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A band-stop filter with three different negative group delay functions in the passband, namely, band pass, high pass and low pass,
is proposed, which has small insertion loss. .e capacitance, inductance, and resistance meet different conditions, and the circuit
can realize three different negative group delay characteristics. .e theoretical calculation and equation derivation are given. A
band-stop filter with negative group delay function is fabricated, and the measured results are basically consistent with the
simulation results. .e correctness of the design is verified.

1. Introduction

Band-stop filters (BSFs) are used for blocking undesired
signals in RF/microwave systems [1]. At present, much work
has been done on band-stop filters [2–15]. Extended pass-
band band-stop filter cascade with continuous 0.85–6.6GHz
coverage is presented in [2]. Compact wideband band-stop
filters with five transmission zeros are depicted in [3].

.e research on filters is presented in a recently pub-
lished work. Compact low-pass and dual-band band-pass
filters with controllable transmission zero/center frequency/
passband bandwidth are proposed in [16]. .e position of
transmission zeros/center frequencies and 3 dB bandwidth
characteristics can be separately controlled by varying the
physical parameter of the designed filter structure. In [17], a
compact D-CRLH resonator for low-pass filters with wide
rejection band, high roll-off, and transmission zeros is
proposed. .e filter has wide rejection band bandwidth with
three transmission zeros (TZs). .e filter bandwidth and TZ
frequencies are controlled by the D-CRLH element values,
and the filter has minimum insertion loss in passband, high
roll-off rate, and good figure of merit. In [18], miniaturized
quad-band filters with improved selectivity using split ring

resonators and metallic strips are proposed. .e operating
frequency of the proposed filter structure can be controlled
with the variation in the length ratio of resonators.

As the performance index of filters, group delay affects
the performance of communication systems [19,20]. .e
methods to reduce the group delay based on the all-pass
network are designed in [21, 22]. Negative group delay
(NGD) technology has attracted attention for reducing the
influence of group delay. An equalization technique based
on negative group delay is proposed in [23, 24], which can
reconstruct the signals changed by time delay. .e NGD
circuits are realized by using series, shunt RLC resonators, or
microwave regime. Although some active schemes of NGD
circuits have been conceived, passive realizations have
attracted more interest due to their higher simplicity [25].
Passive band-pass, low-pass, and high-pass NGD circuit
topologies are presented in [26–28].

Negative group delay is gradually applied to filters. A
class of NGD band-stop filter (BSF) circuits with input-
reflectionless behavior are presented in [25], cancelling the
undesired RF-power reflections that can adversely affect
preceding active tags. In [29], reflective BSFs are designed
with enhanced negative group delay bandwidth (NBW),
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where an additional impedance transformer is required to
obtain good in-band matching. An absorptive band-stop
filter is proposed and synthesized with prescribed NGD and
NBW in [30].

At present, band-stop filters with negative group delay
function generally achieve band-pass negative group delay,
the insertion loss is large, and the signal has great attenu-
ation..eNGD property is usually attained at the expense of
significant signal-attenuation levels in lossy passive reali-
zations of NGD circuits. In this paper, the LC band-stop
filter with negative group delay of band pass, high pass and
low pass is designed, and the insertion loss in the frequency
range of negative group delay is improved.

.is paper consists of six main parts. Section 2 intro-
duces the structure of this circuit. .e equations of band-
stop filters satisfying different negative group delays are
analyzed. .e influence of each element value on the band-
pass negative group delay is given. Section 3 discusses high-
pass negative group delay in the band-stop filter’s passband.
In Section 4, low-pass negative group delay in the band-stop

filter’s passband is analyzed. In Section 5, the theory, sim-
ulation, and measurement are carried out. .e final part of
the paper is conclusion.

2. Band-Stop Filter DesignwithNegative Group
Delay Function

.e capacitor C1 and inductor L1 are connected in parallel to
form a simple band-stop filter with an impedance value of
Z1, as shown in Figure 1. .e impedance value Z1 is given in
equation (1). .e transfer function S21(Z1) is given in
equation (2), where Z0 is the characteristic impedance. .e
quality factor of the filter is Q � (f0/BW3dB). f0 is the
resonant frequency of the filter. BW3dB is the 3 dB band-
width. .e higher the Q value, the narrower the bandwidth.

When there are only L1 and C1 in Figure 1, the group
delay is calculated as shown in equation (3). When ω> 0, L1
and C1 are taken at any value, the group delay of the circuit is
always positive, and there is no negative group delay..at is,
τ1(ω)> 0.
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As shown in Figure 1, a negative group delay circuit with
an impedance value of Z2 is added on the left side of the
band-stop filter with impedance Z1. .e impedance value Z2
is given in equation (4). .e transfer function of the whole
circuit is given in equation (5), and the group delay is given
in equation (6). When ω> 0 and elements take specific
values, negative group delay appears in this circuit. .at is,
τ2(ω)< 0 when different conditions are met in the passband.
.e transfer function of negative group delay band-stop
filter is given in equation (7), and the group delay function is
given in equation (8).When elements take different values,
three negative group delay functions such as band pass, high
pass, and low pass can be realized in the passband of the
band-stop filter.
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τ3(ω) � −
z∠S21

zω
. (8)

Compared with S21(Z1) and S21, the passband and
stopband of the simple band-stop filter and negative group
delay band-stop filter do not change. Only the attenuation of
S21(Z1) and S21 is different. When L1 � 3.9 nH, C1 � 120 pF,
L2 � 970 nH, C2 �1.6 pF, the simulations are as shown in
Figures 2 and 3.

When τ2(ω)� 0 and R1 �R2 �Z0 � 50Ω, according to
equation (6), two significant frequency values are calculated,
which are, respectively, given in equations (9) and (10). f0
represents the frequency corresponding to the minimum
value of negative group delay in equation (11). .e circuit
with impedance Z2 shown in Figure 1 is a band-pass negative
group delay circuit if equation (12) is satisfied. It is a high-
pass negative group delay circuit if equation (13) is satisfied.
It is a low-pass negative group delay circuit if equation (14) is
satisfied.

After adding the negative group delay circuit with the
impedance of Z2 to the band-stop filter with the impedance
of Z1, if (1/

����
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􏽰
)≠ (1/

����
L2C2

􏽰
) and equations (12)–(14)
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are satisfied, respectively, the whole circuit can realize three
different negative group delay band-stop filters of band pass,
high pass, and low pass. .e negative group delay band-stop
filter is only attenuated by 1.9 dB compared with the original
band-stop filter, but the negative group delay transmission
of some signals in the passband is realized, and the delay
performance of the filter is improved.
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τ2(ω)> 0(ω ≈ 0),

f2 − f0 ≈ f0 − f1,
􏼨 (12)

τ2(ω)≥ 0(ω ≈ 0),

f2 − f0≫f0 − f1,
􏼨 (13)

τ2(ω)< 0(ω � 0),

there is only one real solution τ2(ω) � 0( 􏼁.
􏼨 (14)

2.1. Band-Stop Filter with Band-Pass Negative GroupDelay at
Different L2 Values. When C1, C2, and L1 are fixed and
R1 �R2 �Z0 � 50Ω, the negative group delay circuit presents
band-pass negative group delay. With the decrease in the
inductance L2 in the negative group delay circuit, the

Bandstop filter
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Negative group delay 
circuit Z2

(a)

C2
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C1
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Figure 1: (a) Block diagram of the band-stop filter with negative group delay. (b) .e circuit of the band-stop filter with negative group
delay.
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Figure 2: S parameters of the band-stop filter and band-pass negative group delay band-stop filter.
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minimum negative group delay in the passband of the band-
stop filter increases and it satisfies equation (15). .e larger
the inductance L2 is, the smaller the negative group delay will
be..e frequency of the minimum of negative group delay is
about1/2π

����
L2C2

􏽰
. .e circuit appears as a bass-pass NGD

according to the values of components in Table 1. .e band-
pass negative group delay and S21 at different values are
shown in Figures 4 and 5, respectively.

τ3(ω) �
M

N
. (15)

Here, M � 35.3L4
2 − 7.18 × 1028L3

2 + 8.38 × 1020
L2
2 + 3.63 × 10− 6L2 andN � 1.3 × 10 − 24L4

2 − 5.38 × 103L3
2

+5.38 × 1030L2
2 − 4.19 × 1022L2 +8.19 × 1013.

2.2. Analyzing the Influence of C2 on Band-Stop Filters with
Band-Pass Negative Group Delay. Compared with Table 1,
the C2 value of the negative group delay circuit is changed,
while the other element values remain unchanged. .e
performance indexes of negative group delay of the band-
stop filter are shown in Table 2. In the passband of the band-
stop filter, the minimum value of negative group delay
changes little. Due to the change inC2 value, the frequency of
minimum negative group delay changes. It can be seen from
Tables 1 and 2 that there is negative group delay in the
passband of the band-stop filter. In the negative group delay
circuit, the influence of capacitor C2 on the group delay is
small and the influence of inductance L2 on the minimum

negative group delay is large. .e resonant frequency of the
band-stop filter is 233MHz, and the frequency of the
minimum negative group delay avoids the value near
233MHz. At this time, the negative group delay cannot be
generated in the passband of the band-stop filter. .e band-
pass negative group delay and S21 at different C2 are pre-
sented in Figures 6 and 7, respectively.
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Figure 3: Group delay of the band-stop filter and band-pass negative group delay band-stop filter.
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Figure 4: Negative delay of band pass in band-stop filter with
different L2.

Table 1: Element values and performance indexes of the band-stop filter with different L1 values when band-pass negative group delay
occurs.

C1 (pF) L1 (nH) R1, R2 (Ω) C2 (pF) L2 (nH) f0 (MHz) τ (f0) (ns) IL (dB)
120 3.9 50 1.6 970 128 −12.41 3.5
120 3.9 50 1.6 470 184 −5.77 3.5
120 3.9 50 1.6 120 363 −1.52 3.5
f0 is the frequency of the minimum of negative group delay. τ(f0) is the minimum of negative group delay at the frequency f0. IL is the insertion loss at f0.
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Figure 5: S parameters of the band-stop filter with band-pass negative group delay at different L2.

Table 2: Element value and performance index of band-stop filters with band-pass negative group delay when C2 is changed.

C1 (pF) L1 (nH) R1, R2 (Ω) C2 (pF) L2 (nH) f0 (MHz) τ (f0) (ns) IL (dB)
120 3.9 50 1.6 970 128 −12.41 3.5
120 3.9 50 16 970 40 −11.78 3.5
120 3.9 50 160 970 13 −12.29 3.5
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Figure 6: Negative delay of band pass in band-stop filter with different C2 compared with Table 1.
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2.3. Analyzing the Influence of C1 and L1 on the Band-Stop
FilterwithBand-PassNegativeGroupDelay. Compared with
Table 2, changing the resonant frequency of the band-stop
filter, that is, changing C1 and L1, and keeping C2, L2, R1, and
R2 unchanged, the negative group delay value is basically
unchanged. .e data are depicted in Tables 3 and 4. At this
time, only the resonant frequency of the band-stop filter
changes and the negative group delay value in the passband
and the corresponding negative group delay frequency re-
main unchanged.

.e capacitor C1 affects the group delay value of the
band-stop filter at the resonant frequency, as shown in
Figure 8. However, the inductor L1 does not affect the group
delay value of the band-stop filter at the resonant frequency,
as shown in Figure 9..e characteristics of insertion loss and
return loss with different C1 and L1 values are presented in
Figures 10 and 11.

2.4. Analyzing the Influence of R1 on the Band-Stop Filter with
Band-Pass Negative Group Delay. .e resistance R1 has a
great influence on the negative group delay..e frequency of
the negative group delay in the passband of the band-stop
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Figure 7: S parameters of the band-stop filter with band-pass negative delay at different C2.

Table 3: Element values and performance indexes of the band-stop filter with different C1 values when band-pass negative group delay
occurs.

C1 (pF) L1 (nH) R1, R2 (Ω) C2 (pF) L2 (nH) f0 (MHz) τ (f0) (ns) IL (dB)
120 3.9 50 1.6 970 128 −12.41 3.5
160 3.9 50 1.6 970 128 −12.36 3.5
200 3.9 50 1.6 970 128 −12.28 3.5

Table 4: Element values and performance indexes of band-stop filter with different L1 values when band-pass negative group delay occurs.

C1 (pF) L1 (nH) R1, R2 (Ω) C2 (pF) L2 (nH) f0 (MHz) τ (f0) (ns) IL (dB)
120 3.9 50 1.6 970 128 −12.41 3.5
120 6.8 50 1.6 970 128 −12.18 3.5
120 100 50 1.6 970 128 −12.16 3.5
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Figure 8: Negative delay of band pass in the band-stop filter with
different C1.
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Figure 9: Negative delay of band pass in the band-stop filter with different L1.
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Figure 10: S parameters of the band-stop filter with band-pass negative delay at different C1.
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Figure 11: S parameters of band-stop filter with band-pass negative delay at different L1.
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Figure 12: Negative delay of band pass in the band-stop filter with different R1.
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Figure 13: S parameters of the band-stop filter with band-pass negative delay at different R1.

Table 5: Element values of the band-pass negative group delay circuit with different R1 values.

C1 (pF) L1 (nH) R1 (Ω) C2 (pF) L2 (nH) f0 (MHz) τ (f0) (ns) IL (dB)
120 20 50 120 470 21 −5.97 3.5
120 20 30 120 470 21 −13.82 5.3
120 20 20 120 470 21 −25.80 7.0
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filter is the resonant frequency of the negative group delay
circuit. .e data are shown in Table 5. .e group delay and
insertion loss characteristics at different R1 are shown in
Figures 12 and 13.

2.5. Analyzing the Influence of R2 on the Band-Stop Filter with
Band-Pass Negative Group Delay. When C1 �C2 �120 pF,
L1 � 20 nH, and L2 � 470 nH, R2 mainly affects the neg-
ative group delay bandwidth of the band-stop filter in the
passband but has little effect on the minimum negative
group delay, as depicted in Figure 14. With the increase
in resistance R2, the negative group delay bandwidth of
the band-stop filter in the passband increases, as shown
in Tables 6. .e characteristics of insertion loss are
shown in Figure 15. At the minimum negative group
delay, the loss is only 3.5 dB. .e Figure of Merit (FOM)
of designed filters is given in equation (16).When
R2 � 200Ω in Table 6, FOM � 0.0639.where τ(f0) repre-
sents the minimum negative group delay. BNGD repre-
sents the band of NGD. S21(f0) represents the insertion
loss at frequency f0.

FOM � τ f0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × BNGD × S21 f0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (16)

3. High-Pass Negative Group Delay in Band-
Stop Filter Passband

According to the values of L1, L2, C1, and C2 in Table 7 and
R1 �R2 � 50Ω, the circuit presents a high-pass negative
group delay circuit in band-stop filter passband. .e con-
dition for forming high-pass negative group delay in
equation (13) is satisfied. .e negative group delay decreases
with the increase in capacitance while the inductance and
resistance remain unchanged. .e simulation results are
shown in Figures 16 and 17.

4. Low-Pass Negative Group Delay in the
Passband of the Band-Stop Filter

.e circuit appears as a low-pass NGD circuit
according to the values of components L1, C1, R1, and R2
in Table 8. According to equation (14), when the

Table 6: Element values of the band-pass negative group delay circuit with different R2 values.

R1 (Ω) R2 (Ω) f0 (MHz) τ (f0) (ns) IL (f0) (dB) NGD band (MHz))
50 5 21 −5.96 3.5 1.56
50 50 21 −5.98 3.5 9.28
50 200 21 −6.03 3.5 15.83

Table 7: Element values of the high-pass negative group delay circuit with different C2 values.

C1 (nF) L1 (nH) C2 (nF) L2 (nH) fopt (kHz) τ (fopt) (ns) IL (dB)
1.5 120 15 3.9 670 −7.71 3.1
1.5 120 18 3.9 560 −9.58 3.1
1.5 120 22 3.9 460 −12.07 3.1
fopt refers to the frequency with the minimum negative group delay, τ(fopt) corresponds to the minimum negative group delay at frequency fopt, and insertion
loss refers to the loss at fopt frequency. IL refers to insertion loss.
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Figure 14: Negative delay of band pass in the band-pass filter with different R2.
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inductance decreases, the negative group delay increases.
.e cutoff frequency and the bandwidth increase. .e
simulation results are shown in Figures 18 and 19, from
which it can be seen that the influence of inductance on
the parameters of the low-pass negative group delay
circuit.

5. Measurement and Discussion of Band-Pass
NGD of Band-Stop Filter Circuits

When the element values are, respectively, C1 �C2 �120 pF,
L1 � 20 nH, L2 � 470 nH, R1 �R2 � 50Ω, and Z0 � 50Ω, the
circuit is fabricated according to the element values. It is
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Figure 16: High-pass negative group delay in the band-stop filter passband.
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Figure 15: S parameters of the band-stop filter with negative band-pass delay at different R2.

Table 8: Element values of low-pass negative group delay circuits with different values of L2.

C1 (pF) L1 (nH) R1, R2 (Ω) C2 (pF) L2 (nH) τ (0) (ns) IL (dB)
120 3.9 50 0 470 −3.08 3.5
120 3.9 50 0 390 −2.54 3.5
120 3.9 50 0 200 −1.28 3.5
τ(0) represents the minimum negative group delay (f� 0).
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shown in Figure 20. .e conditions of forming a band-pass
negative group delay in the passband of the band-stop filter
are satisfied. .e theoretical, simulated, and measured
waveforms are shown in Figures 21 and 22. Due to the
influence of parasitic parameters in the parallel circuit, the
simulation results deviate from the theoretical calculation.

Compared with the simulation results, the group delay
changes from positive to negative at the resonant frequency
of the band-stop filter. .e simulation results and the
measured results are basically the same in the minimum
negative group delay and the center frequency corre-
sponding to the minimum negative group delay.
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Figure 17: S parameters of the band-stop filter with negative high-pass delay at different C2.

Table 9: Comparison results of theory, simulation, and measurement.

Comparison f0 (MHz) NGD (ns) f (MHz) GD (ns) ILf0 (dB) ILf (dB)
.eo. 21.3 −5.9 102.3 20.0 3.5 27.2
Simu. 21.3 −3.9 100.3 −30.4 3.3 11.8
Mear. 21.3 −3.1 100.3 −47.2 3.1 14.5
f0 is the frequency at which the minimum negative group delay occurs in the passband of the band-stop filter. NGD represents the minimum negative group
delay at frequency f0. f represents the resonant frequency of the band-stop filter. GD represents the group delay at frequency f. ILf0 represents the insertion loss
at frequency f0. ILf represents the insertion loss at frequency f.
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Figure 18: Low-pass negative group delay of the band-stop filter with different inductance values (L2).
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Figure 20: .e fabricated band-stop filter circuit with band-pass negative group delay.
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Figure 21: Band-pass negative group delay of the band-stop filter.
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.e comparison results of theoretical, simulation, and
measurement performance indicators are shown in Table 9.

.e comparison of the band-pass negative group delay in
the passband of the band-stop filter with the reported liter-
ature is shown in Table 10. Compared with other band-stop
filters, the designed band-stop filter with band-pass negative
group delay operates at a lower frequency. Compared with
[33], the negative group delay is reduced by 5.996 ns and
the insertion loss is decreased by about 2.55 dB. Compared
with [26], the insertion loss is decreased 19.15 dB. Com-
pared with [27], the insertion loss is decreased by 19.1 dB. It
can be seen from the comparison that this design has better
insertion loss.

6. Conclusion

A band-stop filter with the function of negative group delay
is proposed. When the values of elements are different,
different types of negative group delay functions such as
band pass, high pass, and low pass are realized in the
passband of the band-stop filter. .e band-pass-type neg-
ative group delay is realized in the band-stop filter’s pass-
band, and the simulation results are basically consistent with
the measured results. .e theoretical minimum negative
group delay in the passband of the filter is about −6.03 ns,

which improves the delay performance of the communi-
cation system. .e realization of negative group delay is
always at the cost of signal attenuation. In the passband of
the designed band-stop filter, the realization of negative
group delay only has the insertion loss of 3.5 dB, while in
many papers, it is greater than 20 dB attenuation, which
improves the performance of insertion loss. .e designed
negative group delay band-stop filter has high practical
value.
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