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In array, mutual coupling between the antennas is inevitable, which has an adverse effect on the estimation of parameters. To
reduce the mutual coupling between the antennas of distributed nested arrays, this paper proposes a new array called the
distributed super nested arrays, which have the good characteristics of the distributed nested arrays and can reduce the mutual
coupling between the antennas. +en, an improved multiscale estimating signal parameter via rotational invariance techniques
(ESPRIT) algorithm is presented for the distributed super nested arrays to improve the accuracy of direction-of-arrival (DOA)
estimation. Next, we analyze the limitations of the spatial smoothing algorithm used by the distributed super nested arrays when
there are multiple-source signals and the influence of the baseline length of distributed super nested arrays on the accuracy of
DOA estimation. +e simulation results show that the distributed super nested arrays can effectively reduce the mutual coupling
between the array antennas, improve the DOA estimation performance, and significantly increase the number of detectable
source signals.

1. Introduction

Direction-of-arrival (DOA) estimation is a major applica-
tion of the antenna array [1], whose accuracy is related to the
aperture of the array and the mutual coupling between the
array antennas. +e aperture of the array is an important
factor affecting the accuracy of DOA estimation. +erefore,
it is necessary to increase the aperture of the array to im-
prove the accuracy of DOA estimation. +e distributed
arrays are usually composed of multiple subarrays with a
large baseline length that can effectively increase the aper-
ture of the array and significantly improve the accuracy of
parameter estimation. However, it cannot increase the
number of detectable source signals. For example, the
maximum number of detectable source signals that can be
resolved with an N antenna uniform linear arrays (ULA)
using traditional subspace-based methods like multiple

signal classification (MUSIC) [2] is N-1. It is necessary to
increase the number of array antennas to increase the
number of detectable source signals that greatly increases the
hardware cost. To effectively solve this problem, sparse
arrays [3–6], such as nested arrays [7–10], minimum re-
dundancy arrays (MRAs) [11], and coprime arrays [12, 13],
are proposed. +ese sparse arrays are capable of providing a
dramatic increase in the degrees of freedom (DOF) and can
resolve more source signals than the actual number of
physical antennas. However, MRAs do not have simple
closed-form expressions for the array geometry, and the
antenna locations are determined by computer simulation
and complex iterative calculations. When the number of
array antennas is large, the amount of calculation is large,
and in some arrays with limited aperture, MRAs may not be
the best array layout. Coprime arrays have holes in the
difference coarray [7], resulting in the maximum number of
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recognizable source signals lower than that of MRAs and
nested arrays. Compared with MRAs and coprime arrays,
the nested arrays have closed-form of expressions, and the
number of resolvable source signals is greater than that of
coprime arrays under the same number of array antennas.
+erefore, nested arrays have become a research hotspot.

In 2010, Piya Pal proposed the concept of nested arrays
and simulated the DOA estimation characteristics of nested
arrays [7]. Piya Pal et al. applied high-order cumulants to
multilevel nested arrays for DOA estimation in 2012 [8].+e
simulation results show that the nested arrays can signifi-
cantly improve the DOF of the linear array, and the max-
imum number of detectable source signals is close to the
square of the number of array antennas. To improve the
DOA estimation accuracy and increase the number of de-
tectable source signals, combined with the advantages of
distributed arrays and nested arrays, a lot of researches have
been done on the distributed nested arrays. In 2015, YiWang
combined the distributed arrays with the nested arrays,
proposed the distributed nested arrays, and used spatial
smoothing algorithm to improve the accuracy of DOA es-
timation and increase the number of detectable source
signals [14]. In 2016, Yufeng Xie extended the one-di-
mensional distributed nested arrays to two-dimensional,
which improved the accuracy of azimuth and elevation angle
estimation [15]. In 2019, Yanping Liao proposed an im-
proved distributed nested array to improve DOF and the
accuracy of DOA estimation [16].

+e research of [7–16] did not consider the mutual
coupling between the array antennas. However, in practical
applications, the influence of mutual coupling cannot be
ignored when the distance between the array antennas is less
than half the wavelength. +e electromagnetic characteris-
tics cause mutual coupling between the antennas, making
the antenna responses interfere with each other, leading to
the decrease in the accuracy of DOA estimation. Using
appropriate mutual coupling models to decouple the re-
ceived data can reduce the effect of mutual coupling between
the array antennas [17–21]. However, these methods are
usually computationally expensive and sensitive to model
mismatch. Nested sparse circular arrays are proposed to
reduce mutual coupling between the array antennas, but
they still contain a dense subarray [22].

In 2016, the super nested arrays that could reduce the
mutual coupling between the array antennas by redis-
tributing the dense subarray of the nested arrays were
proposed, and they had all the good characteristics of the
nested arrays [23–26]. Besides, the generalized nested array
and thinned coprime array were proposed to reduce mutual
coupling, but they had holes in the difference coarray
[27, 28]. To reduce the mutual coupling between the array
antennas and make it easy to apply to actual projects, we
introduce the super nested arrays and propose the distrib-
uted super nested arrays. An improved multiscale estimating
signal parameter via rotational invariance techniques (ES-
PRIT) algorithm is presented for the distributed super
nested arrays to improve the accuracy of DOA estimation.
Numerical simulations prove the superiority of the proposed
arrays using the improved multiscale ESPRIT algorithm.

2. Concept of Distributed Super Nested Arrays

2.1. Array Structure. +e antenna positions of K-level nested
arrays are given by the set S � ∪ K

i�1Si [7],

Si � nd􏽙
i− 1

j�1
Nj + 1􏼐 􏼑, n � 1, 2, ..., Ni

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, i � 2, . . . , K,

S1 � nd, n � 1, 2, . . . , N1􏼈 􏼉,

(1)

where K, N1, . . . , NK ∈ N+ and d denotes the minimum
distance between the dense ULA antennas.

Figure 1 shows the structure of two-level nested arrays,
N1 and N2 denote the number of first-level and second-level
array antennas, respectively. N1 � N2 � 5. Bullets denote
the actual array antennas and the cross indicates empty
locations. +e minimum distance between the dense ULA
antennas is d. +e number under the bullets representing an
integer multiple of d is the position of the array antenna.

Since the antenna spacing d of the first-level subarray of
the nested arrays is less than or equal to half the wavelength,
the mutual coupling between the antennas is relatively se-
rious. In practical applications, to reduce the mutual cou-
pling between the antennas, super nested arrays are
proposed. +e antenna positions of the two-level super
nested arrays can be expressed by the set S′(2) as [23]

S′(2)
� X(2)

1 ∪Y
(2)
1 ∪X

(2)
2 ∪Y

(2)
2 ∪Z

(2)
1 ∪Z

(2)
2

X(2)
1 � 1 + 2l | 0≤ l≤ a1􏼈 􏼉,

Y(2)
1 � N1 + 1( 􏼁 − (1 + 2l) | 0≤ l≤ b1􏼈 􏼉,

X(2)
2 � N1 + 1( 􏼁 +(2 + 2l) | 0≤ l≤ a2􏼈 􏼉,

Y(2)
2 � 2 N1 + 1( 􏼁 − (2 + 2l) | 0≤ l≤ b2􏼈 􏼉,

Z(2)
1 � l N1 + 1( 􏼁 | 2≤ l≤N2􏼈 􏼉,

Z(2)
2 � N2 N1 + 1( 􏼁 − 1􏼈 􏼉,

(2)

where N1 and N2 denote the number of first-level and
second-level array antennas, respectively. +ey are both
positive integers, N1 ≥ 4, N2 ≥ 3, and l is a positive integer.

+e parameters a1, b1, a2, and b2 are expressed as

a1, b1, a2, b2( 􏼁 �

(r, r − 1, r − 1, r − 2), N1 � 4r,

(r, r − 1, r − 1, r − 1), N1 � 4r + 1,

(r + 1, r − 1, r, r − 2), N1 � 4r + 2,

(r, r, r, r − 1), N1 � 4r + 3,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where r is a positive integer. +e structure of two-level super
nested arrays is shown in Figure 2.

+e distributed two-level super nested arrays are com-
posed of two identical super nested arrays, and each super
nested subarray satisfies formulas (2) and (3). +e structure
of the distributed two-level super nested arrays is shown in
Figure 3, where N1 � N2 � 5. D is the baseline length. +e
array antenna position sets of the two super nested subarrays
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are represented by S1 and S2, respectively. +e array antenna
position set is S � S1 ∪ S2. +e number of antennas in each
subarray is N � N1 + N2, the total number of antennas is
N � 2N, and N1 and N2 are the positive integers.

2.2. Signal Model. In this section, we shall firstly discuss the
concept of difference coarray, degrees of freedom, and
weight function [23].

Definition 1 (difference coarray). For a sparse array speci-
fied by an integer set S, its difference coarray E is defined as

E � n1 − n2 | n1, n2 ∈ S􏼈 􏼉. (4)

Definition 2 (degrees of freedom). For a sparse array
specified by an integer set S, its degree of freedom is equal to
the number of nonredundant elements in the difference
coarray E.

Definition 3 (weight function). For a sparse array specified
by an integer set S, its difference coarray is E, integer n ∈ E,
the weight function w(n) represents the number of oc-
currences of element n in the difference coarray E.

It can be seen from the above definitions that the dif-
ference coarray can expand the physical array aperture of the
original array and increase the DOF of the array. +e DOF is
closely related to the maximum number of detectable source

signals, and the weight function is closely related to the
mutual coupling between the array antennas.

Consider the distributed super nested arrays composed of
two identical subarrays as shown in Figure 3. Both of the two
subarrays are two-level super nested arrays composed of N

antennas, with a uniform spacing ofd≤ λ/2, where λ denotes the
signal wavelength.+e total number of antennas isN � 2N.+e
distance between the phase centers of the two subarrays, named
baseline length, isD≫ λ/2. Assume that K arriving uncorrelated
narrowband far-field sources impinge on the distributed super
nested arrays with an unknown DOA, and use θk to represent
the direction of the kth source signal, k � 1, 2, . . . , K. Consid-
ering the mutual coupling of the array antennas, taking the first
antenna of the first subarray as the reference antenna and the
first subarray as the reference array, the received signal of the
array at time t can be expressed as

X(t) �
X1(t)

X2(t)
􏼢 􏼣 � C

A

AΦ
􏼢 􏼣S(t) + N(t) � AS(t) + N(t),

(5)

where X(t) � [x1(t), x2(t), . . . , xN(t)]T is the received
signal, X1(t) is the received signal of the first subarray, and
X2(t) is the received signal of the second subarray. S(t) �

[s1(t), s2(t), . . . , sK(t)]T is the source signal vector, and
N(t) � [n1(t), n2(t), . . . , nN(t)]T is the zero-mean
additive white Gaussian noise vector.
A � [a(θ1), a(θ2), . . . , a(θK)] is the array manifold matrix of
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the first subarray, in which a(θk) � [zk
1, zk

2, . . . , zk

N
]T,

and zk
n � e− j(2π/λ)dn sin θk . +e distance between the

nth antenna and the reference antenna is dn.

A � C A
AΦ􏼢 􏼣 is the arraymanifoldmatrix,Φ � diag e− j􏼈

(2π/λ)D sin θ1, e− j(2π/λ)D sin θ2 , . . . , e− j(2π/λ)D sin θK }, and C
is mutual coupling matrix.

When the array sensor is a dipole antenna, the mutual
coupling matrix calculation formula [29] is

C � ZA + ZL( 􏼁 Z + ZLI( 􏼁
− 1

, (6)

where ZA and ZL are the element impedance and load
impedance, respectively.

In formula (6), the calculation of C is very complicated.
For the convenience of research, the simple mutual coupling
model in [27] is used to calculate the mutual coupling
matrix, and the formula is

C n1, n2( 􏼁 � c
dn1− dn2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, n1, n2 ∈ [1, N],

ck

cℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
ℓ
k

,

1 � c0 > c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> · · · > cB− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where B is the maximum position of the array antenna.
For evaluating the strength of the mutual couplingmatrix of

different arrays, the coupling leakage [23] is defined as

L �
‖C − diag(C)‖F

‖C‖F

. (8)

+e larger the L, the greater the influence of the mutual
coupling effect on the array.

+en, the covariance matrix of the received signal is

R � E X(t)XH
(t)􏽮 􏽯. (9)

3. Proposed Algorithm

3.1. Spatial Smoothing-BasedDOAEstimation. According to
formulas (5) and (9), the covariance matrix of the received
signal is

R � E X(t)XH
(t)􏽮 􏽯 � ARsA

H
+ σ2nI, (10)

where σ2n is the noise power, (·)H represents the conjugate
transpose, and Rs is the covariance matrix of the source
signal vector. If the signals are independent of each other,
then Rs � diag σ21, σ22, . . . , σ2K􏼈 􏼉, where σ2k represents the
power of the kth incident source signal.

Use the Khatri–Rao product property [30] to convert the
obtained covariance matrix into a column vector

z � vec(R) � A∗ ⊙A􏼐 􏼑p + σ2nvec(I), (11)

where vec(·) represents the vectorization of the matrix, ⊙ is
the Khatri–Rao product, p � [σ21, σ

2
2, . . . , σ2K]T is the power

of source signals, and (·)∗ represents the conjugate. Remove
the redundant rows in A∗ ⊙A and reorder them to obtain
the new signal data

z1 �

A1Φ
∗p

A1p + σ2n e
→

A1Φp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

For the sake of convenience, let M � N
2/2 + N − 1,

A1 � [a1(θ1), a1(θ2), . . . , a1(θK)], and a1(θk) � [e− j (2π
/λ)((M − 1)/2)d sin θk, e− j(2π/λ) (((M − 3)/2))d sin θk,

. . . , ej(2π/λ)(((M− 1)/2))d sin θk ]T, e
→ is a column vector whose

middle element is one, and the other elements are zero.
After the data received by the array is processed, a

distributed virtual uniform linear array composed of three
identical ULAs is obtained as shown in Figure 4.+is array is
called the adjoint array of the original distributed super
nested arrays. After deredundant processing on A∗ ⊙A, the
manifold matrix of the array is obtained. After the redun-
dancy is removed, z1 can be regarded as the received data of
the adjoint matrix.

By vectorizing the covariance matrix of the received data
of the physical array, the equivalent received data corre-
sponding to the difference coarray can be obtained, but the
covariance matrix of the received data has a rank of one. To
restore the rank of the covariance matrix, spatial smoothing
algorithm [7] and Toeplitz matrix reconstruction algorithm
[31, 32] are used for processing. Here, we use spatial
smoothing algorithm for processing.

Dividing the adjoint array in Figure 4 into Q � N
2/4 +

N/2 overlapping subarrays, where the ith subarray has an-
tennas located at

(i + n), (i + n + M), (i + n + 2M) | n � 0, 1, . . . , Q − 1{ },

(13)

the corresponding received data can be expressed as

z1i �

A1iΦ
∗p

A1ip + σ2n e
→

i′

A1iΦp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

where A1i ∈ CQ×K is a matrix consisting of the ith to
(N

2/4 + N/2 + i − 1)th rows of A1 and e→i′ ∈ CQ×1 is a col-
umn vector of all zeros except a one at the
(N

2/4 + N/2 + 1 − i)th position.
+e covariance matrix of the received data of the ith

subarray can be expressed as

Rxi ≜ z1iz
H
1i. (15)

By summing and averaging Rxi, the smoothed covari-
ance matrix is

Rx �
1
Q

􏽘

Q

i�1
Rxi. (16)

+e array manifold matrix after spatial smoothing is
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Ass �

A11Φ
∗

A11

A11Φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

where A11 � [a11(θ1), a11(θ2), . . . , a11(θk), . . . , a11(θK)] is
the array manifold matrix of virtual ULA 2, in which
a11(θk) � [e− j(2π/λ)(Q− 1)d sin θk , e− j(2π/λ)(Q− 2)d sin θk , . . . , 1]T.

Perform eigenvalue decomposition on Rx to obtain the
signal subspace Us. Since the space formed by the array
manifold matrix Ass is the same space as the signal subspace
Us, there must be a unique nonsingular matrix Ts with
Us � AssTs.

So far, the adjoint array of the distributed super nested
arrays is smoothed to obtain a distributed array containing
three ULAs, and the number of antennas of its subarray isQ.
Next, an improved multiscale ESPRIT algorithm is used for
DOA estimation.

3.2. Improved Multiscale ESPRIT Algorithm. +e first Q-1
and the last Q-1 antennas of every subarray in the smoothed
distributed array are used to constitute the subarrays C1 and
C2, respectively. +e amount of translation between the
subarrays C1 and C2 is d. +erefore, the invariance relation
between C1 and C2 has the form

WC1AssΘC � WC2Ass, (18)

whereWC1 � I(3) ⊗ [I(Q− 1)0(Q− 1)×1] is the selection matrix of
the subarrayC1,WC2 � I(3) ⊗ [0(Q− 1)×1I(Q− 1)] is the selection
matrix of the subarray C2, I(3) represents the third-order
unit diagonal matrix, ΘC � diag zC

1 , zC
2 , . . . , zC

K􏼈 􏼉,
zC

k � e− j2πdβk/λ, and βk � sin θk represents the directional
cosine.

Similarly, the first two ULAs are selected to form the
short baseline subarray Fs1, and the last two ULAs are
selected to form the short baseline subarray Fs2. +e amount
of translation between the subarrays Fs1 and Fs2 is D. +e
first ULA is selected to form the subarray Fl1, and the last
ULA is selected to form the subarray Fl2. +e amount of
translation between the subarrays Fl1 and Fl2 is twice that of
D. +erefore, the following equations are established:

WFs1AssΘFs � WFs2Ass, (19)

WFl1AssΘFl � WFl2Ass, (20)

where WFs1 � [I(2Q)0(2Q)×Q] and WFs2 � [0(2Q)×QI(2Q)] are
the selection matrices of the subarrays Fs1 and Fs2,

respectively, ΘFs � diag zFs
1 , zFs

2 , . . . , zFs
K􏼈 􏼉, in which

zFs
k � e− j2πDβk/λ; WFl1 � [I(Q)0Q×(2Q)] and

WFl2 � [0Q×(2Q)I(Q)] are the selection matrices of the sub-
arrays Fl1 and Fl2, respectively;ΘFl � diag zFl

1 , zFl
2 , . . . , zFl

K􏼈 􏼉,
in which zFl

k � e− j2π(2×D)βk/λ.
Substitute the signal subspace Us into formulas

(18)–(20), respectively. +e equations are as follows:

WC1UsΩC � WC2Us, (21)

WFs1UsΩFs � WFs2Us, (22)

WFl1UsΩFl � WFl2Us, (23)

where ΩC � Ts
− 1ΘCTs, ΩFs � Ts

− 1ΘFsTs, and
ΩFl � Ts

− 1ΘFlTs are the rotation-invariant relationship
matrix of coarse estimation, short baseline fine estimation,
and long baseline fine estimation, respectively. ΩC, ΩFs, and
ΩFl are the similarity matrices with ΘC, ΘFs, and ΘFl, re-
spectively. Apply the least squares rule to solve equations
(21)–(23). 􏽢ΩC, 􏽢ΩFs, and 􏽢ΩFl can be obtained as follows:

􏽢ΩC � WC1
􏽢Us􏼐 􏼑

H
WC1

􏽢Us􏼐 􏼑􏼔 􏼕
− 1

WC1
􏽢Us􏼐 􏼑

H
WC2

􏽢Us􏼐 􏼑,

􏽢ΩFs � WFs1
􏽢Us􏼐 􏼑

H
WFs1

􏽢Us􏼐 􏼑􏼔 􏼕
− 1

WFs1
􏽢Us􏼐 􏼑

H
WFs2

􏽢Us􏼐 􏼑,

􏽢ΩFl � WFl1
􏽢Us􏼐 􏼑

H
WFl1

􏽢Us􏼐 􏼑􏼔 􏼕
− 1

WFl1
􏽢Us􏼐 􏼑

H
WFl2

􏽢Us􏼐 􏼑.

(24)

Eigenvalue decomposition was performed on the ma-
trices 􏽢ΩC, 􏽢ΩFs, and 􏽢ΩFl, and the pairing algorithm is used to
pair the eigenvalues corresponding to the same incident
source signal. +e coarse estimation 􏽢β

C

k , short baseline fine

estimation 􏽢β
Fs

k , and long baseline fine estimation 􏽢β
Fl

k of the
incident source signals are as follows:

􏽢β
C

k �
∠ 􏽢z

C
k􏼐 􏼑

2πd/λ
, k � 1, 2, . . . , K,

􏽢β
Fs

k �
∠ 􏽢z

Fs
k􏼐 􏼑

2πD/λ
, k � 1, 2, . . . , K,

􏽢β
Fl

k �
∠ 􏽢z

Fl
k􏼐 􏼑

2π(2D)/λ
, k � 1, 2, . . . , K.

(25)

Since the baseline length is D≫ λ/2, both the short
baseline fine estimation 􏽢β

Fs

k and the long baseline fine es-

timation 􏽢β
Fl

k have periodic ambiguity. +erefore, the phase

d
…

virtual ULA 1 virtual ULA 2 virtual ULA 3 

M d
…

M d
…

M

D

2D

Figure 4: +e schematic diagram of the virtual array of distributed super nested arrays.
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ambiguity must be resolved to calculate the fine estimation
without ambiguity. +e actual unambiguous short baseline
fine estimation βFs

k and long baseline fine estimation βFl
k have

the following relations with 􏽢β
Fs

k and 􏽢β
Fl

k , respectively.

βFs
k � 􏽢β

Fs

k + g
0
k

λ
D

, k � 1, 2, . . . , K,

βFl
k � 􏽢β

Fl

k + h
0
k

λ
2D

, k � 1, 2, . . . , K,

(26)

where g0
k and h0

k are the number of ambiguity periods of the
phases of 􏽢zFs

k and 􏽢zFl
k (taking 2π as the period), which can be

searched by equations (27) and (28), respectively.

g
0
k � argmin

gk

􏽢β
C

k − 􏽢β
Fs

k − gk

λ
D

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (27)

h
0
k � argmin

hk

βFs
k − 􏽢β

Fl

k − hk

λ
2D

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (28)

+e value range of gk is 􏼘􏼒 − 1 − 􏽢β
Fs

k )D/λ􏼙≤gk ≤ 􏼖􏼒1 −

􏽢β
Fs

k )D/λ􏼗 and the value range of hk is

􏼘􏼒 − 1 − 􏽢β
Fl

k )2 D/λ􏼙≤ hk ≤ 􏼖􏼒1 − 􏽢β
Fl

k )2D/λ􏼗. ⌊•⌋ and ⌈•⌉

indicate the rounding operations in the direction of negative
infinity and positive infinity, respectively. +rough the
mentioned deblurring method, a precise estimation of the
direction cosine with high accuracy and no ambiguity can be
obtained. +en, the DOA estimation values of the incident
source signals without ambiguity can be obtained as follows:

θk � − arcsin βFl
k􏼐 􏼑, k � 1, 2, . . . , K. (29)

4. Simulation Results

+is section will verify the DOA estimation characteristics of
the proposed distributed super nested arrays and algorithm
from the following four parts. To illustrate that the dis-
tributed super nested arrays proposed in this paper can
effectively reduce themutual coupling between the antennas,
the uniform spacing d is set as λ/6, λ/4, and λ/2 for the
simulation experiments.

4.1. Weight Function and Coupling Leakage. +is part sim-
ulated and analyzed the weight function and coupling
leakage. Experiment one simulated the weight functions of
ULA, distributed uniform arrays, nested arrays, distributed
nested arrays, super nested arrays, and distributed super
nested arrays. In the simulation, the number of antennas is
28. +e simulation results are shown in Figure 5.

It can be seen from Figure 5 that the shape of the middle
part of the weight functions of ULA, distributed uniform
arrays, nested arrays, and distributed nested arrays is tri-
angular, which is caused by the uniform arrangement of the
array antenna, especially when the value of n is smaller and
the weight function is relatively large. However, when n
takes a small value, the weight functions of the super nested

arrays and distributed super nested arrays are relatively
small. +erefore, it shows that the mutual coupling between
the antennas in super nested arrays and distributed super
nested arrays is smaller.

To quantitatively study the mutual coupling effect be-
tween the antennas of ULA, distributed uniform arrays,
nested arrays, distributed nested arrays, super nested arrays,
and distributed super nested arrays, we choose c1 � 0.1ejπ/3,
the remaining coupling coefficients are given by
cℓ � c1e

− j(ℓ− 1)π/8/ℓ. According to formula (7) and formula
(8), the coupling leakage values of ULA, distributed uniform
arrays, nested arrays, distributed nested arrays, super nested
arrays, and distributed super nested arrays are 0.169, 0.162,
0.120, 0.117, 0.069, and 0.069, respectively. +e calculation
results indicate that the mutual coupling between the an-
tennas of super nested arrays and distributed super nested
arrays is the smallest, followed by the distributed nested
arrays and the nested arrays. +e distributed uniform arrays
and ULA suffer the most severe mutual coupling effect.

4.2. Root-Mean-Square Error. +e estimation accuracy is
measured by the root-mean-square error (RMSE), and the
formula is

RMSE �

�������������������

1
KM

􏽘

M

m�1
􏽘

K

k�1

􏽢θk,m − θk􏼐 􏼑
2

􏽶
􏽴

, (30)

where K is the number of source signals,M is the number of
Monte Carlo trials, θk is the true DOA of the kth source
signal, and 􏽢θk,m is the estimated DOA of the kth source signal
obtained from the mth Monte Carlo trial.

Experiment two simulated the DOA estimation character-
istics of the distributed super nested arrays, super nested arrays,
distributed nested arrays, nested arrays, distributed uniform
arrays, and the ULA with the same number of array antennas.
+e simulation conditions are as follows: the source signal angle
is 30°, the number of array antennas is 28, the number of
snapshots is 500, and the basic uniform spacing d is equal to λ/6,
λ/4, and λ/2, respectively. When the basic uniform spacing d is
equal to λ/2, we assume c0 � 1, c1 � 0.1ej(π/3). Since themutual
coupling coefficient is approximately inversely proportional to
the antenna spacing, the smaller the antenna spacing, the more
severe the mutual coupling between the antennas. Calculated
according to the proportional relationship, when d is equal to
λ/6, c0′ � 1, c1′ � 0.3ejφ. When d is equal to λ/4,
c0″ � 1, c1″ � 0.2ejθ, where φ and θ are random values on
[− π, π). According to formula (7), the mutual coupling matrix
can be calculated. Perform 2,000 Monte Carlo trials in the
simulation. For comparison, the RMSE as a function of signal-
to-noise ratio (SNR) under the same conditions is simulated
without considering the mutual coupling between the antenna
elements.

Figures 6–8 are the simulation results of d � λ/6, d � λ/4,
and d � λ/2, respectively. DSNA, SNA, DNA, NA, and DUA
stand for the distributed super nested arrays, super nested
arrays, distributed nested arrays, nested arrays, and dis-
tributed uniform arrays, respectively.

6 International Journal of Antennas and Propagation



Simulation results show that when the mutual coupling
between the antennas is not considered, the RMSE of the
distributed nested arrays and the distributed super nested
arrays are consistent, the estimation error is much better

than that of the distributed uniform arrays, and the ULA is at
low SNR.When SNR is greater than the ambiguity threshold
[33], their estimation error is much better than that of the
super nested arrays and nested arrays. When considering the
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Figure 5: Weight functions. (a) ULA. (b) Distributed uniform arrays. (c) Nested arrays. (d) Distributed nested arrays. (e) Super nested
arrays. (f ) Distributed super nested arrays.
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Figure 6: Single-source signal and d � λ/6; the baseline length is 63 times the wavelength. (a) Not considering mutual coupling between the
array antennas. (b) Considering mutual coupling between the array antennas.
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Figure 7: Single-source signal and d � λ/4; the baseline length is 130 times the wavelength. (a) Not consideringmutual coupling between the
array antennas. (b) Considering mutual coupling between the array antennas.
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mutual coupling between the array antennas, the estimation
error of the distributed super nested arrays is better than that
of the distributed nested arrays, and the performance ad-
vantage is more obvious when the mutual coupling is more
severe. When SNR is greater than the ambiguity threshold,
the estimation error of the distributed super nested arrays is
much better than that of the super nested arrays and nested
arrays. Because of the influence of mutual coupling between
the antennas, the estimation accuracy of the distributed
uniform arrays and the ULA deteriorates sharply and tends
to a fixed value. In addition, the DOA estimation accuracy is
also closely related to the baseline length. If the ambiguity
threshold of the baseline is exceeded [33], the estimation
accuracy will deteriorate rapidly. +erefore, to obtain an
accurate DOA estimation, an appropriate baseline length
must be selected. In Section 4.3, the influence of the baseline
length of the distributed super nested array on the accuracy
of DOA estimation is analyzed.

Experiment three simulated the characteristics when
there are multiple source signals. In the simulation, the
number of source signals is six, the angle values are
θk � − 50∘ + 22(k − 1), k � 1, 2, . . . , 6, other conditions are
the same as experiment two. +e simulation results of
d � λ/6, d � λ/4, and d � λ/2 are shown in Figure 9–11.

It can be seen from the simulation results that in the case
of multiple source signals, considering the mutual coupling
between the array antennas, the estimation accuracy of the

distributed super nested arrays is better than that of the
distributed nested arrays, super nested arrays, nested arrays,
distributed uniform arrays, and ULA.+e simulation results
are consistent with experiment two.

In addition, when the mutual coupling between the
antennas is not considered, the estimation error of the
distributed nested arrays and distributed super nested arrays
is much better than that of the distributed uniform arrays
and ULA under low SNR. However, as the SNR increases,
the estimation error tends to be a fixed value. When a certain
SNR is reached, the estimation error of the distributed
uniform arrays is better than that of the distributed nested
arrays and distributed super nested arrays. +is is because
the number of snapshots is small, which cannot satisfy the
uncorrelation between the source signals. +e spatial
smoothing algorithm is used to process the covariance
matrix of the received signal. +e covariance matrix is
vectorized and the redundant information is removed,
resulting in an incomplete utilization of the received data.
+e spatial smoothing algorithm for multiple-source signals
DOA estimation, as the source signals cannot satisfy the
uncorrelation, the covariance matrix of the signal vector is a
square matrix close to the diagonal matrix. +e more the
number of source signals, the greater the deviation from the
diagonal matrix. +erefore, the redundant information re-
moved by the spatial smoothing algorithm is not really
redundant information. Failing to use all the useful
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Figure 8: Single-source signal and d � λ/2; the baseline length is 1500 times the wavelength. (a) Not considering mutual coupling between
the array antennas. (b) Considering mutual coupling between the array antennas.
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information of the received signal, the estimation accuracy is
worse than that of the distributed uniform arrays, and it
tends to be a fixed error that no longer improves as the SNR
increases. +e super nested arrays and nested arrays also
have the same trend as the distributed super nested arrays,
but the estimation accuracy of the distributed super nested
arrays is better than that of the super nested arrays and
nested arrays.

To verify the superiority of the proposed algorithm,
experiment four simulated the estimation performance of
the distributed nested arrays using the dual-scale ESPRIT
algorithm, multiscale ESPRIT algorithm, and the proposed
algorithm. +e basic uniform spacing d is equal to λ/2, the
baseline length D is set to 130 times the wavelength, and
other conditions are the same as experiment two. Figure 12
shows the performance comparison of the three algorithms.

+e dual-scale ESPRIT algorithm, multiscale ESPRIT
algorithm, and the proposed algorithm use the coarse es-
timation as the reference to disambiguate the fine estima-
tion. +e difference is that the dual-scale ESPRIT algorithm
performs defuzzification once. When the baseline length is
large, to obtain a precise estimation without ambiguity, the
accuracy of the coarse estimation needs to meet the re-
quirements of correct defuzzification, which requires a
higher SNR. +e multiscale ESPRIT algorithm increases the
intermediate estimation, which uses the higher precision
intermediate estimation as the reference to disambiguate the

fine estimation. +e algorithm performs defuzzification
twice, which greatly reduces the requirement on the SNR.
+e improved algorithm in this paper first uses the spatial
smoothing algorithm for preprocessing to obtain a more
precise coarse estimation, and then, it uses the coarse es-
timation as the reference to obtain a higher accuracy short
baseline fine estimation. +en, it uses the short baseline fine
estimation as the reference to obtain a long baseline fine
estimation with twice the length of the baseline. +e sim-
ulation results of Figure 12 show that when the SNR is less
than 0 dB, the coarse estimation of the dual-scale ESPRIT
algorithm no longer fully meets the requirements for
defuzzification, and hence, the estimation accuracy deteri-
orates rapidly. However, because of the addition of inter-
mediate estimation in the multiscale ESPRIT algorithm, its
estimation accuracy in the range of − 12 dB to 0 dB can still
meet the requirements for defuzzification of fine estimation.
When the SNR is less than − 12 dB, the accuracy of the
intermediate estimation no longer fully meets the accuracy
requirements of defuzzification. At this time, the estimation
error of fine estimation begins to increase, obviously. +e
improved method uses a spatial smoothing algorithm for
preprocessing, which improves the estimation error of
coarse estimation and then improves the estimation error of
the short baseline fine estimation and long baseline fine
estimation. +erefore, this method has better estimation
performance when the SNR is greater than − 18 dB. It is
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Figure 9: Multiple-source signals and d � λ/6; the baseline length is 45 times the wavelength. (a) Not considering mutual coupling between
the array antennas. (b) Considering mutual coupling between the array antennas.
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Figure 10:Multiple-source signals and d � λ/4; the baseline length is 60 times the wavelength. (a) Not consideringmutual coupling between
the array antennas. (b) Considering mutual coupling between the array antennas.
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Figure 11: Multiple-source signals and d � λ/2; the baseline length is 250 times the wavelength. (a) Not considering mutual coupling
between the array antennas. (b) Considering mutual coupling between the array antennas.
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observed from the simulation results that the improved
algorithm has better estimation accuracy than the other two
algorithms when the SNR is low.

From the simulation results of experiment two, exper-
iment three, and experiment four, it is observed that the
proposed distributed super nested arrays and the improved
algorithm in this paper can effectively reduce the mutual
coupling between the antennas and improve the accuracy of
DOA estimation.

4.3. Ambiguity :reshold of Baseline. +e bias of DOA es-
timation decreases with the increase in baseline when
meeting the requirements of correct defuzzification. How-
ever, when the baseline increases up to a certain length, the
bias increases rather than decreases, and this length is called
the ambiguity threshold of the baseline [34]. +erefore, the
influence of the baseline length of the distributed super
nested array on the accuracy of DOA estimation is analyzed
in this part.

100

10-1

10-2

10-3

RM
SE

 (d
eg

re
es

)

102

101

10-4
-20 -15 -10 -5 0 5 10

SNR (dB)

�e coarse estimation
Dual-scale ESBRIT algorithm
Multi-scale ESBRIT algorithm
Proposed algorithm

Figure 12: +e comparison of the performance of the three algorithms.

10-1

10-2

10-3RM
SE

 (d
eg

re
es

)

10-4
50 150 250 350 450 550100 200 300 400 500

Baseline Length (multiply λ)

SNR = -5 dB
SNR = 0 dB
SNR = 5 dB
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Experiment five simulated the RMSE as a function of
baseline length under different SNR. We assume the source
signal angle is 30°, the number of array antennas is 28, the
number of snapshots is 500, the basic uniform spacing d is
equal to λ/4, and c0 � 1, c1 � 0.2ej(π/3). +e baseline length
is set from 60 times the wavelength to 540 times the
wavelength, and the interval is 20 times the wavelength.+e
SNR is equal to -5 dB, 0 dB, and 5 dB, respectively. Perform
2,000 Monte Carlo trials in the simulation. Figure 13 shows
the simulation results of the distributed super nested
arrays.

Figure 13 shows that within the ambiguity threshold of
the baseline, the greater the baseline length, the higher the
estimation accuracy. When the baseline is greater than the
baseline ambiguity threshold, the estimation performance
drops rapidly. Besides, the ambiguity threshold of the baseline
also increases with the increase of SNR. Increasing the
baseline length within the ambiguity threshold will improve
the accuracy of the angle measurement. However, increasing
the baseline length will also require a corresponding increase
in SNR, and hence, selecting a suitable baseline length is
crucial for the distributed super nested array.
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Figure 14: +e simulation results of distributed super nested arrays. (a) DOA estimation. (b) Partial enlarged view.
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Figure 15: +e simulation results of distributed nested arrays. (a) DOA estimation. (b) Partial enlarged view.
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4.4. Maximum Number of Estimable Source Signals.
Distributed super nested arrays can not only improve the
accuracy of DOA estimation but also significantly increase
the number of detectable source signals. For verifying that
the proposed distributed super nested arrays can still im-
prove the DOA estimation accuracy when the number of
detectable source signals is greater than the number of array
antennas, experiment six simulated the DOA estimation
performance of the distributed super nested arrays and
distributed nested arrays. In the simulation, the number of
source signals is set to 40, the angle values are
θk � − 68∘ + 3.5(k − 1), k � 1, 2, . . . , 40, the number of array
antennas is 28, the number of snapshots is 5000, d is equal to
λ/2, the SNR is 0 dB, and the baseline length D is set to 100
times the wavelength, c0 � 1, c1 � 0.1ej(π/3). Use the im-
proved multiscale ESPRIT algorithm and perform 2,000
Monte Carlo trials in the simulation. Figures 14 and 15 show
the simulation results of the distributed super nested arrays
and the distributed nested arrays, respectively.

It can be seen from Figure 14 that when the number of
source signals is greater than the number of antennas, the
distributed super nested arrays can estimate all targets under
the condition of considering the mutual coupling between
the array antennas. As shown in Figure 14(b), because of the
mutual coupling between the antennas, the coarse estima-
tion has an upward shift, which increases the estimation

deviation, while the fine estimation is hardly affected, and its
estimation error is still far better than the coarse estimation.
Figure 15 shows that because of the mutual coupling be-
tween the antennas, the distributed nested arrays have false
targets and large angle deviations when estimating the angle
of the source signal. Especially at the edge angle, its esti-
mation performance deteriorates rapidly, and it cannot
estimate all targets. +e simulation results of experiment six
show that considering the mutual coupling between the
array antennas, the distributed super nested arrays can
significantly increase the number of detectable source signals
and improve the DOA estimation accuracy, and its DOA
estimation performance is better than that of the distributed
nested arrays.

Experiment seven simulated the characteristics of RMSE
changing with the number of source signals when consid-
ering mutual coupling between array antennas. In the
simulation, the number of array antennas is 28, the number
of snapshots is 500, d is equal to λ/2, the SNR is 0 dB, the
baseline lengthD is set to 210 times the wavelength, and 2000
Monte Carlo trials are performed. +e simulation results are
shown in Figure 16.

Figure 16 shows that the maximum number of detectable
source signals of the distributed uniform arrays is 13, which
is determined by the number of its subarray antennas. When
the number of source signals is small, the estimation ac-
curacy is better than that of ULA. As the number of source
signals increases, its estimation accuracy is worse than that
of ULA.+is is because the DOA estimation performance of
the distributed uniform arrays is not only related to the
mutual coupling between antennas but also closely related to
the baseline length between the subarrays. As the number of
source signals increases, the ambiguity threshold of the
baseline becomes smaller and the estimation accuracy

100

10-1

10-2

10-3

RM
SE

 (d
eg

re
es

)

101

10-4
0 10 20 30 405 15 25 35

�e number of source signals

Distributed super nested arrays
Distributed nested arrays
Distributed uniform arrays
ULA

Figure 16: +e simulation results of RMSE changing with the number of source signals.

Table 1: Maximum number of detectable source signals.

Array type Maximum number
Distributed super nested arrays 55
Distributed nested arrays 55
Distributed uniform arrays 13
ULA 27
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becomes worse. +e maximum number of detectable source
signals of ULA is 27, and when the number of source signals
is greater than 22, the estimation error deteriorates rapidly.
When the number of source signals is less than 41, the RMSE
of the distributed super nested arrays and the distributed
nested arrays is smaller than that of ULA. At the same time,
it can be seen that when the number of source signals is less
than 36, the RMSE of the distributed super nested arrays is
obviously better than that of the distributed nested arrays.
Table 1 shows the maximum number of detectable source
signals when the number of array antennas of the distributed
super nested arrays, distributed nested arrays, distributed
uniform arrays, and ULA is 28.

Table 1 and simulation experiments further verify that
the distributed super nested arrays can significantly increase
the number of detectable source signals and improve the
DOA estimation accuracy, and its DOA estimation per-
formance is better than that of the distributed nested arrays.
+is shows that the distributed super nested arrays have a
huge advantage and can be better adapted to practical en-
gineering applications.

5. Conclusions

+is paper proposes a distributed super nested arrays model
and an improved multiscale ESPRITalgorithm to reduce the
mutual coupling between array antennas and improve the
accuracy of DOA estimation. Besides, we analyze the lim-
itations of the spatial smoothing algorithm used by the
distributed super nested arrays when there are multiple
source signals and the influence of the baseline length of the
distributed super nested arrays on the accuracy of DOA
estimation. Numerical simulations show the superiority of
proposed arrays and algorithm.+e distributed super nested
arrays can not only improve the accuracy of DOA estimation
but also significantly increase the number of detectable
source signals, which can better meet the requirements of
actual engineering. It has broad application prospects in the
research of distributed high frequency radar.
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