, namely, k2≪ k1. Also,
d and z are usually far less than the horizontal distance ρ, i.e.,
d≪ ρ and z≪ ρ. +us, we have
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where m � 1, 2. It is seen from (13) that the limit of i|c1 −

c2 − k1|dm can be approximated as zero. +e equivalent
infinitesimal theory, a special case of Taylor’s formula, could
be subsequently applied here as follows:
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Hence, by substituting (16) into (9), we have
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Similarly, (10) is equal to
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Finally, with the Appendix in [15], the final analytical
results for Fl

2φ, Fl
2ρ, Fl

2z can be obtained readily. We write
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So far, we have provided the process of calculating the
field components for a VMD source over the near-field
range in Region 2 in detail. +e complete approximation
solutions for the field components in Region 1 can be
evaluated with a similar method as well.

2.3. Solutions for the near-Zone Field with z � 0 and d � 0.
+e complete quasi-static field components are derived
readily with (9)–(11) and (20)–(22). For comparison

purpose, in the following, we will attempt to reduce these
formulas to the special case when both the dipole source and
the receiving point are embedded on the boundary. For
brevity and clarity, only H2z’s derivation procedure is given
as a demonstration. +e magnetic component H2z can be
expressed as
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Since k2ρ≪ 1 is assumed, with Maclaurin series, we have

e
ik2ρ ≈ 1 + ik2ρ −

k2ρ( 
2

2
. (24)

By substituting (24) into (23) and setting z � 0, d � 0, it
converts to:
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Now, we have derived the analytical expressions when
z � d � 0. To understand this method better, computations
and discussions under several different conditions will be
carried out in the following section.

3. Computation and Discussion

3.1. Comparison with Numerical Solutions When z≠ 0 and
d≠ 0. It is shown in literature studies [7, 8] that, by some
proper numerical approaches, one can solve Sommerfeld
integrals directly. +erefore, direct numerical simulation is
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employed and then compared with the analytical result
obtained in this paper. We assume that Region 1 is seawater
characterized by the permeability μ0, relative permittivity
εr1 � 80, and conductivity σ1 � 4 S/m. Region 2 is air
characterized by the permeability μ0 and the permittivity ε0.
For a general case, the dipole source and receiving point are
placed at the height d � 1 m and z � 5 m, respectively. +e
amplitudes and phase angles of the three nonzero field
components with respect to the propagation distance ρ are
evaluated in Figures 2–4 at operating frequencies f � 3Hz
and 300Hz.

It is seen that both the amplitudes and phase angles
obtained by analytical and direct numerical methods have a
consistent trend in general. Figures 2(a) and 2(b) show that
at the beginning there exists a relatively apparent difference
between these two computed results. +is is probably be-
cause when ρ is too small, d≪ ρ and z≪ ρ are not very
restrictive. But when ρ> 10m, two curves shed light on a
good correspondence with each other. +e magnitude of E2φ
andH2ρ in Figures 3(a), 3(b), 4(a), and 4(b) also show similar
trends with H2z. Obviously, in most cases of practical in-
terest, ρ≫ z and ρ≫ d, so the results confirm the high re-
liability and validity of the proposed method. Furthermore,
it is also noted that the operating frequency has little in-
fluence to the magnitude of H2z and H2ρ, but a larger
frequency will lead to a smaller amplitude of E2φ.

As illustrated in Figures 2(c) and 2(d), initially the phase
of H2z ascend sharply until reaching the value of π. It is
noted that a higher frequency leads to a closer mutation
point to the source. Eventually, for a sudden change to − π, as
the distance further increases, the phase starts rising
smoothly and stabilizes around − (π/2). Higher frequency
also causes a faster phase variation from –π to − (π/2), which
results in a shorter distance for reaching the final state. We
can see that phase angles of the two methods are almost alike
except with some latency. By observing other two compo-
nents, though trajectories are not in full accord, similar
conclusions can still be drawn.

It should also be born in mind that with large distances,
k2ρ is more close to “1,” which then also leads to a larger
difference between the numerical and analytical results. In
this paper, attention is restricted to the near field, and k2ρ∼1
is out of consideration. Computations show that different
components have different validity limits of k2ρ for main-
taining a consistency between the proposal and numerical
solutions. For E2φ and H2ρ components, results of both the
amplitude and phase obtained by the two methods remain
the same even if k2ρ is approaching 1. However, for H2z,
when the distance reaches 100 km (i.e., k2ρ ≈ 0.6, as can be
seen in Figure 2(b)), two curves start to deviate from each
other.

3.2. Comparison with Exact Solutions When z � 0 and d � 0.
When both the dipole source and receiving point are located
at the interface of a half-space, the exact field components
excited by a vertical magnetic dipole have been addressed by
Parise already [27]. +e exact solutions of H2z, E2φ, and H2ρ
can be expressed in terms of
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Note that In and Kn are the nth order modified Bessel
functions of the first and second kind, respectively, where
n � 1, 2.

Since it is a special case of the dipole radiation problem
discussed in this paper, we can actually better validate the
manner if we plot how that field changes as a function of the
distance ρ by our approximation method, the direct nu-
merical calculation and this exact analytical solution.
Comparisons are depicted in Figures 5–7. All the parameters
involved are the same with those in Figures 2–4 except with
different d and z.

Apparently, our analytical results not only coincide with
the numerical simulations but also have an excellent
agreement with the exact solutions, and curves in
Figures 5–6 bear a strong resemblance to those in
Figures 2–3. It indicates that all methods are of good ac-
curacy. Meanwhile, comparisons of H2ρ are not satisfactory
as can be seen from Figure 7. On the whole, curves of the
analytical and numerical solution are relatively consistent,
but do not match up to the exact solution as the propagation
distance ρ increases. Take f � 3Hz as an example. If ρ
reaches several hundred meters, the gap in magnitude be-
tween exact solutions and the other two methods will be-
come larger. And the phase difference is always about π. +is
is probably because the exact solution in [27] is expressed in
terms of the modified Bessel functions rather than concrete
analytical ones.

3.3. Evaluations for >ese Analytical Formulas. For further
investigation about the features of the proposed method,
several other evaluations are performed. As a natural ex-
tension, just to make it clear and to see how the locations of
the dipole source and receiving point influence the propa-
gation strength of electromagnetic fields, we consider the
following simulations presented in Figure 8, with the relative
permittivity εr1 � 80 and conductivity σ1 � 4 S/m in Region
1. +e operating frequency is taken as f � 10 Hz.

Figure 8 illustrates the relationship between |H2z| and z

with different heights of the source at a constant propagating
distance, where all other parameters are held unchanged.
+e constant is chosen as 50m, 100m, 500m, and 1000m,
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Figure 2: Amplitudes and phase angles of field component H2z versus the propagation distance ρ with the proposed and numerical
solutions. (a, c) f � 3Hz. (b, d) f � 300Hz.
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respectively. It is seen that, with the increasing of the radial
distance, |H2z| will exhibit quite different characteristics.
When ρ is relatively small (see Figures 8(a) and 8(b)), the
amplitude decreases at first and then increases gradually as
the height of the observing point becomes higher. Typically,
the minimum point of the curve will have a shift to a farther
position from the origin if ρ is larger. However, for suffi-
ciently large values of ρ (Figures 8(c) and 8(d)), the am-
plitude increases monotonically as z increases. We also
know that, when the dipole source is closer to the interface,
the attenuation will be larger. Perhaps it is due to the

different degrees of the effect by the lossy medium in Region
1 at different heights.

When the receiving point is at an arbitrary place on the
x-z plane in Region 2, and the dipole source is located at d �

0m, 50m, 150m, respectively, with the operating frequency
taken as f � 10 Hz, the strength distributions of the electric
and magnetic components are revealed in Figures 9–10. We
can actually see that both the electric and magnetic fields
decay rapidly in all directions. As the position of the source is
higher, the attenuation of the electromagnetic components
will become slower. It is also noted that the distribution in
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Figure 5: Amplitudes and phase angles of field component H2z versus the propagation distance ρ with the proposed, exact, and numerical
solutions. (a, c) f � 3 Hz. (b, d) f � 300 Hz.
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Figure 6: Amplitudes and phase angles of field component E2φ versus the propagation distance ρ with the proposed, exact, and numerical
solutions. (a, c) f � 3 Hz. (b, d) f � 300 Hz.
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Figures 9(c) and 10(c) is very likely to that in free space,
which implies that when the height of the dipole is high
enough away from the interface, the radiation result is nearly
not affected by the sea water.

4. Conclusions

+is paper deals with the integrals for the electromagnetic
field of a vertical magnetic dipole lying above the boundary
of a lossy half-space in order to derive analytical formulas for
the near-zone field. On the basis of the feature of “quasi-

static” state and the equivalent infinitesimal theory, we can
induce two rational assumptions. One is c2 ≈ iλ, and the
other is about the substitution of c1 − c2. Comparisons with
numerical solutions show that both the amplitude and phase
are quite consistent with each other. Curves for contrast with
the exact formulas are also drawn when the dipole source
and observing point are both on the boundary, which is a
further proof of the high accuracy and reliability of our
manner. Simulations also show that different components
have different validity limits of k2ρ for maintaining a con-
sistency between the proposal and numerical solutions. +e
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Figure 8: Amplitude of field component H2z versus the receiving height z: (a) ρ � 50m, (b) ρ � 100m, (c) ρ � 500m, and (d) ρ � 1000m.
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Figure 9: Field distribution of H2z in the x-z plane: (a) d � 0m, (b) d � 50m, and (c) d � 150m.
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Figure 10: Field distribution of E2φ in the x-z plane: (a) d � 0m, (b) d � 50m, and (c) d � 150m.
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smallest validity limit always occurs for the component H2z,
and the value of k2ρ should be no greater than 0.6 in order to
keep a good consistency. Subsequent computations, which
indicate that operating frequencies and the positions of the
dipole source and the receiving point will all affect the field
components, are also performed. In addition, it should be
pointed out that these formulas are also suitable for other
cases where the condition k1≪ k2 is satisfied. And the media
in two regions are interchangeable. Under this circumstance,
c1 ≈ iλ is acquired, and the approximation in (13) changes to
|c2 − c1 − k2|. +en, by a similar method presented in this
paper, the final field expression can be obtained.
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