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A wideband and high-gain circularly polarized (CP) 16×16 array antenna based on gap waveguide technology is presented for
millimeter-wave applications at 28GHz frequency range. Four cavity-backed slots with linear polarized (LP) radiation are used as
the subarray. CP is obtained by a 4× 4 sequential feeding network which is also expanded to achieve high gain. +e feeding
network of the final array antenna consists of two layers based on the ridge gap waveguide (RGW), and it has four unconnected
metal layers. It is shown by simulation that the proposed antenna has 20.5% impedance bandwidth over 25.8–31.7GHz and 3 dB
axial ratio bandwidth near 10% over 27.2–30GHz. In addition, the maximum gain value for this antenna is 31.6 dBi at a frequency
of 29GHz, which shows good performance compared to other structures.

1. Introduction

In recent years, high-frequency and millimeter-wave fre-
quency bands have gained much attention due to the in-
creasing demand for high-rate data transformation. Low-
cost and high-gain antennas are required for point-to-point
communication in the millimeter-wave frequency range.
Furthermore, planar antennas are the most common be-
cause of the compact system requirements.

+ere are different conventional types of the technol-
ogies that are used in planar array antennas, such as hollow
waveguides, substrate integrated waveguides (SIW), and
microstrip lines [1–15]. Although SIW and microstrip lines
have low profile and easy manufacturing, they have di-
electric losses, especially in the millimeter-wave frequency
range [1–7]. In addition, the low-loss dielectrics can be used
to reduce the losses, which are expensive and increase the
cost of fabrication [16, 17]. Hollow waveguide antennas
have low loss and high power-handling capacity in the
millimeter-wave frequency band [8–12]. However, they
need good electrical contact between metal parts in the
structure and require high precision, which is difficult and
expensive.

To overcome the aforementioned problems, a new
waveguiding technology called gap waveguide has been
introduced in [18, 19]. Gap waveguides can be realized
without the need for good electrical contact between the
metal layers [20–34]. +erefore, this technology makes the
manufacturing process easier andmuch cheaper than hollow
waveguides. +e advantages of gap waveguides compared to
substrate-based transmission lines, such as SIW and
microstrip lines, are that these structures can be realized
totally with metal, which makes them have low losses and
high power handling. +e gap waveguide structure is based
on two perfect electrical conductor (PEC) and perfect
magnetic conductor (PMC) boundary conditions. +e PMC
boundary condition acts like a high impedance surface, and
it can be realized by using a periodic texture of metal pins
called bed of nails. If the gap between two plates is smaller
than the quarter of wavelength, then no waves can propa-
gate, and all parallel-plate modes will be in cutoff frequency.
By using a ridge, groove, or microstrip line between the bed
of nails, the field will propagate in the desired direction.
+ese techniques are known as ridge gap waveguide (RGW)
[31], groove gap waveguide (GGW) [32], and microstrip gap
waveguide [33], respectively.
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Antennas with circular polarization are widely used in
satellite communication in the move (SOTM) and point-to-
point moving links due to their resistance to polarization
mismatch and multipath effects. Applications of these links
require CP antennas with proper radiation characteristics,
such as high gain, broadband bandwidth, and broadband
axial ratio (AR) bandwidth. +ere are also other desirable
features such as simple structure, low profile, and low cost
for mounting in cars, airplanes, trains, and other moving
vehicles. +ere are two ways to obtain circular polarization
in planar array antennas. +e first method is to use CP
antenna elements in an array. However, it suffers from
narrow bandwidth [35–41]. +e second method is to employ
the antenna element and subarray with a feeding system,
which results in circular polarization. +e sequential rota-
tion technique (SRT) is a suitable choice to achieve wide-
band AR where antenna elements are fed by the same
magnitude and progressive phase shifts of 90° [42]. Several
studies have proposed that the sequential feeding network is
employed in conventional planar array antennas to improve
AR bandwidth [43–45]. Recently, a two-level sequential
feeding network for an 8× 8 CP array antenna is presented,
in which the antenna gain reached to 23.5 dBi [20]. In this
paper, a 4-way sequential-phase feeding network based on
the RGW is proposed. +en, it is expanded to feed a 16×16
CP array antenna, which achieves the highest gain.

+e feeding network of the antenna consists of two layers
of 64 subarrays fed with a 2× 2 cavity-backed slot antenna.
+e geometry of the antenna and the simulation results of
the subarray are presented in Section 2. In Section 3, the
sequential feeding network for a 4× 4 CP array is investi-
gated. +e simulation results of the final antenna are pre-
sented in Section 4, and finally, the paper is concluded in
Section 5.

2. 2× 2 Cavity-Backed Subarray Design

Figure 1 shows the schematic diagram of a 2× 2 cavity-
backed slot subarray, with linear polarization that is similar
to the one which has been used in [24]. It consists of three
unconnected metal layers as shown in Figure 1(a). In the
radiation layer, each slot is surrounded by a cylindrical cavity
to suppress surface waves and mutual coupling between
other adjacent slots. As explained in [24], separating E- and
H-planes of the antenna from the principle plane of the array
reduces the sidelobe level of the antenna.+erefore, each slot
is tilted by 10° as shown in Figure 1(b). +e cavity layer is
formed by the metal pins and feeds four radiation slots in the
same phase and amplitude as shown in Figure 1(c).
Figure 1(d) depicts the feeding layer of the subarray that is
based on RGW technology and the quasi-TEMmode, which
is coupled to the cavity layer by a T-shaped ridge via a
coupling slot. +e dispersion diagram of the pin unit cell
used in the subarray is shown in Figure 2. It is calculated by
CST Eigenmode Solver for a pin unit cell with periodic
boundary conditions on two sides. +e pin dimensions are
chosen to have a stopband with covering working frequency
in 28GHz. As can be seen, the stopband of the pin for
parallel-plate propagation modes starts from 17 to 48GHz,

and it is suitable for using in the subarray structure. +e
dimensions of the subarray are presented in Table 1. Figure 3
shows the simulated reflection coefficient of the subarray
with the periodic boundary condition in CST Microwave
Studio. +e impedance bandwidth of the subarray is from
25.7 to 30.3GHz.

3. 4× 4 CP Array Design

Figure 4 shows the configuration of the 4× 4 CP array. +e
structure consists of four 2× 2 subarrays with sequential
rotation placement. As shown in Figure 4, the bottom layer is
the sequential-phase network with four outputs that is
similar to the one in [20]. To achieve a 90° phase shift be-
tween ports 2 and 3, the length difference between L2 and L1
is chosen as 5λ/4, where λ is the wavelength of the center
frequency of the antenna. +e 90° phase difference be-
tween ports 4 and 5 is obtained by the same method. In
addition, a 180° phase delay between two branches of the
first power divider is achieved by LL − lR � λ/2. +e di-
mensions of the sequential-phase feeding network are
optimized by CST Microwave Studio. +e simulated re-
flection and transmission of the sequential feeding net-
work are shown in Figure 5. It is clear that the reflection
coefficient from 24 to 35 GHz is below −27 dB, and the
imbalance transmission coefficient of the outputs is less
than 0.4 dB over the entire bandwidth. Figure 6 shows the
phase difference of the sequential-phase feeding network.
As can be seen, a right-handed 90° phase shifting between
the outputs is evident at 27.7 GHz.

Simulated AR and gain of both 2× 2 and 4×4 subarrays
are presented in Figure 7. +e AR magnitude for the 2× 2
subarray is above 20 dB over the frequency range of
24–33GHz due to its linear polarization. +e 3 dB AR
bandwidth of the 4× 4 array is from 27.2GHz to 30GHz,
which indicates that circular radiation has been achieved in
this frequency range. +e gain of the 2× 2 subarray is below
15 dBi. By expanding this subarray to a 4× 4 array, the gain
has been increased above 17 dBi with the maximum gain of
19 dBi at 28.7 GHz.

4. 16× 16 CP Array Antenna Design

+e 4-way power divider described in the previous section
can be expanded as the feeding network of the 16×16 CP
array antenna. +e schematic diagram of the presented
feeding network is illustrated in Figure 8.+ere is no enough
space to place ridge lines and power dividers between 4-way
power dividers for a compact integration due to the space
limitation. +erefore, the feeding network of the antenna
cannot be placed in one single layer, and it is required to add
another layer at the bottom of the structure. Subsequently,
the final array antenna consists of four layers. Figure 9 shows
the two feeding network layers of a 4× 8 array. One se-
quential feeding network is rotated by 180°, and since the 4-
way sequential feeding network is not rotationally sym-
metric, a phase difference of 180° occurs between the outputs
of the subfeeds at the top and bottom half of the entire
feeding network. If identical radiators are connected to the
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Figure 1: (a) Exploded view of a 2× 2 cavity-backed slot subarray. (b) Radiation layer. (c) Cavity layer. (d) Feeding layer.
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feeding network, this will lead to a null at the boresight
direction.

To overcome this problem, the phase difference must be
removed. To achieve this, an E-probe transition is designed
between feed-1 and feed-2 to match the ridge gap waveguide
line in the bottom layer to sequential feeding networks in the
top layer. Figure 9 shows the simulated structure of the E-
probe transition between feed-1 and feed-2 layers. +e di-
mensions of the transition are shown in Figure 10. As can be
seen in Figure 11, the input reflection coefficient of the
transition is almost below −20 dB over the frequency range
of 24–33GHz, and the output reflection coefficient is −3 dB.
+e simulated output phase differences of the proposed
transition are shown in Figure 12. It can be seen that the
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Figure 2: Dispersion diagram for the pin unit cell (p �1.77mm,
a� 0.89mm, df � 2.88mm, and g � 0.12mm).

Table 1: Dimensions of the 2× 2 cavity-backed slot subarray.

Component Parameter Value
(mm)

Radiation
layer

Slot spacing in the x- and y-
direction 8.85

Hc 3.26
Dc 7.77
ls 5.88
ws 3.46
ts 0.62

Cavity layer

w 6
l 6.66

wc 1.9
lc 6.43
tc 2.22

Feeding layer

wr 2.22
dr 2.4
lT 3.1
wT 1.55
lm 2.22
wm 0.67
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Figure 3: Simulated reflection coefficient of the 2× 2 slot subarray.

Figure 4: +e geometry of the 4-way sequential-phase feeding
network.
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Figure 5: Simulated reflection and transmission coefficients of the
sequential feeding network.
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Figure 8: Feeding network of the 16×16 CP array antenna. (a) Feed-1 (top layer). (b) Feed-2 (bottom layer).
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outputs have 180° phase difference. +erefore, this phase
difference and the phase difference caused by the rotation
of the sequential feeding network are canceled with each
other, and two 4-way sequential-phase feeding networks
are excited in the same phase and amplitude. +e ex-
panded feeding network for a 16 ×16 array antenna is
shown in Figure 8. In the bottom layer (feed-2), a feeding
network with 8 outputs is designed. +is feeding network
consists of 7 T-junction power dividers and excites

(a)

180°

(b)

Figure 9: Feeding network layers of a 4× 8 array. (a) Feed-2. (b) Feed-1.

Port 2
Port 3

wfwt

wb

ltlb
ge

lf
we

Port 1

Figure 10: +e structure of the E-probe transition between feed-1
and feed-2 layers (lf � 7mm, wf � 3.45mm, we � 0.6mm,
ge � 2.38mm, lt � 3.28mm, wt � 1.34mm, lb � 3mm, and
wb � 1mm).
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all coupling slots in the feed-2 layer with the same
phase and amplitude. An E-probe transition is utilized
to match the TE10 mode of the WR-28 rectangular
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Figure 12: Simulated output phases of the E-probe transition
between feed-1 and feed-2.
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30
31
32

29
28

26
27

25
24

24 25 26 27 28 29

Frequency (GHz)

G
ai

n 
(d

Bi
)

30 31 32 33 34

CST

HFSS

Figure 17: Simulated gain of the 16×16 CP array antenna.

International Journal of Antennas and Propagation 7



waveguide to the quasi-TEM mode of the ridge gap
waveguide. +e geometry of the proposed transition is
shown in Figure 13.

Figure 14 shows the perspective view of the simulated
16×16 CP array antenna simulated with CST and HFSS
software to compare results. +e simulated reflection co-
efficient of the array is illustrated in Figure 15. +e result
shows that the simulated results of CST and HFSS are in
quite good agreement, and the impedance bandwidth is 20%
from 25.8 to 31.7GHz. As shown in Figure 16, the simulated
3 dB AR bandwidth is 10% from 27.2 to 30GHz. +e
simulated gain of the array antenna is plotted in Figure 17.
According to this figure, the gain is above 28 dBi from 24.5 to
31.9GHz. +e maximum gain value is 31.6 dBi which oc-
curred at 29GHz.

Figure 18 shows the simulated normalized LHCP and
RHCP radiation pattern of the antenna in two orthogonal
planes at 28 and 29GHz. +e maximum sidelobe level of the
antenna is about −13.9 dB, and the cross-polarization level is
below −34 dB. Table 2 presents the results of several planar
CP array antennas for comparison. +e proposed antenna
has good impedance bandwidth and maximum gain com-
parable to other antennas with different feeding mecha-
nisms. However, the AR bandwidth has decreased compared
to the common RGW-based antenna in [20], which has a
two-level sequential feeding network, while the feeding
network of the proposed antenna has one sequential-phase
rotation level.

5. Conclusion

In this paper, a wideband and high-gain RHCP array an-
tenna has been presented. +e CP array uses a linear po-
larized 2× 2 subarray based on GGW technology and
employs the sequential rotation RGW feeding network. In
addition, the 4× 4 CP array is expanded to a 16×16 array
antenna. +e simulated results show that the impedance
bandwidth and 3 dB AR bandwidth are 20% and 10%, re-
spectively, with maximum gain.

Data Availability

+e CST and HFSS simulation data used to support the
findings of this study are available from the corresponding
author upon request.
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