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,is paper considers target localization using time delay (TD) and angle of arrival (AOA) measurements in distributed multiple-
input multiple-output (MIMO) radar. Aiming at the problem that the localization performance of existing algorithms degrades
sharply in the presence of impulsive noise, we propose a novel localization algorithm based on ℓp-norm minimization and
iteratively reweighted least squares (IRLS). Firstly, the TD and AOA measurement equations are established in the presence of
zero-mean symmetric α-stable noise; then, the localization problem is transformed to a ℓp-norm minimization problem by
linearizing the measurement equations; and finally, the ℓp-norm minimization problem is solved using IRLS by which the target
position estimate is obtained, and the optimal choice of norm order p is deduced. Moreover, the Cramér–Rao bound (CRB) for
target position estimation in impulsive noise is also derived, generalizing the Gaussian CRB. Simulation results demonstrate that
the proposed algorithm outperforms existing algorithms in terms of localization accuracy and robustness in impulsive noise.

1. Introduction

Multiple-input multiple-output (MIMO) radar is a new kind
of sensing system, which sends mutually orthogonal
waveforms from multiple transmit antennas and extracts
these waveforms from each of the receive antennas by a set of
matched filters. ,is kind of radar system has an enlarged
virtual receive aperture and a finer spatial resolution
compared with the conventional radar systems [1].
According to the transmit/receive antenna configuration,
MIMO radars can be divided into two categories: colocated
MIMO radar with closely spaced antennas [2–4] and dis-
tributed MIMO radar with widely separated antennas [5–7].
Both architectures have their respective advantages, and this
paper considers the target localization in the latter case.

Time delay (TD) and angle of arrival (AOA) are com-
monly used types of measurements for target localization in
distributedMIMO radar.,e TDmeasurement traces out an

ellipsoidal surface for the possible target positions with foci
located at the transmit and receive antennas. ,e AOA
measurement induces a line from the receive antenna to the
target. ,eoretically, the target position can be estimated as
the intersection of the lines and ellipsoids corresponding to
the TD and AOA measurements. However, it is far from
straightforward to estimate the target position from the TD
and AOAmeasurements since both TD and AOA are highly
nonlinear with respect to the target position.

In recent years, some effort has been devoted to this
challenging problem. Borrowing the well-known two-stage
weighted least squares (2WLS) idea by Chan and Ho [8],
A. Noroozi et al. presented an algebraic algorithm for 3D
hybrid TD/AOA localization in [9], where a pseudolinear set
of equations is established by introducing nuisance pa-
rameters and the dependencies of nuisance parameters on
target position are employed to yield a final estimate. Unlike
Noroozi’s algorithm in [9], which is multistage estimators,
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R. Amiri et al. developed a different algebraic solution in [10]
which uses the AOA measurements to linearize the TD
measurement equations and identifies the target position in
only one WLS stage. Both Noroozi’s algorithm and Amiri’s
algorithm are shown analytically and confirmed by nu-
merical simulations to attain the Cramér–Rao bound (CRB)
under small measurement noise conditions. However, they
perform unsatisfactorily at large noise levels and suffer from
“threshold effect.” More recently, in order to improve the
target localization performance at large noise levels, S. A.
R. Kazemi et al. proposed an efficient convex solution for
target position estimation in [11], where the associated lo-
calization problem is formulated as a nonconvex constrained
quadratic problem and then recast as a convex problem,
from which the target position estimate is determined by
using polynomial root-finding. Kazemi’s algorithm is shown
numerically to outperform previous algorithms and reach
the CRB up to relatively large measurement noise levels.
Nevertheless, the abovementioned algorithms are designed
based on such assumption that the TD/AOA measurement
noises are subject to Gaussian distribution, implicitly or
explicitly. Gaussian distribution is a noise model widely
accepted and employed in radar and communication fields.
Its second-order statistics bring significant convenience to
least squares (LS)-based algorithm development. In reality,
the measurement noise is not always Gaussian distributed
but often presented in a more impulsive nature [12–15].
Under such impulsive measurement noise, the above-
mentioned algorithms based on Gaussian noise assumption
and LS approach will suffer performance degradation and
even invalidation because the LS approach based on ℓ2-norm
minimization of errors is very sensitive to outliers. Hence,
there is yet a need for developing a robust algorithm for
target localization in distributed MIMO radar using TD and
AOA measurements with impulsive noise.

,e α-stable distribution based on the generalized
central limit theorem is a generalization of the Gaussian
distribution and provides a better model for the measure-
ment noise with a more impulsive nature [16, 17]. ,erefore,
it has been widely used to describe impulsive noises such as
burst noise in indoor localization applications, clutter
returns in radar applications, and man-made noise in
acoustic localization [18–21]. On the other hand, when the
TD/AOAmeasurement noise is α-stable distributed, existing
algorithms based on the Gaussian noise assumption and LS
approach will produce unreliable estimate since impulsive
noise has no second-order moments. ,e ℓp-norm mini-
mization with p< 2 is an attractive alternative to the LS
approach and can be used to achieve robust estimation in
impulsive noise because it is less sensitive to outliers.
However, it is unrealistic to obtain an analytical solution for
the ℓp-norm minimization problem since the ℓp-norm
minimization is based on the p-order statistics. Iteratively
reweighted least squares (IRLS) which converts the ℓp-norm
minimization problem into ℓ2-norm minimization problem
for solving [22] is an attractive solver to deal with the
ℓp-norm minimization and has been successfully applied to
parameter estimation in impulsive noise [23] in recent years.
For the target localization in distributed MIMO radar using

TD and AOA measurements, however, IRLS approach
cannot be applied directly because the target position is
nonlinearly related to TD and AOA measurements.

Motivated by the above facts, we investigate in this paper
the problem of target localization in distributed MIMO
radar using TD and AOA measurements with impulsive
noise. Based on the ℓp-norm minimization and IRLS ap-
proach, a robust algebraic solution for target position is
proposed. Firstly, the TD and AOA measurement equation
is established in the presence of zero-mean symmetric
α-stable noise; then, the target localization problem is
converted to a ℓp-norm minimization problem by linear-
izing the TD and AOA measurement equations; finally, by
using IRLS approach, the ℓp-norm minimization problem is
solved and the target position estimate is obtained. ,e best
choice of p and the CRB in impulsive noise will also be
derived. Numerical simulations are also performed to verify
the superiority of the proposed algorithm over existing al-
gorithms [9–11] in impulsive measurement noise.

,e paper is organized as follows. Section 2 presents the
localization scenario and introduces the symbols involved.
Section 3 presents a robust algebraic solution for the lo-
calization problem, and Section 4 derives the CRB. Section 5
contains the simulation results to evaluate the localization
performance of the proposed algorithm, and Section 6 is the
conclusion.

2. Problem Formulation

We consider finding the position of a target in 3D space with
a distributed MIMO radar. ,e basic idea is the transmit
antennas produce electromagnetic waves which are reflected
or scattered by a single target; the receive antennas are
utilized to collect the target echo, from which the TD and
AOA measurements can be extracted to estimate the target
position.

2.1. Measurement Equation. As illustrated in Figure 1, as-
sume the distributed MIMO radar system is equipped with
M geographically separated receive antennas at positions
st,m � [xt,m, yt,m, zt,m]T, m � 1, 2, . . . , M, and N widely
spaced receive antennas at positions sr,n � [xr,n, yr,n, zr,n]T,
n � 1, 2, . . . , N. ,e transmit antennas send out a set of
waveforms, which are then reflected by the target at un-
known position u � [x, y, z]T.

Based on the above geometry, the true AOA pair for
receive antenna n, i.e., the elevation angle denoted by θn and
the azimuth angle denoted by ϕn, is given by

θn � arctan
y − yr,n

x − xr,n

􏼠 􏼡,

ϕn � arctan
z − zr,n��������������������

x − xr,n􏼐 􏼑
2

+ y − yr,n􏼐 􏼑
2

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(1)

,e range between transmit antenna m and the target is
Rt,m � ‖u − st,m‖, the range between receive antenna n and
the target is Rr,n � ‖u − sr,n‖, and the baseline distance
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between transmit antenna m and the receive antenna n is
Rt,m,r,n � ‖st,m − sr,n‖. ,us, the TD between the direct path
signal from transmit antenna m and the corresponding
reflected signal arriving at receive antenna n can be
expressed as

τm,n �
1
c

Rt,m + Rr,n − Rt,m,r,n􏼐 􏼑. (2)

Considering the unavoidable measurement noises in
reality, we have the erroneous TD and AOA measurements
as

􏽥θn � θn + eθ,n, (3)

􏽥ϕn � ϕn + eϕ,n, (4)

􏽥τm,n � τm,n + eτ,m,n, (5)

where 􏽥θn, 􏽥ϕn, and φn represent the noisy TD and AOA
measurements and eθ,n, eϕ,n, and eτ,m,n represent the cor-
responding measurement noises.

,ere are N elevation angle measurements, N

azimuth angle measurements, and MN TD measure-
ments altogether. For easier manipulation, collect these
TD and AOA measurements in column vector form as
follows:

􏽥α � α + e, (6)

where 􏽥α � [􏽥θT, 􏽥ϕT
, 􏽥τT]T, α � [θT,ϕT, τT]T, and e � [eTθ ,

eTϕ , eTτ ]T, with

􏽥θ � 􏽥θ1, 􏽥θ2, . . . , 􏽥θN􏽨 􏽩
T
,

θ � θ1, θ2, . . . , θN􏼂 􏼃
T
,

eθ � eθ,1, eθ,2, . . . , eθ,N􏽨 􏽩
T
,

􏽥ϕ � 􏽥ϕ1, 􏽥ϕ2, . . . , 􏽥ϕN􏽨 􏽩
T
,

ϕ � ϕ1, ϕ2, . . . , ϕN􏼂 􏼃
T
,

eϕ � eϕ,1, eϕ,2, . . . , eϕ,N􏽨 􏽩
T
,

􏽥τ � 􏽥τT1 , 􏽥τT2 , . . . , 􏽥τTM􏽨 􏽩
T
,

􏽥τm � 􏽥τm,1, 􏽥τm,2, . . . , 􏽥τm,N􏽨 􏽩
T
,

τ � τT1 , τT2 , . . . , τTM􏽨 􏽩
T
,

τm � τm,1, τm,2, . . . , τm,N􏽨 􏽩
T
,

eτ � eTτ,1, e
T
τ,2, . . . , eTτ,M􏽨 􏽩

T
,

eTτ,m � eτ,m,1, eτ,m,2, . . . , eτ,m,N􏽨 􏽩
T
.

(7)

2.2. Measurement Noise. It is assumed in previous studies
[9–11] that the TD and AOA measurement noises are
subject to zero-mean Gaussian distribution. However, in
practical applications, the TD and AOA measurement
noises in distributed MIMO radar are often presented in a
more impulsive nature, which cannot be simply modelled
as Gaussian distribution. As a generalization of the
Gaussian distribution, α-stable distribution provides a
more suitable model for the measurement noise with a
more impulsive nature. ,us, we assume, in this paper, the
TD and AOA measurement noises are subject to zero-
mean symmetric α-stable (SαS) distribution, whose
probability density function (PDF) cannot be written
analytically but the general characteristic function (CF),
that is, the Fourier transform of its PDF, can be expressed
explicitly as follows [21]:

ς(t) � exp − c|t|
α

( 􏼁, (8)

where α ∈ (0, 2] known as the characteristic exponent de-
termines the impulsiveness of the noises and the tail of the
distribution. A smaller value of α will result in a heavier tail
of PDF, a more impulsive nature, and more samples devi-
ating from the mean. As α increases, the impulsiveness of the
noises and the tail heaviness of the PDF reduces, with the
upper bound α � 2 corresponding to the Gaussian distri-
bution. Out of consideration for mathematical and practical
concerns, it is usually assumed in SαS distribution pro-
cessing that α ∈ (1, 2). We also follow the same assumption
in this work. c> 0 known as the dispersion parameter de-
termines the spread of the distribution around the mean.
When α � 2, c is similar to the variance of the Gaussian
distribution.

Figure 2 compares the noise samples generated from
Gaussian distribution and those from SαS distribution under
the same dispersion parameter. It can be seen that, unlike
Gaussian distribution, SαS distribution has outliers far from
the mean. ,ese outliers cause the LS-based estimators to
generate unreliable parameter estimate because the per-
formance of the ℓ2-norm minimizer is very sensitive to
outliers.

For SαS distribution, there exists no finite second-order
moment but only finite moments for orders less than α
which are known as fractional lower-order moment
(FLOM). Supposing ϑ is a random variable subject to zero-
mean SαS distribution, the FLOM of ϑ is given as

sr,n

θn

ϕn

x

z

y

u

st,M

st,M
Rt,m,r,n

st,2

st,1 Rt,m

Rr,n sr,2

sr,1

sr,N

Figure 1: A typical localization scenario with distributed MIMO
radar.
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E |ϑ|
q

􏼈 􏼉 � Cα(q, α)c
q/α

, q ∈ (− 1, 1)∪ (1, α), (9)

where ∪ represents the union operator and

Cα(q, α) �
Γ(q + 1/2)Γ(− (q/α))

α
��
π

√
Γ(− (q/2))

2(q+1)
(10)

with

Γ(x) � 􏽚
∞

0
exp(− t)t

(x− 1)dt, (11)

being the gamma function. Furthermore, it can be derived
that

E |ϑ|
q− 1sign(ϑ)􏽮 􏽯 � 0. (12)

In this work, we are interested in robustly identifying the
unknown target position u from impulsive noise-contami-
nated TD and AOA measurements. Nevertheless, this is a
potentially challenging task due to the nonlinearity of the
TD/AOA measurements and the impulsive nature of the
measurement noise.

3. Proposed Algorithm

3.1. Localization Objective Function. ,e derivation begins
with converting the localization to a ℓp-norm minimization
problem. To achieve this, we first normalize the TD and
AOA measurements in (3)∼(5) as

􏽥ψθ,n � ψθ,n + εθ,n, (13)

􏽥ψϕ,n � ψϕ,n + εϕ,n, (14)

􏽥ψτ,m,n � ψτ,m,n + ετ,m,n, (15)

where

􏽥ψθ,n � c
− 1/αθ,n

θ,n
􏽥θn,

ψθ,n � c
− 1/αθ,n

θ,n θn,

εθ,n � c
− 1/αθ,n

θ,n eθ,n,

􏽥ψϕ,n � c
− 1/αϕ,n

ϕ,n
􏽥ϕn,

ψϕ,n � c
− 1/αϕ,n

ϕ,n ϕn,

εϕ,n � c
− 1/αϕ,n

ϕ,n eϕ,n,

􏽥ψτ,m,n � c
− 1/ατ,m,n

τ,m,n 􏽥τm,n,

ψτ,m,n � c
− 1/ατ,m,n

τ,m,n τm,n,

ετ,m,n � c
− 1/ατ,m,n

τ,m,n eτ,m,n.

(16)

After the above processing, the measurement noises eθ,n,
eϕ,n, and eτ,m,n are converted to normalized noises εθ,n, εϕ,n,
and ετ,m,n, which are independent identically distributed
with unit noise dispersion.

By defining the following vectors,

􏽥ψ � 􏽥ψT
θ , 􏽥ψT

ϕ , 􏽥ψT
τ􏽨 􏽩

T
,

ψ � ψT
θ ,ψT

ϕ ,ψT
τ􏽨 􏽩

T
,

ε � εTθ , εTϕ , εTτ􏽨 􏽩
T
,

(17)

where

􏽥ψθ � 􏽥ψθ,1, 􏽥ψθ,2, . . . , 􏽥ψθ,N􏽨 􏽩
T
,

ψθ � ψθ,1,ψθ,2, . . . ,ψθ,N􏽨 􏽩
T
,

εθ � εθ,1, εθ,2, . . . , εθ,N􏽨 􏽩
T
,

􏽥ψϕ � 􏽥ψϕ,1, 􏽥ψϕ,2, . . . , 􏽥ψϕ,N􏽨 􏽩
T
,

ψϕ � ψϕ,1,ψϕ,2, . . . ,ψϕ,N􏽨 􏽩
T
,

εϕ � εϕ,1, εϕ,2, . . . , εϕ,N􏽨 􏽩
T
,

􏽥ψτ � 􏽥ψT
τ,1, 􏽥ψT

τ,2, . . . , 􏽥ψT
τ,M􏽨 􏽩

T
,
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Figure 2: Comparison between Gaussian noise and impulsive noise.
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􏽥ψτ,m � 􏽥ψτ,m,1, . . . , 􏽥ψτ,m,N􏽨 􏽩
T
,

ψτ � ψT
τ,1, . . . ,ψT

τ,M􏽨 􏽩
T
,

ψτ,m � ψτ,m,1,ψτ,m,2, . . . ,ψτ,m,N􏽨 􏽩
T
,

ετ � εTτ,1, . . . , εTτ,M􏽨 􏽩
T
,

εTτ,m � ετ,m,1, . . . , ετ,m,N􏽨 􏽩
T
,

(18)

and we can reorganize (13)∼(15) in vector form as

􏽥ψ � ψ + ε. (19)

By now, the TD/AOA-based localization problem can be
expressed as solving the following ℓp-norm minimization:

J(u) � ‖􏽥ψ − ψ‖
p
p, (20)

where 1<p< α and ‖∗ ‖p represents the ℓp-norm. Note that
the ℓp-norm objective function J(u) is essentially weighted
by the normalization in (3)∼(5) according to the charac-
teristic exponent parameter and the dispersion parameter of
the TD/AOA measurement noises. To be more specific, the
ℓp-norm objective function J(u) can be further rewritten as

J(u) � ‖Λ(􏽥α − α)‖
p
p, (21)

where

Λ � diag Λθ,Λϕ,Λτ􏼐 􏼑,

Λθ � diag c
− 1/αθ,1
θ,1 , c

− 1/αθ,2
θ,2 , . . . , c

− 1/αθ,N

θ,N􏼒 􏼓,

Λϕ � diag c
− 1/αϕ,1
ϕ,1 , c

− 1/αϕ,2
ϕ,2 , . . . , c

− 1/αϕ,N

ϕ,N􏼒 􏼓,

Λτ � diag Λτ,1,Λτ,2, . . . ,Λτ,M􏼐 􏼑,

Λτ,m � diag c
− 1/ατ,m,1
τ,m,1 , c

− 1/ατ,m,2
τ,m,2 , . . . , c

− 1/ατ,m,N

τ,m,N􏼒 􏼓.

(22)

By using the weighting matrixΛ, the measurements with
higher accuracy are given more weight. ,us, the optimi-
zation problem in (22) can be seen as a weighted least
ℓp-norm estimation problem, analogous to the weighted
least squares estimation in the Gaussian noise.

3.2. Iteratively Reweighted Least Squares Estimator. In this
subsection, we focus on solving the ℓp-norm minimization
presented in (22) by using IRLS approach. As mentioned
above, part of the problem with applying IRLS approach to
solve (22) is that the TD and AOA measurement equations
are nonlinear with respect to target position. To circumvent
this, we shall transform the TD and AOA measurement
equations to linear equations as follows:

x sin 􏽥θn􏼐 􏼑 − y cos 􏽥θn􏼐 􏼑 � xr,n sin 􏽥θn􏼐 􏼑 − yr,n cos 􏽥θn􏼐 􏼑 + bTθ,θ,n u − sr,n􏼐 􏼑eθ,n, (23)

x cos 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁 + y sin 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁 − z cos 􏽥φn( 􏼁 � xr,n cos 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁

+ yr,n sin 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁 − zr,n cos 􏽥φn( 􏼁 + bTφ,θ,n u − sr,n􏼐 􏼑eθ,n + bTφ,φ,n u − sr,n􏼐 􏼑eφ,n,
(24)

2 sr,n − st,m + c􏽥τm,nρn + Rt,m,r,nρn􏼐 􏼑
T
u � 2sT

r,nsr,n + 2c􏽥τm,nRt,m,r,n + c
2􏽥τ2m,n

+ 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑ρT
n sr,n + 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑bT

τ,θ,n u − sr,n􏼐 􏼑eθ,n

+ 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑bT
τ,φ,n u − sr,n􏼐 􏼑eφ,n − 2cR

o
t,meτ,m,n,

(25)

where

bθ,θ,n � cos 􏽥θn􏼐 􏼑, sin 􏽥θn􏼐 􏼑, 0􏽨 􏽩
T

bφ,θ,n � − sin 􏽥φn( 􏼁sin 􏽥θn􏼐 􏼑, sin 􏽥φn( 􏼁cos 􏽥θn􏼐 􏼑, 0􏽨 􏽩
T
,

bφ,φ,n � cos 􏽥φn( 􏼁cos 􏽥θn􏼐 􏼑, cos 􏽥φn( 􏼁sin 􏽥θn􏼐 􏼑, sin 􏽥φn( 􏼁􏽨 􏽩
T

bτ,θ,n � − cos 􏽥φn( 􏼁sin 􏽥θn􏼐 􏼑, cos 􏽥φn( 􏼁cos 􏽥θn􏼐 􏼑, 0􏽨 􏽩
T
,

bτ,φ,n � − sin 􏽥φn( 􏼁cos 􏽥θn􏼐 􏼑, − sin 􏽥φn( 􏼁sin 􏽥θn􏼐 􏼑, cos 􏽥φn( 􏼁􏽨 􏽩
T
,

ρn � cos 􏽥φn( 􏼁cos 􏽥θn􏼐 􏼑, cos 􏽥φn( 􏼁sin 􏽥θn􏼐 􏼑, sin 􏽥φn( 􏼁􏽨 􏽩
T
,

(26)

for m � 1, 2, . . . , M and n � 1, 2, . . . , N.

Stack (23)∼(25) for m � 1, 2, . . . , M and n � 1, 2, . . . , N

in vector form as

Be � Gu − h, (27)

where

G �

Gθ

Gφ

Gτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

h �

hθ

hφ

hτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B �

Bθ,θ ON×N ON×MN

Bφ,θ Bφ,φ ON×MN

Bτ,θ Bτ,φ Bτ,τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

with the inner elements of the submatrix in (28) given by

Gθ􏼂 􏼃n,1:3 � sin 􏽥θn􏼐 􏼑, − cos 􏽥θn􏼐 􏼑, 0􏽨 􏽩,

Gφ􏽨 􏽩
n,1:3 � cos 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁, sin 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁, − cos 􏽥φn( 􏼁􏽨 􏽩,

Gτ􏼂 􏼃(m− 1)×N+n,1:3 � 2 sr,n − st,m + c􏽥τm,nρn + Rt,m,r,nρn􏼐 􏼑
T
,

hθ􏼂 􏼃n,1 � xr,n sin 􏽥θn􏼐 􏼑 − yr,n cos 􏽥θn􏼐 􏼑,

hφ􏽨 􏽩
n,1 � xr,n cos 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁 + yr,n sin 􏽥θn􏼐 􏼑sin 􏽥φn( 􏼁 − zr,n cos 􏽥φn( 􏼁,

hτ􏼂 􏼃(m− 1)×N+n,1 � 2sT
r,nsr,n + 2c􏽥τm,nRt,m,r,n + c

2􏽥τ2m,n + 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑ρT
n sr,n,

Bθ,θ􏽨 􏽩
n,n

� bT
θ,θ,n u − sr,n􏼐 􏼑,

Bφ,θ􏽨 􏽩
n,n

� bT
φ,θ,n u − sr,n􏼐 􏼑,

Bφ,φ􏽨 􏽩
n,n

� bT
φ,φ,n u − sr,n􏼐 􏼑,

Bτ,θ􏽨 􏽩
(m− 1)×N+n,n

� 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑bT
τ,θ,n u − sr,n􏼐 􏼑,

Bτ,φ􏽨 􏽩
(m− 1)×N+n,n

� 2 c􏽥τm,n + Rt,m,r,n􏼐 􏼑bT
τ,φ,n u − sr,n􏼐 􏼑,

Bτ,τ􏽨 􏽩
(m− 1)×N+n,(m− 1)×N+n

� − 2cR
o
t,m,

(29)

for m � 1, 2, . . . , M and n � 1, 2, . . . , N.
It can be deduced from (27) that e � B− 1(Gu − h) � 􏽥α − α.

Substituting this fact into (21) leads to

J(u) � G1u − h1
����

����
p

p
, (30)

where G1 � ΛB− 1G and h1 � ΛB− 1h. For the ℓp-norm
minimization problem presented in (30), we can transform it
to ℓ2-norm minimization problem for solving. To accom-
plish this, we rewrite (30) in ℓ2-norm form as

J(u) � D G1u − h1( 􏼁
����

����
2
, (31)

where

D � G1u − h1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(p− 2)/2

. (32)

Clearly, the weighted least squares solution for the
ℓ2-norm minimization problem presented in (31) can be
obtained as

u � GT
1WG1􏼐 􏼑

− 1
GT

1Wh1, (33)

where W is the weighting matrix given by
W � DTD. (34)

It is noted thatW is related to the unknown parameter u
and thus cannot be evaluated properly. To circumvent this
problem, we can estimate the weighted matrix W by iter-
ation and use iteratively the refined weighting matrix W to

compute the target position. ,e process can be reformu-
lated with more detail as follows:

(i) Start with an initial weighting matrix W � I, and
then we have 􏽢u � (GT

1G1)
− 1GT

1h1
(ii) Repeat the following:

Substitute 􏽢u into (34) to compute a more accurate
weighting matrix W
Substitute W into (33) to produce a more accurate
estimate 􏽢u
Stop the above iteration when the difference of target
position estimate between two iterations is less than
a specified threshold or the number of iterations
reaches the specified value.

3.3. Choice of p. ,e norm order p is an important
parameter with great influence on the performance of the
least ℓp-norm estimator. In this subsection, we shall deduce
the optimal choice of p.

Using (9) and (12), we have

E ∇J(u)∇T
J(u)􏽮 􏽯 � p

2
Cα(2p − 2, α)c

(2p− 2)/α GT
1G1􏼐 􏼑,

(35)

E H(J(u)){ } � p(p − 1)Cα(p − 2, α)c
(p− 2)/α GT

1G1􏼐 􏼑,

(36)
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where H(J(u)) is the Hessian matrix.
By using (35) and (36), we can compute the covariance

matrix of u as

Cα(u) �
Cα(2p − 2, α)

(p − 1)
2
C
2
α(p − 2, α)

c
2/α GT

1G1􏼐 􏼑
− 1

. (37)

,e scalar term of parameter variance of u, characterized
by p, is then obtained from (37) as

Φα(p) �
Cα(2p − 2, α)

(p − 1)
2
C
2
α(p − 2, α)

. (38)

To determine the value p that minimizes Φα(p), we take
the derivative of (34) with respect to p and set it to zero,
which yields

Φα′(p) � Φα(p)λα(p) � 0, (39)

where

λα(p) � Ψ(2 − p) − Ψ 2 −
p

2
􏼒 􏼓 + Ψ p −

1
2

􏼒 􏼓 − Ψ
p + 1
2

􏼒 􏼓

+
2
α
Ψ 1 −

p − 2
α

􏼒 􏼓 − Ψ 1 −
2p − 2

α
􏼒 􏼓􏼔 􏼕,

(40)

with Ψ(x) being the digamma function given by the fol-
lowing [24]:

Ψ(x) �
Γ′(x)

Γ(x)
� − κ + 􏽘

+∞

n�1

1
n

−
1

x + n − 1
􏼒 􏼓, (41)

where κ being the Euler–Mascheroni constant.
It can further be deduced from (39) that λα(p) � 0

because Φα(p) � 0. Applying Taylor series expansion on
(40) and exploiting (41), we can rewrite (40) as

λα(p) � 􏽘

+∞

k�0
akp

k
+ bkp

− k− 1
􏼐 􏼑 � 0, (42)

where

ak �
(− 1)

k

k!

2 − 2k+1

a
k+1 Ψ

(k) 2 + α
α

􏼒 􏼓 +
2k

− 1
2k
Ψ(k)

(2)

− −
1
2

􏼒 􏼓
k

− (− 1)
k

􏼠 􏼡Ψ(k) 3
2

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

bk � 2(− 1)
k

−
(− 1)

k
+ 1

2k
,

(43)

with Ψ(k)(·) being the polygamma function given by the
following [24]:

Ψ(k)
(x) � 􏽘

+∞

n�1

(− 1)
k+1

k!

(n + x − 1)
k+1, (44)

k! representing the factorial of k.

In (42), k tends to infinity, which is not implementable
for numerical calculation. To this end, we can approximate
(42) as

λα(p) � 􏽘
K

k�0
akp

k
+ bkp

− k− 1
􏼐 􏼑 � 0, (45)

where K is sufficiently large. By this, we establish a poly-
nomial whose roots can be determined by using for the
numerical calculation. As reported from the previous study
[25], p � (α + 1)/2 is close to the optimal value and thus can
be selected as the initial guess for the numerical calculation
to guarantee convergence.

4. Cramér–Rao Bound for Impulsive Noise

In this section, the CRB on the accuracy of estimating the
target position is derived for impulsive measurement noise.
It should be pointed out that the well-known CRB derived by
[9, 10] for Gaussian noise is inapplicable to the target lo-
calization problem in impulsive noise. Hence, we focus on
deriving a general expression of the CRB for target locali-
zation in impulsive noise. It is generally known that the CRB
for any unbiased estimator of target position u is given as
follows [26]:

CRB(u) � FIM− 1
(u), (46)

where FIM(u) is the Fisher information matrix (FIM) given
by

FIM(u) � E
z ln f(􏽥ψ|u)

zu
z ln f(􏽥ψ|u)

zu
􏼢 􏼣

T⎧⎨

⎩

⎫⎬

⎭ (47)

where f(􏽥ψ|u) is the PDF of 􏽥ψ given u. By using the fact that
the PDF of 􏽥ψ satisfies f􏽥ψ(􏽥ψ) � fε(􏽥ψ − ψ) � f(􏽥ψ|x), we can
rewrite the FIM(u) as

FIM(u) � Ic(α, c)
zψ
zu

􏼠 􏼡

T
zψ
zu

􏼠 􏼡 � Ic(α, c)
zα
zu

􏼠 􏼡

T

ΛTΛ
zα
zu

􏼠 􏼡,

(48)

where zα/zu denotes the partial derivative of α with respect
to u. ,e inner elements of zα/zu have been derived in
[9, 10], and interested reader can refer to [9, 10] for details.

Ic(α, c) � 􏽚
+∞

− ∞

fε′(ε)( 􏼁
2

fε(ε)
dε, (49)

with fε(ε) being the PDF of normalized noise and fε′(ε) the
derivative of fε(ε). As can be seen from (48) and (49), the
noise PDF fε(ε) affects the CRB through the scalar mul-
tiplier Ic(α, c). For fε(ε) Gaussian with zero-mean and unit
variance, we have Ic(α, c) � 1 and can recover the Gaussian
FIM and hence the Gaussian CRB presented in [9, 10].
However, for impulsive noise subject to SαS distribution, as
mentioned above, there is no general closed-form PDF.
Fortunately, the numerical method in [27] can be adopted to
compute the PDF of the α-stable distribution. Hence, the
CRB for impulsive noise can be numerically computed using
(46), (48), and (49) [28].
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5. Simulation Results

,is section contains some Monte Carlo simulations to
evaluate the performance of the proposed algorithm. ,e
localization scenario is set as follows: a distributed MIMO
radar system with N � 6 geographically separated receive
antennas and M � 4 transmit antennas is deployed to locate
a target at position u � [1000, 2000, 1000]Tm. ,e positions
of the transmit/receive antennas are enumerated in Table 1.
MN � 24 TDs and N � 6 AOA pairs are extracted to de-
termine the target position. In order to simulate a practical
localization scenario, zero-mean SαS distributed noises with
specified characteristic exponent parameter α and dispersion
parameter c are added to actual true TDs/AOAs. By default,
the unit of AOA measurement noise is deg and TD mea-
surement noise is microsecond (μs). ,e localization ac-
curacy is assessed using root mean squares error (RMSE)
and bias defined as follows:

RMSE(u) �

����������������

1
5000

􏽘

5000

l�1
􏽢u

(l)
− u

�����

�����
2

2

􏽶
􏽴

,

bias(u) �
1

5000
􏽘

5000
l�1 􏽢u

(l)
􏼒 􏼓 − u
�������

�������2
,

(50)

where 􏽢u(l) is the estimation of u at the l th trial, and the
number of trials for each case is set as L � 5000.

,e localization RMSEs and biases of the proposed al-
gorithm are evaluated via comparison with existing algo-
rithms including Noroozi’s algorithm (two-stage estimator)
in [9], Amiri’s algorithm (one-stage estimator) in [10],
Kazemi’s algorithm (Convex estimator) in [11], and the root
CRB, under different noise conditions. In order to achieve a
more comprehensive insight on the performance of the
proposed algorithm, factors including the noise dispersion,
noise impulsiveness, target distance, and computation
complexity are considered.

5.1. Performance versus Noise Impulsiveness. In the first
simulation, the influence of noise characteristic exponent α
on localization performance is evaluated. Figure 3 shows the
RMSE of the algorithms versus α ∈ (1, 2] with noise dis-
persion parameter c � 1. ,e value of α controls the noise
impulsiveness. ,e smaller the value of α is, the more
impulsive the noise is. As can be seen from Figure 3(a),
under different noise impulsiveness conditions, the RMSE of
Amiri’s algorithm is lower than that of Noroozi’s algorithm.
,is is because Amiri’s algorithm requires only one-stage
WLS minimization, and fewer second- and higher-order
error terms are discarded. ,e sensitivity of Kazemi’s al-
gorithm to measurement noise is further reduced. Com-
pared with Noroozi’s algorithm and Amiri’s algorithm,
Kazemi’s algorithm achieves smaller RMSE. However, be-
cause the above three algorithms are based on the Gaussian
noise assumption, the localization RMSEs of the three
existing algorithms rise sharply and far larger than the CRB
when α is small. ,is demonstrates that the three existing
algorithms are not robust in the presence of impulsive noise

and can be considered basically invalid under strong im-
pulsive noise. ,e proposed algorithm, by contrast, achieves
localization RMSEs about 2 to 3 orders of magnitude lower.
Under different α, the RMSE of the proposed algorithm is
basically within 103m and slightly above the CRLB, which
verifies that it is robust to noise impulsiveness. It is worth
noting that with the increase in α, the RMSE of the proposed
algorithm tends to be close to that of the existing algorithms.
,is is because the noise distribution reduces to Gaussian
distribution when α approaches 2.0. Figure 3(b) plots the
localization biases of the algorithms.When α approaches 2.0,
the biases of the algorithms are comparable and close to zero,
which is consistent with the research conclusions in [9–11].
However, when α approaches 1.0, the localization RMSEs of
Noroozi’s algorithm, Amiri’s algorithm, and Kazemi’s al-
gorithm are extremely large. ,e proposed algorithm, by
contrast, can still provide approximate unbiased estimate,
which reflects the robustness of the proposed algorithm in
terms of localization bias.

5.2. Performance versus Noise Dispersion. In the second
simulation, we analyze the influence of noise dispersion
parameter on the localization performance of the algo-
rithms. Figure 4 presents the RMSE and bias of the target
position estimate versus noise dispersion parameter c at
α � 1.5. As mentioned earlier, the dispersion parameter is
similar to the standard deviation of Gaussian distribution. It
can be seen from Figure 4(a) that with the increase in noise
dispersion parameter, the RMSEs of the algorithms increase.
As expected, the proposed algorithm has the best perfor-
mance under different noise dispersion conditions: its RMSE
is at least two orders of magnitude lower than that of the
existing algorithms and reaches the CRB under different
noise dispersion parameters. It can be seen from Figure 4(b)
that under different dispersion parameters, there are sig-
nificant biases in the estimation results of Amiri’s algorithm,
Noroozi’s algorithm, and Kazemi’s algorithm. Moreover,
due to the nonlinearity of the localization problem, the
biases of the three existing algorithms rise sharply with the
increase in the noise dispersion parameter. In comparison,
the bias of the proposed algorithm is close to zero under
different dispersion parameters, which proves the advantage
of the proposed algorithm in terms of bias performance.

5.3. Performance versus Target Distance. In the third sim-
ulation, we assess the localization performance over the
target distance, using the simulation setup as follows: the
noise characteristic exponent α � 1.5, the dispersion pa-
rameter c � 1, the positions of the transmit/receive antennas
are listed in Table 1, and the target position is given by x �

R[cos 30° cos 45°, cos 30° sin 45°, sin 30°]Tm with R var-
ied from 1 km to 100 km. Figure 5 presents the RMSE and
bias performance of the algorithms under different target
distance R. Unsurprisingly, we observe that the proposed
algorithm again provides a good localization performance
for different target distances, with RMSE close to the CRB
and bias about zero.,is once again verifies the performance
superiority of the proposed algorithm over existing
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Table 1: Positions of the transmit/receive antennas.

Transmitter TX1 TX2 TX3 TX4 Receiver RX1 RX2 RX3 RX4 RX5 RX6
xt,m(m) 2000 –2000 2000 –2000 xr,m(m) 4500 –4500 0 6000 –6000 0
yt,m(m) 3000 3000 –3000 –3000 yr,n(m) 4500 –4500 6000 0 0 –6000
zt,m(m) 2000 1000 800 1200 zr,n(m) 2000 1000 2000 1000 1500 1000
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Figure 3: Localization (a) RMSE and (b) bias versus noise impulsiveness for different algorithms.
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Figure 4: Localization (a) RMSE and (b) bias versus noise dispersion for different algorithms.

International Journal of Antennas and Propagation 9



algorithms. Moreover, it can be observed that the locali-
zation RMSE and bias performance of the algorithms de-
grades as the target distance increases.,is is consistent with
the previous studies [9–11] for the dependence of the lo-
calization performance on the geometry of the target and the
distributed MIMO radar.

5.4. Performance versus Norm Order p. Next, we evaluate
how the variation on norm order p affects the localization

performance, using the simulation setup as follows: the noise
characteristic exponent α � 1.8, the dispersion parameter
c � 1.8, the positions of the transmit/receive antennas are
listed in Table 1, and the target is located at position
u � [1000, 2000, 1000]Tm. According to the derivation of
norm order above, the initial guess p � 1.4 and the global
optimum p � 1.43. Figure 5 presents the RMSE and bias
performance of the algorithms for norm order p ∈ [1, 2]. As
it can be seen from Figure 6, the proposed algorithm ach-
ieves the best localization performance at the theoretical
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Figure 5: Localization (a) RMSE and (b) bias versus target distance for different algorithms.
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Figure 6: Localization (a) RMSE and (b) bias versus norm order p.
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global optimum value of p, with its RMSE attaining the
CRLB. ,e initial guess of p is very close to the global
optimum, which justifies the rationality of choosing p �

(α + 1)/2 as the initial guess for the numerical calculation of
p to guarantee convergence. If the norm order p is too large
or too small, the localization performance of the proposed
algorithm will degrade. However, by contrast, the perfor-
mance decline caused by a too small p is relatively not
significant. Furthermore, a useful conclusion that can be
deduced is that for the impulsive noise with unknown
distribution parameters, a small p is recommended to
achieve relatively decent localization performance.

5.5. Computation Complexity Comparison. Finally, to eval-
uate the proposed algorithm in terms of computational
complexity, we count the average running time of the al-
gorithms from 5000 independent Monte Carlo runs. ,e
main configuration of the computer is shown as follows:
Intel(R) Core(TM) CPU i5-7200U@2.50GHz; 8.00G RAM;
Windows 10 64 bit Operating System; Matlab 2019a Soft-
ware. ,e comparison results are given in Table 2.

As presented in Table 2, the time cost of Noroozi1’s
algorithm is almost twice higher than that of Amiri’s al-
gorithm. ,is is because Noroozi1’s algorithm requires two
WLS stages while Amiri’s algorithm determines the target
position in only one WLS stage. Kazemi’s algorithm incurs
the highest computation complexity among the algorithms.
By contrast, the proposed algorithm has the time cost
comparable with Amiri’s algorithm. Combining with the
performance comparison in Sections 5.1∼5.3, we can con-
clude that the proposed algorithm significantly improves the
target localization performance in impulsive noise, without
apparent increase in computation complexity.

6. Conclusions

We have proposed a novel algebraic solution for TD/AOA-
based target position estimation distributed MIMO radar. A
significant distinction of our study is that the presence of
impulsive measurement noise is considered. ,e proposed
algorithm replaces the ℓ2-norm minimization by the
ℓp-norm minimization of the error terms and solves the
ℓp-norm minimization by linearizing the TD and AOA
measurement equations and adopting the IRLS approach.
Some theoretical analyses, including the optimal choice of
the norm order p and the CRB for target position estimation
in impulsive noise, are also performed. Simulations results
demonstrate that, in impulsive noise, the proposed algo-
rithm outperforms the existing algorithms in terms of lo-
calization accuracy and robustness.
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