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A wideband dual-polarized multidipole antenna for base station applications is proposed. It consists of a pair of large square-
shaped loop dipoles and a pair of small rectangle loop dipoles as radiation elements. A pair of small rectangle loop dipoles is fed by
T-shaped feed structure which is in the large square-shaped loop dipoles radiating arm so that the antenna generates an additional
resonance and obtains a wider bandwidth. (e proposed antenna was fabricated and measured, and the results show that the
antenna achieves a wide impedance bandwidth of 63.7 % with VSWR<1.5 covering the frequency range from 1.55 to 3GHz. A
high isolation is better than 29 dB within the operating frequency bandwidth. Moreover, an average gain 8 dBi and a stable
radiation pattern with 3 dB beamwidth of 69°± 4° at H-plane are obtained.

1. Introduction

Wireless communication systems have developed rapidly in
recent years. To satisfy the demanding requirements in large
cities, the desired antenna should be with good performance,
such as wide impedance bandwidth, unidirectional radia-
tion, stable gain, and stable radiation pattern [1]. (us, dual-
polarized antennas have become very popular in base station
since they can reduce side effects of multipath fading and
increase channel capacity [2, 3].

In order to achieve wide impedance bandwidth and
small size, a number of crossed-dipoles antennas have been
proposed for dual-polarized radiation. For different
wideband feeding structures, Wen et al. [4] proposed a
dipole antenna with Y-shaped feeding, which has a wide
impedance bandwidth of 27.8% with VSWR < 1.5
(1.7–2.25 GHz). As reported in [5], two pairs of circular
slotted square dipoles are fed by two fan-shaped microstrip
lines to obtain a bandwidth of 48.2% with VSWR < 1.4
(1.62–2.68 GHz). An antenna has been fed by four ca-
pacitive F-probes with two-layer patches in [6], which
introduces a balanced feeding structure to realize high
isolation and low cross polarization. Huang et al. [7]

proposed the ME dipole antenna with C-shaped stubs to
filter the unwanted frequency band, which has a band-
width of 52.6% for VSWR < 1.5 and a port-to-port isola-
tion higher than 25.4 dB. Moreover, by using balun
structure [8–10] and adding parasitic elements (such as
folded metallic plate [11], loop ring [1,12], and fan-shaped
parasitic patches [13]), the bandwidth can be effectively
increased. However, the proposed crossed-dipoles an-
tennas mostly suffer from large dimension complicated
structure and a narrow impedance bandwidth that are still
less than 55 %.

In this paper, a broadband dual-polarized multidipole
antenna for 2G/3G/LTE base station is proposed. A small
T-shaped feed structure is designed in the each large square-
shaped dipole. (us, the loaded small rectangular loop di-
poles are excited, and a new resonance is generated at high
frequency. (e proposed antenna obtains a wide impedance
bandwidth, a stable radiation pattern, and a stable antenna
gain in the desired band (1550–3000GHz), which are suf-
ficient to cover all the frequency bands of 2G/3G/LTE
communication systems. In addition, it can be easily fab-
ricated on a large scale due to its simple and compact planar
structure.
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2. Antenna Configuration

Figure 1 shows the configuration of the proposed antenna.
(is antenna consists of a square ground plane used as
reflector with a size of 130mm× 130mm, two Y-shaped
feeding lines, a pair of large cross square-shaped loop ra-
diator dipoles, a pair of small rectangle loop radiation di-
poles, and two coaxial cable feeds. As shown in Figure 1, the
small loop radiation dipoles and Y-shaped feeding lines are
printed on the top face of the FR4 substrate with a thickness
h0� 0.8mm, a dielectric constant of εr � 4.4, and a tan
δ � 0.02. To avoid overlap, one of the feeding structures is
printed on the bottom of substrate and connected with the
remaining part of the feeding lines on the top by two
shorting copper pins via hole [14]. Meanwhile, the large loop
dipoles are printed on the bottom of the substrate and fed by
two Y-shaped feeding lines. (e inner conductor of each
coaxial cable is connected to a feeding structure, while its
outer conductor is soldered to one arm. To achieve a uni-
directional radiation, the outer conductor of each coaxial
cable is also connected with the reflector that is h� 35mm
(about 0.25λ0) away from the substrate. (e proposed an-
tenna is simulated by Ansys HFSS, and the optimized pa-
rameters are listed in Table 1.

3. Antenna Design

3.1. Design of Antenna Element. Figure 2 shows the evo-
lution of the proposed antenna. To study the influence of
parasitic elements on antenna bandwidth and gain, the
simulated |S11| and gain of Ant. 1, Ant. 2, and Ant. 3 are
shown in Figures 3 and 4. It can been seen that based on the
antenna structure with two Y-shaped feeding lines
(Figure 2(a)), as adding four small squares in the corner of
the large loop dipoles, the working frequency bandwidth
broadens and the gain has been slightly improved [2]. Ant.
2 with a small square has two resonances which are excited
at 1.65 GHz and 2.4 GHz. (e impedance bandwidth is
about 45% range from 1.6 GHz to 2.55 GHz for
VSWR < 1.5. At the same time, compared with Ant. 1, the
gain of the Ant. 2 has been slightly improved. Moreover, by
adding a small T-shaped feed line in the radiating arm of
each large loop dipoles, the electromagnetic coupling be-
tween the large loop dipoles and the small loop dipoles is
generated at high frequencies. (erefore, a new resonance
is generated at 2.95 GHz, the impedance bandwidth of the
proposed antenna with the small loop dipoles is about
63.7% range from 1.55GHz to 3GHz for VSWR < 1.5, and
the average gain is about 8.5 dBi. Compared with Ant. 1 and
Ant. 2, the new dipole antenna shows a significant im-
provement in impedance bandwidth performance. (e
loaded small loop dipoles are excited, and the proposed
antenna achieves a wider impedance bandwidth and higher
gain than Ant. 1 and Ant. 2.

(e current distributions of the proposed antenna with
the small loop dipoles are shown in Figure 5 at three res-
onant frequencies (1.65GHz, 2.45GHz, and 2.95GHz). Due
to the symmetry of the feeding structure, it is assumed that
only one port is excited for simplicity. When one loop dipole

is driven, the other loop dipole can be used as parasitic
elements. As shown in Figures 4(a) and 4(b), the antenna can
achieve the polarization of +45 and the currents are observed
mainly on the large dipoles. (us, the resonances at
1.65GHz and 2.45GHz are dominated by the large loop
dipoles. As shown in Figure 4(c), obviously currents are both
observed on the large dipoles and small loop dipoles al-
though the current direction of these two parts is opposite.
As a result, the strong electromagnetic coupling between
large loop dipoles and small loop dipoles changes the res-
onant mode in high frequency bands.

3.2. Parameter Analysis. To investigate the effects of design
parameters on the VSWR, only one parameter is optimized
while the others are fixed. Figure 6 shows the effects of W1,
L7, O2, and O3 on the VSWR and S12.

W1 is the distance between two large loop dipoles. As
shown in Figure 6(a), with the increment of W1, the im-
pedance bandwidth increases gradually and the isolation
between the two ports becomes worse. However, the value of
VSWR when W1� 1.8mm is larger than that when
W1� 1.2mm. By considering of bandwidth and impedance
matching, W1� 1.2mm is selected.

As mentioned above, small dipoles lead to another
resonance mode and the increment of bandwidth.(erefore,
it is necessary to optimize the parameter (L7) of the small
dipoles. Figure 6(b) presents the effect of L7 on VSWR. As
shown in Figure 6(b), the third resonance point shifts to the
lower frequency with the increment of L7. In addition, the
performance of VSWR improves with the increment of L7.
By considering bandwidth and impedance matching,
L7�10mm is selected.

O2 and O3 are the width and length of the T-shaped
structure, respectively. As shown in Figures 6(c) and 6(d),
the effects of O2 and O3 on VSWR and S21 are also analysed.
With the increment of O2 and O3, isolation performance
and impedance matching performance become better.
(erefore, the value of O2 and O3 is about 1.2mm and
2.75mm, respectively.

3.3. Measured Results. Based on the above designed pa-
rameters, a prototype of the proposed antenna has been
fabricated, as shown in Figure 7.

(emeasured results of the two ports are nearly the same
due to the symmetry of the antenna.(us, only the radiation
patterns of port 1 are given. (e measured and simulated
differential gain and VSWR are shown in Figure 8. (e
corresponding values VSWR<1.5 can cover wide frequency
bands of 1.55∼3GHz and 1.55∼2.95GHz for simulated and
measure results, respectively. Good agreements are achieved
between measured and simulated results. (e slight devia-
tion is induced by the manufacturing tolerances and mea-
surement errors.

(e average gain over the operating frequency band is
about 8 dBi, and the maximum gain is about 8.7 dBi at
2.5GHz. As shown in Figure 9, the measured isolation
between the 1 port to 2 port is more than 29 dB, but the
simulated result is a little higher than measured. (e
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difference between simulated and measured port-to-port
isolation results from the fabrication error, feeding mech-
anism, and the effect of not adding the SMA ports during the
simulation. In addition, the average efficiency of 95% in the
operating band is realized. Figure 10 presents the simulated
andmeasured normalized radiation patterns of the proposed
antenna at three frequencies (1.65GHz, 2.45GHz, and
2.95GHz). (e simulated and measured co-polarization
patterns are in good agreement. Except for the measured
results at 2.95GHz, the cross polarization is larger than
20 dB in the main beam direction. (is issue may be due to
the radiation from the currents flowing on the small rect-
angle loop dipoles. A stable radiation pattern with HPBW of
68± 3 at XZ-plane and 69± 4 at YZ-plane is achieved in the
whole working frequency band.

A comparison between the proposed antenna and the
reported designs is listed in Table 2. It can be seen from the
table that the proposed antenna has a widest usable im-
pedance bandwidth and better port isolation without
complicated structure when compared with those
antennas.
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Figure 1: Geometry of the proposed antenna: (a) antenna element; (b) feeding structure and dipoles; (c) side view; (d) 3D view.

Table 1: Design parameters of the proposed antenna.

Parameter Value (mm)
Lg 130
Ld 56
H1 35
L1 23.5
L2 18.7
L3 9
L4 12
L5 8
L6 9.8
L7 10
L8 2.53
L9 2.2
L10 6
O1 1.2
O2 1.2
O3 2.75
U1 2
U2 3
WI 1.2
W2 5.5
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(a) (b) (c)

Figure 2: Evolution of the proposed antenna.
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Figure 3: Simulated |S11| of three types of dipole antenna.
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Figure 4: Simulated gain of three types of dipole antenna.
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Figure 6: Effects of (a) W1; (b) L7; (c) O2; (d) O3 on VSWR and |S21|.
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Figure 5: (e current distributions of the antenna at (a) 1.65GHz; (b) 2.65GHz; (c) 2.95GHz.
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Figure 7: Photograph of the proposed antenna.
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Figure 8: Simulated and measured differential VSWR and gain.
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Figure 9: Simulated and measured port-to-port isolation and simulated efficiency of the antenna.
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Figure 10: Simulated and measured normalized radiation patterns of the antenna at frequencies 1.65GHz, 2.45GHz, and 2.95GHz. (a)
Simulated results. (b) Measured results.

Table 2: Comparison between the proposed antenna and the reported designs.

Ref Size (λ30) Impedance bandwidth (%) Isolation (dB) Differentially fed/feeding network Gain (dBi) HPBW

[1] 1.08×1.08× 0.26 52.2 >26.3 Yes ∼8.5 66.2°± 3.77°
[2] 1.12×1.12× 0.27 54.5 >28.5 No ∼8.5 66.2°± 3.7°
[4] 0.93× 0.93× 0.23 30 >25 No >8 66.3°± 2.9°
[5] 0.95× 0.95× 0.27 48.2 >30 No ∼7.6 70°± 3°
[6] 2.07× 2.07× 0.23 45 ∼30 Yes ∼8.9 —
[15] 1.47× 0.98× 0.26 45 >30 No ∼8.5 65°
[7] 1.2×1.2× 0.27 52.6 >25.4 Yes ∼7.57 60°± 4°
(is work 0.98× 0.98× 0.25 63.7 >30 No ∼8 68°± 3°
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4. Conclusions

A wideband dual-polarized multidipole antenna for base
station applications has been investigated. Simulated and
measured results show that the small rectangle loop dipoles
antenna can generate an additional resonance at high fre-
quency. Moreover, the bandwidth has been greatly expanded
to 63.7% for VSWR< 1.5. Similarly, the isolation of the
antenna is as high as 48 dB, the gain is fluctuating between
6.7 dBi and 8.7 dBi within operating frequency, and the
antenna has a stable radiation pattern covering all the fre-
quency bands from 1.55 to 3GHz. (e proposed antenna
can be applied in the 2G/3G/LTE base stations.
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