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As we all know, nested array can obtain a larger array aperture and more degrees of freedom using fewer sensors. In this study, we
not only designed an enhanced symmetric nested array (ESNA), which achieved more consecutive lags and more unique lags
compared with a generalized nested array but also developed a special cumulant matrix, in the case of a given number of sensors,
which can automatically generate the largest consecutive lags of the array. First, the direction-of-arrivals (DOAs) of mixed sources
are estimated using the special cumulant matrix.*en, we can estimate the range of the near-field source in the mixed source using
a one-dimensional spectral search through estimated DOAs, and in the mixed sources, the near-field and far-field sources are
classified by bringing in the range parameter.*e largest consecutive lags and composition method of ESNA are also given, under
a given number of sensors.Our algorithm has moderate computation complexity, which provides a higher resolution and
improves the parameters’ estimation accuracy. Numerical simulation results demonstrate that the proposed array showed an
outstanding performance under estimation accuracy and resolution ability for both DOA and range estimation compared with
existing arrays of the same physical array sensors.

1. Introduction

Mixed source localization is an important problem in the
field of array signal processing such as radar, sonar, and
communications [1–5]. *erefore, to solve this problem,
many algorithms have been proposed, such as the ESPRIT
algorithm [6], the MUSIC algorithm [7], and so on. How-
ever, most of them focused on far-field (FF) assumption to
solve the far-field problem [8]. When a source is located in
the Fresnel region, which belongs to the near-field (NF)
source, and the wavefront is no longer a plane wave but a
spherical wave [9], the wavefront is composed of DOA and
range [10].

Recently, many algorithms based on NF source locali-
zation have been developed to estimate DOA and the range
[11–15]; however, the algorithms proposed above mainly
focuses on NF or FF sources. In some other situations, for
example, using microphone arrays to locate speakers and
communications, mixed sources are received by an array

[16]. Fortunately, many algorithms have been proposed to
deal with this situation. Based on the classical second-order
statistics algorithms, an oblique projection algorithm was
proposed by He et al. [17] and Zuo et al. [18] to eliminate the
subspace of FF sources from the covariance matrix and
obtain the corresponding subspace of NF sources. Corre-
sponding NF and FF sources could be well separated; then
with the NF DOA estimates, corresponding ranges pa-
rameters could be obtained via 1-D peak searching. How-
ever, when there are only FF sources, this method fails. To
solve this problem, a RARE-based localization algorithmwas
proposed by Hua et al. [19]. *is method eliminated the
range parameters in the signal subspace, then obtained the
NF DOA, and finally substituting NF DOA into a 1-D peak
searching to obtain the range parameters.

It is generally known that high-order statistics (HOS)
are getting more and more attention. HOS can not only
increase the estimation accuracy but also extend an ap-
erture of the given array. In addition, HOS is insensitive
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to Gaussian noise. A high-order MUSIC algorithm,
proposed by Liang and Ding [20], DOA, and range are
solved by constructing cumulant matrix, and it needed to
construct two fourth-order cumulant matrices, which
leads to high computation complexity. However, the
methods mentioned above are all based on a uniform
symmetric linear array to estimate the DOA and ranges of
the mixed sources.

Noteworthy, in the case of coexistence of the near- and
far-field sources, existing works mentioned above can be
used. However, due to the use of uniform symmetric linear
array, when physical array sensors are certain, consecutive
lag numbers will be limited [21]. *e problem of using fewer
physical sensors to estimate more sources is becoming more
and more important [22]. To solve this problem, many
sparse linear arrays, such as nested arrays [23] and coprime
arrays [24], have been proposed. *e sparse array can
produce a larger array aperture and more consecutive lags
compared with uniform linear array with the same array
sensors.

Some algorithms based on nested array for mixed
sources localization have been developed. For example,
using convolution neural networks to localization mixed
sources [25], using exact spatial propagation geometry lo-
calization mixed sources [26], and components separation
for localization and classification of mixed sources [27]. *e
methods mentioned above all used general nested arrays.
Although the number of consecutive lags can be increased,
they were not an optimal array.

According to the characteristics of a sparse array, an
enhanced symmetric nested array (ESNA) and a novel al-
gorithm for localization of mixed sources are proposed in
this paper. By exploiting subarray partition method of the
ESNA, one cumulant matrix that contains only DOA in-
formation to estimate the DOA of mixed sources was
constructed using the conventional MUSIC method. *en,
with the estimated DOA, the range parameters can be ob-
tained by a 1-D peak searching. Compared with the existing
arrays, ESNA not only exhibits a larger number of con-
secutive lags but also provides a larger array aperture under
the given same sensor number. Compared with methods of
Wang et al. in [28] and Akbar et al. in [10], due to use the
ESNA and subarray partition method, we can obtain more
continuous lags and better performance under the condition
of the same sensor number.

In this paper, we designed the ESNA and a new algo-
rithm to solve the mixed-field sources localization. Ourmain
contributions are as follows:

(1) We proposed an enhanced symmetric nested array
(ESNA). We also give the ESNA optimal array
configuration parameters. Compared with uniform
symmetric array, ESNA can provide higher spatial
resolution and enhanced degrees of freedom with
same sensors.

(2) Based on ESNA, we proposed a new algorithm,
subarray partition, and compared with the existing

similar algorithms, the complexity of this algorithm
is greatly reduced.

(3) We verified the superiority of the proposed algo-
rithm based on the ESNA in terms of mixed-field
accuracy, resolution capacity, and many more DOFs
and analyzed the range of ambiguity problem.

*e remaining part of this paper is organized as follows:
Section 2 introduces the signal model. Section 3 introduces
the ESNA configuration and proposed algorithm. Section 4
provides the simulation results; the conclusions are given in
Section 5.

2. Signal Model

Consider K narrow band and independent sources pa-
rameterized by (θk, rk), k � 1, 2, . . . , K impinge on the
ESNA with 2M + 2N + 1 sensors, from Figure 1, which
consists of two symmetric sparse arrays with intersensor
spacing 2N d contains 2M sensors; and a symmetric
uniform linear array with intersensor spacing d contains
2N − 1 sensors; and a left sensor, a right sensor with
intersensor spacing (2N − 1)d on both sides of the array.
*e distance between two sparse symmetric linear sub-
arrays and a uniform linear array is 2Nd. *e sensors
index can be expressed as [−M − N, −M − N + 1, . . . , M +

N − 1, M + N]. We use set W to represent the position of
the sensors:

W � p−L · d, . . . , p0 · d, . . . , pL · d􏼂 􏼃, (1)

where L � M + N. *e position of the ith sensor is pi · d, i
∈[−L, L]. *e value of pi is defined as

pi �

i, |i|≤N − 1,

N − 1 + 2N(i − N + 1), N≤ i≤M + N − 1,

1 − N + 2N(i + N − 1), 1 − M − N≤ i≤ − N,

N − 2 + 2N(M + 1), i � M + N,

2 − N − 2N(M + 1), i � −M − N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

*e reference point of the phase is the center of
the array, that is, 0 array element is the reference point.
When the ith sensor receives a signal, it can be expressed
as [20]

xi(t) � 􏽘
K

k�1
sk(t)e

jτik + ni(t), (3)

where sk(t) represents the kth narrowband source and ni(k)

represents the additive Gaussian noise. In addition, τik

represents the propagation time delay of the kth source
arriving the ith sensor relative to the 0th sensor. If kth source
represents near-field one, τik can be written in the following
form:

τik � ick + i
2ϕk, (4)
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where ck and ϕk are given by

ck � −2π
d

λ
sin θk( 􏼁,

ϕk � π
d
2

λrk

cos
2 θk( 􏼁,

(5)

where θk and rk represent the azimuth DOA of kth and range
of the kth near-field source. According to the definition,
near-field source lies in the Fresnel zone
[0.62(D3/λ)1/2, 2D2/λ] [14], where D � 2pLd is the array
aperture. If the kth source is a far-field one, then rk⟶∞,
and τik can be written the following form:

τik � ick, (6)

where ϕk ≈ 0 due to beyond range of far-field source.
Assume that the K1 sources are near-field sources and

the rest of K sources are far-field sources, then the vector
form of equation (3) can be expressed as

x(t) � ANsN(t) + AFsF(t) + n(t), (7)

where

x(t) � x− L(t), . . . , x0(t), . . . , xL(t)􏼂 􏼃
T
,

AN � a θ1, r1( 􏼁, . . . , a θK1
, rK1

􏼐 􏼑􏽨 􏽩,

AF � a θK1+1􏼐 􏼑, . . . , a θK( 􏼁􏽨 􏽩,

sN(t) � s1(t), . . . , sK1
(t)􏽨 􏽩

T
,

sF(t) � sK1+1(t), . . . , sK(t)􏽨 􏽩
T
,

(8)

and

n(t) � n− L(t), . . . , n0(t), . . . , nL(t)􏼂 􏼃
T
. (9)

Note that the forms of steering vector a(θk, rk) and a(θk)

have the following form:

a θk, rk( 􏼁 � e
j p−Lck+p2

− L
ϕk( ), . . . , 1, . . . , e

j pLck+p2
L
ϕk( )􏼔 􏼕

T

,

a θk( 􏼁 � e
j p−Lck( ), . . . , 1, . . . , e

j pLck( )􏼔 􏼕
T

.

(10)

Some assumptions are required to hold in this paper:

(1) *e source signals are narrowband, statistically
mutually independent, and non-Gaussian processes
with nonzero kurtosis

(2) *e sensor noise is the additive white Gaussian
process and independent of the source signals

(3) Using the ESNA array, in which the interelement
spacing d of the uniform linear array is set to be
(λ/4)

3. Proposed Algorithm

3.1. Analysis of ESNA in the Cumulant Domain.
Cumulant has many advantages, it not only improves the
estimation performance but also expands the array aperture
[29–31]. In addition, cumulant can also provide an increased
number of consecutive lags, which is insensitive to Gaussian
noise.

Based on the assumptions, we define the fourth-order
cumulant cum xm(t), x∗n (t), x∗ρ(t), xq(t)􏽮 􏽯 as

cum xm(t), x
∗
n (t), x

∗
ρ(t), xq(t)􏽮 􏽯

� cum 􏽘
K

k�1
sk(t)e

j pmck+p2
mϕk( ), 􏽘

K

k�1
sk(t)e

j pnck+p2
nϕk( )⎛⎝ ⎞⎠

∗

,
⎧⎨

⎩

· 􏽘
K

k�1
sk(t)e

j pρck+p2
ρϕk􏼐 􏼑⎛⎝ ⎞⎠

∗

, 􏽘
K

k�1
sk(t)e

j pqck+p2
qϕk􏼐 􏼑⎫⎬

⎭

� 􏽘
K

k�1
c4,sk

e
j pm− pn( )− pρ− pq( 􏼁􏼂 􏼃ck+ p2

m− p2
n( )− p2

ρ− p2
q􏼐 􏼑􏽨 􏽩ϕk􏽮 􏽯

× cum sk(t), s
∗
k (t), s

∗
k (t), sk(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j pm− pn( )− pρ− pq( 􏼁􏼂 􏼃ck+ p2

m− p2
n( )− p2

ρ− p2
q􏼐 􏼑􏽨 􏽩ϕk􏽮 􏽯

,

(11)

where c4,sk
� cum sk(t), s∗k (t), s∗k (t), sk(t)􏼈 􏼉 is the kurtosis of

the kth signal and m, n, ρ, q ∈ [−L, L].
In equation (11), we remove the ϕk term, while keeping

the ck term, it is assumed that n � −m, q � −ρ. *us,
equation (11) becomes

(2N–1) d (2N–1) d2Nd 2Nd 2Nd 2Nd
d θk

Sk (t)
rk

–M–N

Le� sensor Subarray 3 Subarray 1 Subarray 2 Right sensor

–N–1 N–1 M+N–1 M+NN N+1–N+1 –1 0 1–N–M–N+1

...... ... ...

Figure 1: *e ESNA geometry.
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cum xm(t), x
∗
−m(t), x

∗
ρ(t), x−ρ(t)􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2 pm− pρ( 􏼁ck .

(12)

Obviously, equation (12) only contains DOA parame-
ters, which we can estimate DOA of all sources first by
constructing a special cumulant matrix.

Proposition 1. Let L � lρ| − M − N≤ ρ≤M + N􏽮 􏽯 repre-
sents the positions of the sensor in the ESNA array, and Lc

� lc|lc � pm − pρ􏽮 􏽯 represents the lags in the ESNA. Based on
the ESNA, we define the following facts to hold:

(a) 5ere are 4MN + 8N − 3 consecutive lags in the
range [−4N − 2MN + 2, 4N + 2MN − 2]

Proof (a): see Appendix.
(b) When N � ⌈L + 2/2⌉ and M � ⌊L + 2/2⌋, the largest

consecutive lags can be obtained, where ⌈ · ⌉ and ⌊ · ⌋

are the round-towards infinite and round-towards
zero
Proof: we define f(N) � 4NM + 8N − 3, where
N � L − M. f′(N) � 4L − 8N + 8 can be obtained by
deriving N. Notably, N is an integer, when
N � ⌈L + 2/2⌉ or M � ⌊L − 2/2⌋, f can get the max-
imum value.

As a comparison, four array configurations with 2L + 1
sensors were considered: (1) symmetric nested array (SNA)
[28], (2) symmetric double nested array (SDNA) [23], (3)
improved symmetric nested array (ISNA) [10], and (4) the
proposed enhanced symmetric nested array (ESNA). In
Table 1, in the case of the same number of sensors, we
compare the number of consecutive lags and the values of M

and N. Among all the nested arrays, the total sensors of the
uniform linear array in the middle of a nested array are
2N − 1, and the sparse array on both side of a uniform linear
array is 2M + 2. From Table 1, it is obvious that the proposed
ESNA has the maximum number of consecutive lags when
the number of array sensors is the same. As the results show,
the ESNA can offer more consecutive lags for DOA esti-
mation in mixed source scenario.

In order to provide an intuitive impression of above-
mentioned four array configurations, herein, we give an
example of 13 sensors and mark their positions in Figure 2.
*e red circles represent the lags of four virtual coarrays, and
the blue crosses represent the holes for four virtual coarrays.
*e interval between positions is d.

3.2. DOA Estimation of All Sources. In this section, we
construct a special cumulant, which can be used to eliminate
the range parameter in the near-field, and then use the
cumulant to estimate the DOA of the mixed field.

In the proposed algorithm, we use the subarray partition
method to combine the sparse array and the uniform linear
array in the ESNA form, and the corresponding cumulant
output and the output cumulant are formed by the largest
virtual consecutive lags.

Based on equation (11), first, let m � M + N,
p ∈ [1 − N, . . . , N − 1], and the (2N − 1) × 1 cumulant
vector c1 can be obtained, and its (N − ρ) th element is given
by

c1(N − ρ)

� cum xM+N(t), x
∗
−M−N(t), x

∗
ρ(t), x−ρ􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2((N− 2)+2N(M+1)− ρ)ck .

(13)

Similarly, since we are using a symmetric enhanced
nested array, we can easily obtain a symmetrical part. Let
m � −M − N, ρ ∈ [1 − N, . . . , N − 1], and we get another
(2N − 1) × 1 cumulant vector c1, and its (N − ρ)th element
is given by

c1(N − ρ)

� cum x−M−N(t), x
∗
M+N(t), x

∗
−ρ(t), xρ(t)􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2(− 2N− 2N(M+1)− ρ)ck .

(14)

Second, let m ∈ [N, N + M − 1], p ∈ [1− N, . . . , N − 1],
we get another M(2N − 1) × 1 cumulant vector c2 m, and its
(2N(m − N) + N − ρ) th element is given by

c2 m(2N(m − N) + N − ρ)

� cum xm(t), x
∗
−m(t), x

∗
−ρ(t), xρ(t)􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2((N− 1)+2N(m− N+1)− ρ)ck .

(15)

Similarly, let m ∈ [N, N + M − 2], ρ � M + N and
construct (M − 1) × 1 vector c2 m, and its (m − N + 1)th
element is given by

c2 m(m − N + 1)

� cum xM+N(t), x
∗
−M−N(t), x

∗
m(t), x−m(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2(2N(M+N− m)− 1)ck .

(16)

Now, we construct the (2MN − 1) × 1 vector c2,

c2 � c2 1, c2 M+N−2
, . . . , c2 M+N−2, c2 1

, c2 M+N−1􏽨 􏽩. (17)

Similarly, since we are using a symmetric enhanced
nested array, we can easily obtain a symmetrical part. Let
m ∈ [1 − M − N, −N], ρ ∈ [1 − N, . . . , N − 1], we get an-
other M(2N − 1) × 1 cumulant vector c∗2 m, and its
(−2N(m + N) + N − ρ)th element is given by

c
∗
2 m(−2N(m + N) + N − ρ)

� cum xm(t), x
∗
−m(t), x

∗
ρ(t), xρ(t)􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2(1− N+2N(m+N− 1)− ρ)ck .

(18)
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Similarly, let m ∈ [2 − M − N, −N], ρ � −M − N and
construct (M − 1) × 1 vector c∗2 m, and its (m + N + 2)th
element is given by

c
∗
2 m(m + N + 2)

� cum x−M−N(t), x
∗
M+N(t), x

∗
m(t), x−m(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2(1− 2N(M+N+m))ck .

(19)

Now, we construct the (2MN − 1) × 1 vector c2,

c2 � c
∗
2 1, c
∗
2 M+N−2

, . . . , c
∗
2 M+N−2, c

∗
2 1

, c
∗
2 M+N−1

􏽨 􏽩. (20)

*ird, let m ∈ [1 − N, N − 1], ρ � 0 and construct the
(2N − 1) × 1 vector c3, and its mth element is given by

c3(m + N)

� cum xm(t), x
∗
−m(t), x

∗
0(t), x0(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2mck .

(21)

Fourth, let m � N − 1, ρ ∈ [1 − N, −1], we get another
(N − 1) × 1 cumulant vector c4, and its (N + ρ)th element is
given by

c4(N + ρ)

� cum xm(t), x
∗
−m(t), x

∗
ρ(t), xρ(t)􏽮 􏽯

� 􏽘
K

k�1
c4,sk

e
j2(m− ρ)ck .

(22)

Similarly, since we are using a symmetric enhanced
nested array, we can easily obtain a symmetrical part, let
m � 1 − N, ρ ∈ [1, N − 1], we construct the (N − 1) × 1
vector c4, and its ρth element is given by

c4(ρ)

� cum xm(t), x
∗
−m(t), x

∗
ρ(t), xρ(t)􏽮 􏽯

� 􏽘

K

k�1
c4,sk

e
j2(m− ρ)ck .

(23)

Fifth, let m � M + N, ρ � M + N − 1 and m � −M − N,
ρ � 1 − M − N, and we construct the last two cumulants c5
and c5,

c5

� cum xM+N(t), x
∗
−M−N(t), x

∗
M+N−1(t), x1−M−N(t)􏼈 􏼉

� 􏽘

K

k�1
c4,sk

e
j2(2N− 1)ck ,

(24)

and

c5

� cum x−M−N(t), x
∗
M+N(t), x

∗
1−M−N(t), xM+N−1(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2(1− 2N)ck .

(25)

Finally, let m � M + N − 1, ρ � −N, we construct cend,
and it is given by

cend

� cum xM+N−1(t), x
∗
1−M−N(t), x

∗
−N(t), xN(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2(4N+2NM− 2)ck .

(26)

Table 1: Consecutive lags numbers for different arrays.

Physical number
SNA SDNA ISNA ESNA Maximum number of consecutive lags

N M N M N M N M SNA SDNA ISNA ESNA
7 1 1 2 2 3 1 3 0 7 15 19 21
9 2 2 2 3 3 2 3 1 11 21 29 33
11 2 2 3 3 4 2 4 1 17 29 41 45
13 3 3 3 4 4 3 4 2 32 37 55 61
15 3 3 4 4 5 3 5 2 31 47 71 77
17 4 4 4 5 5 4 5 3 39 57 89 97

-25 -20

physical sensors
lags
holes

-15 -10 -5 0 5 10 15 20 25

Symmetric Nested Array
Symmetric Double Nested

Array
Improve Symmetric Nested

Array
Enhance Symmetric Nested

Array

Figure 2: Sensor locations.
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Similarly, since we are using a symmetric enhanced
nested array, we can easily obtain a symmetrical part. Let
m � 1− M − N, ρ � N, we construct cend, and it is given by

cend

� cum x1−M−N(t), x
∗
M+N−1(t), x

∗
N(t), x−N(t)􏼈 􏼉

� 􏽘
K

k�1
c4,sk

e
j2(4N+2NM− 2)ck .

(27)

Now, we combine the above vectors to form a 2(4N +

2MN − 1) − 1 × 1 vector c, which is expressed as

c � cend, c
T
1 , c

T
2 , c5, c

T
4 , c

T
3 , c

T
4 , c5, c

T
2 , c

T
1 , cend􏽨 􏽩

T
. (28)

A Toeplitz matrix C is constructed through the vector c,
andmatrixC is (4N + 2MN − 1) × (4N + 2MN − 1), whose
mth column ofC consists of the ((4N + 2MN− 1) + 1 − m)th
to (2(4N + 2MN − 1) + 1 − m)th element of c. *e Toeplitz
matrix C can be expressed in a compact form as

C � A(θ)CsA
H

(θ),

Cs � diag c4s1
, . . . , c4sK

􏽨 􏽩,

A(θ) � a θ1( 􏼁, . . . , a θK( 􏼁􏼂 􏼃,

(29)

and

a θk( 􏼁 � 1, e
j2c1 , . . . , e

j2(4N+2MN− 2)ck􏽨 􏽩
T

. (30)

Since the sources signals have nonzero fourth-order
cumulant, the matrix C is full rank. *erefore, we estimate
the common θ of mixed sources by performing the eigen-
value decomposition of C.

Based on the EVD of C, using the MUSIC algorithm [6]
to estimate DOA and we can get the following formula:

θk � min a(θ)
H

UnU
H
n a(θ), k � 1, 2, . . . , K, (31)

where Un represents the noise subspace of C.

3.3. Range Estimation and Source Type Classification.
Once θk, k � 1, . . . , K is estimated, then we can estimate rk.
When we get the convariance matrix R � E x(t){ xH(t)},
perform eigen-decomposition on it, and we can get

R � UsVsU
H

s + UnVnU
H

n , (32)

where Un spans the noise subspace, which contains (4N+

2MN − 1 − K) eigenvectors. By taking the estimated θk into
a(θk, r), the rk can be obtained by the following:

rk � min a θk, r( 􏼁UnU
H

n a
H θk, r( 􏼁, k � 1, . . . , K. (33)

Obviously, K peaks can be obtained by searching in the
2-D MUSIC spectrum [11]. When the range rn lies in the
Fresnel region rn ∈ [0.62(D3/ λ)1/2, 2D2/λ], through spec-
trum search, we can get K1 near-field sources, when the
range rn exceeds the Fresnel region rf �∞, K − K1 far-field
sources we can get through the spectrum search [28].

Finally, θk and rk are paired one by one, and no oper-
ation is required.

3.4. AmbiguityAnalysis of Range Estimation. In this part, the
ambiguity of range needs us to discuss because the ranges of
near-field are estimated by ESNA, where some intersensor
spacings are more than a half wavelength. In [21, 28, 32], the
use of a sparse array to estimate ambiguity problem of range
of a given DOA has been discussed. Our analysis is similar to
that of [28]. We analyze the ambiguity of the range under the
ESNA.

Like [28], according to equation (33), the steering vector
a(θk, rk) contains the range parameter rk. If rk is unique,
then there is no ambiguity in the steering vector a(θk, rk).

Similarly, suppose that a(θk, rk) is ambiguous, from
equations (3), (4), and (6), we have

πd
2
p
2
mcos

2 θk( 􏼁

λrk

�
πd

2
p
2
mcos

2 θk( 􏼁

λrk

+ h2π, (34)

where rk denotes the true range and the rk denotes the false
range, rk, rk ∈ [0.62(D3/λ)1/2, 2D2/λ]. When the integer
|h|≥ 1, the range must be ambiguous. *us, equation (34)
can be transformed into

p
2
m ≥

2λ
d
2cos2 θk( 􏼁

·
1

1/rk( 􏼁 − 1/rk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (35)

By minimizing the right-side part of equation (35), we
can obtain the maximum range of p2

m. Let cos2(θk) � 1,
rk � 0.62(D3/λ)1/2, and rk �∞, then we have

p
2
m ≥

2λ
d
2 0.62

D3

λ
􏼠 􏼡

1/2

. (36)

If we take the array aperture equal to λ and d equal to λ/4,
we can get

pm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 4.45. (37)

which implies that when pm ≥ 5 or pm ≤ − 5, the mth ele-
ment of the steering vector a(θk, r) is not unique. However,
when D � λ and d � λ/4, |pm| is less than 5 in the ESNA.
*us, when −4≤ |pm|≤ 4, the mth element of a(θk, r) is
unique.

Consequently, through the analysis of the above, we can
obtain that the range rk is unique through the DOA esti-
mation θk from equation (33).

3.5. Computational Complexity. Regarding the computa-
tional complexity, the main computation load of the pro-
posed algorithm includes the cumulant matrix and
covariance matrices that need to be constructed. For 2L + 1
sensors and L � M + N. For M � N, the multiplications
corresponding to the proposed method are O 9(2(4M+{

2M2 − 1) − 1)T + (4M + 1)2T)}, where T is the snapshot
number and the multiplications corresponding to the high-
order MUSIC mixed-order MUSIC [20] are O 9(4M+{

1)2T + 9(8M + 1)2T)} and mixed-order MUSIC [21] are
O 9(2(4M + 1)2 + 1)T + (4M + 1)2)􏽮 􏽯, respectively. Hence,
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the complexity of the proposed algorithm is the lowest
compared with the above two classical algorithms.

4. Simulation Results

In the last section, the performance of the proposed array is
evaluated by simulation results, which are compared with
the other three array geometries, SNA [28], SDNA [29], and
ISNA [21], and we also compared with HOS MUSIC [20]
andmixed-orderMUSIC [21] algorithms to demonstrate the
performance of the proposed algorithm.*e total number of
elements is Q � 13. *e sources signal is ejζt , where the
phases ζt are uniformly distributed in [0, 2π]. However, the
four arrays have different array apertures; therefore, they
have different Fresnel regions. Here, taken the common
Fresnel region for NF region [29λ< r< 70λ] to all arrays.*e
performance of the four arrays and proposed algorithm are
evaluated through the root-mean-square error (RMSE)
curve, and the number of Monte-Carlo trials is Ns � 500.

RMSE �

���������������������

1
NsK

􏽘

K

k�1
􏽘

Ns

ns�1
α(m)

k − αk)
2
,􏼐

􏽶
􏽴

(38)

where αk represents the DOA θk or the range rk and αk is the
estimate of αk for the mth trial. *e resolution probability
can be defined as if the estimated DOA of two sources
satisfies |θk − θk|< ε/2, where ε is the difference between the
two angles, it is considered that it can successfully distin-
guish two angles.

4.1. Experiment 1. In the first simulation, we used two NF
sources located at (20°, 30λ), (50°, 35λ) and two FF sources
located at (−40°,∞), (20°,∞), respectively.*e SNR is fixed
at 15 dB, and the number of snapshots is set at 2000. *e
spatial spectrum of mixed sources is drawn in Figure 3. We
can observe from Figure 3(a) that a total of four obvious
peaks are estimated, two of which are near-field sources and
two are far-field sources. We can also see from Figure 3(b)
that there aretwo peaks located in the NF region and another
two peaks in the FF region. According to Figure 3, the
proposed algorithm can effectively distinguish the near-field
and far-field in the mixed field.

4.2. Experiment 2. In the second simulation, we compare the
probability of arrays for two closely spaced sources against
SNR in Figure 4. In Figure 4(a), two pure NF sources are
located at (40°, 31λ), (44°, 32λ), and the angle interval ε of
the two is 4°. In Figure 4(b), two pure FF sources are located
at (−20°,∞), (−16°,∞), and the angle interval ε of the two is
4°. In Figure 4(c), two mixed sources and one NF source are
located at (34°, 31λ), another FF source is located at
(30°,∞), and the angle interval ε of the two is also 4°. When
T � 2000 snapshots, and SNR ∈[−6, 24] dB. From the
simulation result, compared with other arrays, the proposed
ESNA can obtain better estimation accuracy under the same
conditions, and it can successfully distinguish the close
sources at lower SNR.

4.3. Experiment 3. In the third simulation, we used two pure
near-field sources located at (40°, 31λ) and (50°, 32λ),
respectively:

(1) RMSE versus SNR: when snapshots� 2000, and SNR
∈[−5, 30] dB, from Figure 5, we can see the RMSE
curves of DOA and range. As can be seen from
Figures 5(a) and 5(b), in all SNRs, the ESNA can
provide better estimation accuracy than the other
arrays. As is expected, when the SNR increases, the
RMSE curves of DOA and range show a downward
trend.

(2) RMSE versus snapshots: when SNR � 15 dB, and
snapshots ∈[50, 2000], from Figure 6, we can see
the RMSE curves of DOA and range. From
Figures 6(a) and 6(b), we can see that the proposed
algorithm still has a better performance than the
other algorithms for all available snapshots. *is is
also because the ESNA can obtain more consec-
utive lags compared with other arrays. As is ex-
pected, with the increase of snapshot, the RMSE
curves show a downward trend.

4.4. Experiment 4. In the fourth simulation, we used mixed
sources. One near-field source is located at (30°, 30λ), and
another far-field source is located at (−10°,∞):

(1) RMSE versus SNR: when snapshots� 2000, and SNR
∈[−5, 30] dB, from Figure 7, we can see the RMSE
curves of DOA and range about mixed sources
(range estimations are not performed for far-field
source). As can be seen from Figures 7(a) and 7(b), in
all SNRs, the ESNA can obtain better estimation
accuracy than the other arrays. As is expected, when
the SNR increases, the RMSE curves of DOA and
range show a downward trend.

(2) RMSE versus snapshots: when SNR� 15 dB, and
snapshots ∈[50, 2000], from Figure 8, we can see the
RMSE curves of DOA and range. As can be seen
from Figures 8(a) and 8(b), in all snapshots, the
ESNA can obtain better estimation accuracy than the
other arrays. As is expected, with the increase of
snapshot, the RMSE of DOA and range show a
downward trend.

4.5. Experiment 5. In the fifth simulation, we used to deal
with two pure far-field sources. Two FF sources are located at
(40°,∞), (50°,∞), respectively:

(1) RMSE versus SNR: when snapshots� 2000, and SNR
∈[−5, 30] dB, from Figure 9, we can see the RMSE
curves of DOA and range. As can be seen from
Figure 9(a), in all SNRs, the ESNA can obtain better
estimation accuracy than the other arrays. *is is
because the ESNA can obtain more consecutive lags
compared with other arrays. As is expected, when the
SNR increases, the RMSE of DOA and range show a
downward trend.
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Figure 3: Spatial spectrum of mixed sources. SNR� 15 dB and T� 2000 snapshots. (a) Spatial spectrum of the NF and FF estimators.
(b) Spatial spectrum of range estimators.
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Figure 4: Probability versus SNR for closely spaced sources. (a) Near-field. (b) Far-field. (c) Mixed sources.
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(2) RMSE versus snapshots: when SNR� 15 dB, and
snapshots ∈[50, 2000], from Figure 9, we can see the
RMSE curves of DOA and range. As can be seen
from Figure 9(b), we can see that the proposed al-
gorithm still has a better performance than the other
algorithms for all available snapshots. *is is also
because the ESNA can obtain more consecutive lags
compared with other arrays. As is expected, with the

increase of snapshot, the RMSE of DOA and range
show a downward trend.

4.6. Experiment 6. In the last simulation, we present
simulations to prove that our proposed algorithm out-
performs HOS MUSIC and mixed-order MUSIC algo-
rithms. We used mixed sources. One near-field source is
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located at (20°, 31λ), and another far-field source is lo-
cated at (30°,∞):

(1) RMSE versus SNR: when snapshots� 2000, and SNR
∈[−5, 30] dB, from Figure 10, we can see the RMSE
curves of DOA (range estimation is not performed
for mixed-field source). As can be seen from
Figure 10(a), in all SNRs, the proposed algorithm can

obtain better estimation accuracy than the other
algorithms. As is expected, when the SNR increases,
the RMSE curves of DOA show a downward trend.

(2) RMSE versus snapshots: when SNR� 15 dB, and
snapshots ∈[50, 2000], from Figure 10, we can see the
RMSE curves of DOA (range estimation is not
performed for mixed-field source). As can be seen
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Figure 8: RMSE curves of DOA and range estimation versus snapshots. (a) DOA estimations for NF and FF. (b) Range estimations for NF.
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from Figure 10(b), in all snapshots, the proposed
algorithms can obtain better estimation accuracy
than the other algorithms. As is expected, with the
increase of snapshot, the RMSE of DOA show a
downward trend.

(3) Computational complexity versus array sensors:
when array sensors varied from 13 to 25 in 4 steps,
from Figure 11(a), we can see that the computational
complexity increases with the increase of the number
of array sensors, but the computational complexity
of the proposed algorithm is still the lowest.

(4) Estimate sources versus array sensors: when
snapshots� 250 000, and SNR� 10 dB, fifteen sour-
ces uniformly distributed from −70° to 70° were
considered. From Figure 11(b), we can see that our
proposed array was suitable for underdetermined
cases. We used 13 sensors to estimate 15 sources.

(5) DOF comparison versus other arrays: when the array
sensors varied from 7 to 55 in 2 steps, from
Figure 11(c), we compare the number of DOF
achieved from the four arrays. We can see that the
number of DOF increases with array sensors, and

100

10-1

10-2

RM
SE

 (d
eg

re
e)

-5 0 5 10 15
SNR (dB)

20 25 30

Proposed
Mixed–order MUSIC
HOS MUSIC

(a)

100

10-1

10-2

RM
SE

 (d
eg

re
e)

50 200 400 600 800
Snapshot Number

1000 1500 2000

Proposed
Mixed–order MUSIC
HOS MUSIC

(b)

Figure 10: RMSE curves of DOA estimation for pure FF versus SNR and snapshots. (a) DOA estimations for SNR. (b) DOA estimations for
snapshots.

6 ×107

5

4

3

C
om

pu
ta

ito
ns

2

1

0
13 17

M (N)
21 25

Proposed
Mixed–order MUSIC
HOS MUSIC

(a)

100

10-1

N
or

m
al

iz
ed

 S
pa

tia
l S

pe
ct

ru
m

10-2

10-3

10-4

-100 -50 0
DOA (degree)

50 100

(b)

900

800

700

N
um

be
r o

f C
on

se
cu

tiv
e l

ag
s

600

500

400

300

200

100

0
10 15 20 25 30

Number of Sensors
35 40 45 50 55

Proposed
ISNA
SDNA
SNA

(c)

Figure 11: Computational complexity, underdetermined estimate and DOF comparison. (a) Computation complexity for array sensors. (b)
Estimate sources versus array sensors. (c) DOF comparison versus different arrays.

International Journal of Antennas and Propagation 11



proposed array provided a higher number of DOF
than other arrays.

5. Conclusion

In this paper, we proposed an enhanced symmetric nested
array (ESNA) to solve localization problems about mixed
near-field and far-field sources; we also proposed a novel
subarray partitionmethod to construct a special cumulant to
eliminate the range parameter in the near-field compared
with the existing cumulant. By using the ESNA, the effective
number of consecutive lags and virtual aperture are in-
creased greatly compared with other arrays. Using a special
cumulant, the conventional MUSIC method is used to es-
timate themixed sources, and the computation complexity is
moderate. Numerical results show that the proposed array
has higher resolution ability and provides the improved
accuracy of parameter estimation in almost all SNRs levels,
and snapshot numbers are compared with the existing ar-
rays. *erefore, the proposed array evidently outperforms
the existing arrays for scenarios such as pure NF, pure FF,
and mixed sources.

Appendix

Proof. (a) We prove it step by step:

(1) If m∈[N,M+N−1], ρ∈[1−N,N−1], we have lc1 (m,

ρ)�pm−pρ�(N−1)+2N(m−N+1)−ρ. When m�N,
in the subrange [2N,4N−2], existing 2N−1 con-
secutive lags.Whenm∈[N,M+N−1], we can get L1�

[2N(m− N+1),2N(m−N+1)+2N−2].
(2) If m � M + N, ρ ∈ [N, M + N − 1], we have lc2(m,

ρ) � 2N(M + N − ρ) − 1. When ρ � M+ N − 1, we
can get the lag 2N − 1. Furthermore, if ρ ∈ [N, M+

N − 1], we can obtain the subrange L2 � [2N(M+

N − ρ) − 1].
(3) If m � M + N, p ∈ [1 − N, N − 1], we have lc3(m,

ρ) � pm − pρ, from which we can get 2N − 1 con-
secutive lags, corresponding to subrange L3 � [2N

(M + 1) − 1, 2N(M + 2) − 3].
(4) If m � M + N − 1, ρ � N, we have lc4(m, ρ) � 4N+

2NM − 2, we can have L4 � 4N + 2NM − 2.
(5) If m ∈ [0, N − 1], ρ ∈ [1 − N, 0], we have lc5(m, ρ) �

ρm − pρ � m − ρ, in the subrange L5 � [0, 2N − 1],
existing 2N − 1 consecutive lags.

When we combine the union of set L1 and set L2, we can
get the new set L12 � L1 ∪L2, L12 � [2N(m − N + 1) −1, 2N

(m − N + 1) + 2N − 2], m ∈ [N, M + N − 1]. Consequently,
combine the union of the set L12, L3, L4, it can be obtained
that 4N + 2MN − 1 consecutive lags in the subrange
[0, 4N + 2MN − 2].

Similarly, we can get another 4N + 2MN − 1 consecu-
tive lags in the subrange [−4N − 2MN + 2, −1], when
m ∈ [−N − M, 0], p ∈ [−N − M, N − 1].

*erefore, when range is [−4N − 2MN + 2, 4N +

2MN − 2], we can get 8N + 4MN − 3 consecutive lags. □
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