
Research Article
The Analysis of Using Spatial Smoothing for DOA Estimation of
Coherent Signals in Sparse Arrays

Haiyun Xu , Weijia Cui , Yuxi Du, Fengtong Mei , and Bin Ba

National Digital System Engineering and Technological Research R & D Center, Zhengzhou, Henan 450002, China

Correspondence should be addressed to Haiyun Xu; xuhaiyun1995@163.com

Received 14 May 2021; Revised 25 July 2021; Accepted 28 August 2021; Published 17 September 2021

Academic Editor: Francisco Falcone

Copyright © 2021 Haiyun Xu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When there is coexistence of uncorrelated and coherent signals in sparse arrays, the conventional algorithms for direction-of-
arrival (DOA) estimation using difference coarray fail. In order to solve the problems, this paper analyzes the feasibility of using
spatial smoothing in sparse arrays. Firstly, we summarize the two types of sparse arrays, one consisting of identical sparse
subarrays and the other consisting of several uniform linear subarrays. ,en, we give the feasibility analysis and the processes of
applying spatial smoothing. At last, we discuss the performance of the number of detectable coherent signals in different sparse
arrays. Numerical experiments prove the conclusions proposed by the paper.

1. Introduction

Direction of arrival (DOA) is the one of the key parameters
of the wireless positioning technique. It has been widely used
in the fifth generation communication systems, military
early warning, radar monitoring, sonar targets positioning,
and so on [1, 2]. Traditionally, the super-resolution DOA
estimation methods, such as subspace methods, mainly use
uniform nonsparse arrays like uniform linear arrays (ULAs).
In recent years, many experts and scholars focus on non-
uniform sparse arrays, which can provide larger array ap-
erture with the same number of sensors. ,e typical sparse
arrays are minimum redundancy arrays (MRAs) [3],
coprime linear arrays (CLAs) [4], and nested linear arrays
(NLAs) [5]. ,rough transforming the sparse array to a
virtual ULA based on difference coarray, spatial smoothing
multiple signal classification (SS-MUSIC) [6] and direct
augmentation approach (DAA) [7] are proposed to solve
DOAs. Moreover, compressed sensing can be directly ap-
plied to difference coarray to estimate DOAs [8–10].

Based on the DOA estimation methods mentioned
above, many researchers proposed the improved array de-
sign methods. One design thought is based on the model of
CLA. Coprime array with compressed interelement spacing
(CACIS), coprime array with displaced subarrays (CADiS)

[11, 12], coprime array withmultiperiod subarrays (CAMpS)
[13], shifted coprime array (SCA) [14], generalized nested
array (GNA) [15], and novel sparse arrays with two uniform
arrays (NSA-U2) [16] were proposed, where they all consist
of two ULA-subarrays and have larger array aperture than
that of CLA. CACIS and CADiS show that setting one
subarray with a smaller interelement spacing can have larger
aperture of virtual ULA. CAMpS demonstrates that in order
to expand the aperture of virtual ULA, only one subarray can
have a compressed interelement spacing. SCA reveals that
the displacement between two subarrays is the main factor to
the aperture of virtual ULA. Although GNA has the same
degree of freedom as NLA, it owns a sparser array structure.
NSA-U2 presents the solution to have the maximum degree
of freedom for sparse arrays with two uniform arrays. In
order to further improve the array aperture, the sparse arrays
with multiple ULA-subarrays are proposed. Super-nested
arrays (SNAs) [17, 18], the augmented nested array (ANA)
[19], and the maximum interelement spacing constraint
(MISC) [20] divide the dense subarray of CLA into several
sparse ULA-subarrays. Another design thought is com-
bining several identical sparse arrays, such as nested MRA
(NMRA) [21, 22], generalized nested subarray (GNSA) [23],
and displaced multistage cascade subarrays (MSC-DiSA)
[24]. ,e subarrays can be any sparse array and the
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displacement between the subarrays depends on sensors’
location of another chosen sparse array. Although the ap-
erture is smaller, the latter design method is less complex
than that of the former method.

Unfortunately, the structure design of sparse arrays and
DOA estimation algorithms are both based on the as-
sumption that the impinging signals are uncorrelated to each
other. But there exist coherent signals in real environment,
such as in multipath channel. Many decoherence methods,
such as spatial smoothing [25], forward/backward spatial
smoothing (FBSS) [26], and Toeplitz reconstruction [27], are
only applicable to the uniform structure arrays. Hence, the
DOA estimation of coherent signals in sparse arrays has
been a focus of interest. ,ere have been some algorithms
only for CLAs. Signal separation and Toeplitz reconstruction
(SSTR) [28] and spatial smoothing using fourth-order
cumulant (SS-FOC) [29] are all utilized in the uniform
sparse subarrays and combined with common peak finding
[30] to resolve the real values. ,en, a method [31] com-
bining spatial smoothing and matrix completion theory was
proposed, which was applied to the data of physical sensors,
but it also has strict restriction about array structure.

In order to solve coherent signals, we aim to give the
process of using spatial smoothing in sparse arrays. We first
summarize that the sparse array can be seen as two types: one
is using several identical sparse arrays and the other consists
of several ULA-subarrays. We then, respectively, apply the
spatial smoothing and analyze the feasibility of decoherence
methods. Next, we discuss the performance of the existing
sparse arrays about the number of detectable coherent
signals. At last, the simulation experiments are presented to
prove the effectiveness of the proposed method.

,e rest of this paper is organized as follows. Section 2
presents the model of received data including coherent and
uncorrelated signals. Section 3 introduces the spatial
smoothing process in sparse arrays. Section 4 gives the
performance analysis and simulation experiments. Section 5
summarizes the paper. ,roughout the paper, we make use
of the notations shown in Table 1.

2. Signal Model

Suppose that there are K far-field narrow-band signals
impinging on a sparse array with M sensors. Define the unit
interelement spacing as λ/2, where λ is the wavelength of
signals, and a integer set corresponding to the sensors lo-
cation is given by D � 0, d1, d2, . . . , dM−1  (generally as-
suming d1 < d2 < · · · < dM−1). Assume that there are P
coherent signal groups, where the pth group has Lp signals.
,e coherent signal coming from θp,ℓ is corresponding to the
ℓth multipath propagation of Sp(t) with power σ2p
(p � 1, . . . , P). ,e signals within each group are coherent
to each other and uncorrelated to those in different groups.
,e total number of coherent signals is Kc � 

P
p�1 Lp. In

addition, the remaining signals, Sk(t) coming from θk with
the power σ2k (k � Kc + 1, . . . , K), are uncorrelated to each
other.,e number of those signals is Ku � K − Kc. ,us, the
received signals is

X(t) � 
P

p�1


Lp

ℓ�1
aD θp,ℓ βp,ℓSp(t) + 

K

k�Kc+1
aD θk( Sk(t) + N(t)

� A(θ)S(t) + N(t),

(1)

where the manifold matrix A(θ) is denoted as

A(θ) � aD θ1,1 , . . . , aD θP,LP
 , aD θKc+1 , . . . , aD θK(  ,

(2)

and the steering vector aD(θk) can be given by

aD θk(  � 1, e
− jπd1 sin θk , . . . , e

− jπdM−1 sin θk 
T
, (3)

and βp,ℓ is the complex fading coefficient of the ℓth coherent
signal in the pth group. ,e signal data vector is

S(t) � β1,1S1(t), . . . , βP,LP
SP(t), SKc+1(t), . . . , SK(t) 

T
,

(4)

where t � 1, . . . , J, and J is the number of snapshots. ,e
noise vector is usually a Gaussian random variable with zero
mean and variance σ2n.

From (1), the covariance matrix is denoted as

RX �
1
J
XXH

� ARSA
H

+ σ2nIM, (5)

where RS can be written as a block-diagonal matrix given by

RS �

R1

⋱
RP

σ2Kc+1

⋱
σ2K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Rp �

βp,1




2
σ2p βp,1β

∗
p,2σ

2
p . . . βp,1β

∗
p,Lp

σ2p

βp,2β
∗
p,1σ

2
p βp,2




2
σ2p . . . βp,2β

∗
p,Lp

σ2p
⋮ ⋮ ⋱ ⋮

βp,Lp
β∗p,1σ

2
p βp,Lp

β∗p,2σ
2
p . . . βp,Lp





2
σ2p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Because rank(Rp) � 1, rank(RS) � P + Ku and rank
(RX) � P + Ku <K. ,us, the conventional methods for

Table 1: Key notations used in this paper.

Notations Explanation
(•)T Transpose
(•)∗ Conjugate
(•)H Hermitian transpose
gcd(•) Greatest common divisor operation
diag[•] Diagonal matrix
IM Identity matrix with size M × M

rank(•) Rank of a matrix
⌊•⌋ Floor integer
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DOA estimation fail. Spatial smoothing can let rank(RX) �

K to satisfy the requirement of subspace methods, but it
requires that the array can be divided into several same
subarrays. ,us, in the next section, we will discuss the
decomposition of sparse arrays.

3. Spatial Smoothing in Sparse Arrays

In this section, we try to divide any sparse array into
several subarrays and summarize two situations. ,e first
is that the sparse array is composed of several same sparse
subarrays. ,e second is that the sparse array can be
divided into several uniform sparse linear arrays, where
although the structure of ULA is different, the process of
spatial smoothing is applied to each ULA, and the ULAs
with different interelement spacings are applied to
remove the ambiguous values.

3.1. Sparse Arrays with Identical Sparse Subarrays. ,ere
exists a type of sparse arrays, which are made up of several
same arrays.,e sparse subarray can be CLAs, NLAs,MRAs,
and so on. If the cascade number of array is Q, we have
M � QM and each stage contains M physical sensors, whose

location set can be Dq � dqM, dqM+1, . . . , dqM+M−1 . MSC-

DiSA and GNSA, which are two typical arrays, have different
structure rules, but they are the same when the subarray is
MRA with four sensors and the displacement is the function
to the location of MRAwith three sensors.,e structures are
shown in Figure 1(a). ,us, the received data in (1) can be
rewritten as

X �

X0

⋮

XQ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

A0

⋮

AQ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦S +

N0

⋮

NQ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where

Aq � aDq
θ1,1 , . . . , aDq

θP,LP
 , aDq

θKc+1 , . . . , aDq
θK(  .

(8)

Each subarray meets the feature of rotational invariance,
which can be expressed by

Aq � A0Φq, (9)

where

Φq � diag e
− jπΔdq sin θ1,1 , . . . , e

− jπΔdq sin θP,LP , e
− jπΔdq sin θKc+1, . . . , e

− jπΔdq sin θK , (10)

where Δdq � dqM − d0 is displacement between the qth
subarray and first subarray and q � 0, . . . , Q − 1. ,us, the
spatial smoothing covariance matrix is defined as

RSS �
1

JQ


Q−1

q�0
XqX

H
q ,

�
1

JQ
A0 

Q−1

q�0
ΦqSS

HΦH
q

⎛⎝ ⎞⎠AH
0 + σ2nIM

�
1

JQ
A0RSA

H
0 + σ2nIM,

(11)

where Φ0 � IK. In order to let rank(RSS) � K, we give the
following theorem.

Theorem 1. If gcd(Δd1, . . . ,ΔdQ−1) � 1, Q≥max(Lp), and
M≥K, rank(RSS) � K.

Proof. See Appendix A. □

Considering the requirement for setting the displace-
ment between the subarrays [15], we have known that
gcd(Δd1, . . . ,ΔdQ−1) � 1. So, when Q≥max(Lp) and
M>K, we can estimate all DOAs θk by applying subspace
methods [32] to RSS.

3.2. Sparse Arrays with ULA-Subarrays. ,e sparse arrays,
which consist of Q ULA-subarrays, are capable to use spatial
smoothing algorithm to solve coherent signals. We first give
the general model of sensors location denoted as

D � ∪
Q

q�1
Gq + mgq|0≤m≤Mq − 1 , (12)

where Gq is the displacement between the qth ULA-subarray
and the first ULA-subarray, Mq is the sensor number of qth
ULA-subarray, and gq is the interelement spacing of qth
ULA-subarray.

3.2.1. Sparse Arrays with Two ULA-Subarrays.
Figure 1(b) shows four arrays with 12 sensors using two
ULAs. ,us, two subarrays, respectively, have M1 and M2
sensors. ,e location of subarrays can be denoted as
D1 � m1g1|0≤m1 ≤M1 − 1 , D2 � G2 + m2g2|0≤m2 ≤

M2 − 1}, where g1, g2 are coprime integers, and generally
G1 � 0. ,e parameters of arrays are defined in Table 2.
,en, the received data in (1) can be rewritten as

X �
X1

X2
  �

A1

A2
 S +

N1

N2
 , (13)

where
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Ai � aDi
θ1,1 , . . . , aDi

θP,LP
 , aDi

θKc+1 , . . . , aDi
θK(  .

(14)

,en, the spatial smoothing covariance matrix with size
MSi

× MSi
of ith subarray is given by

RSSi
�

1
J Mi − MSi

+ 1 


Mi−MSi

m�0
ΓimXi  ΓimXi 

H
,

� ASi
RSi

AH
Si

+ σ2nIMSi
,

(15)

where Γim � [0MSi
×(Mi−MSi

−m), IMSi
, 0MSi

×m]. AS1
is given by

AS1
� aDS1

θ1,1 , . . . , aDS1
θP,LP

 , aDS1
θKc+1 , . . . , aDS1

θK(  ,

(16)

where DS1
� m1g1|0≤m1 ≤MS1

− 1 . Also, we define
AS2

� AS2
D, where

AS2
� aDS2

θ1,1 , . . . , aDS2
θP,LP

 , aDS2
θKc+1 , . . . , aDS2

θK(  ,

(17)

where DS2
� m2g2|0≤m2 ≤MS2

− 1 , and

D � diag e
jπG2 sin θ1,1 , . . . , e

jπG2 sin θP,LP , e
jπG2 sin θKc+1, . . . , e

jπG2 sin θK .

(18)

Moreover,

RSi
�

1
J Mi − MSi

+ 1 


Mi−MSi

m�0
Ψm

i SS
H Ψm

i( 
H

, (19)

where Ψ1 � diag[ejπg1 sin θ1,1 , . . . , ejπg1 sin θK ] and
Ψ2 � diag[ejπg2 sin θ1,1 , . . . , ejπg2 sin θK ].

Based on the model above, the following statement gives
the applicability of using spatial smoothing in this type of
sparse array. Firstly, we introduce ,eorem 2 in [30] and
propose ,eorem 3.

Theorem 2. Let g1 and g2 denote the interelement spacing of

two ULAs, respectively. Let Θ(1)
k � θ(1)

k,1 , . . . , θ(1)
k,2g1−1  and

Θ(2)
k � θ(2)

k,1 , . . . , θ(2)
k,2g2−1  denote the estimated DOA values

of the kth signal of two subarrays, respectively, where each set
has multiple ambiguous values and one real value. If
gcd(g1, g2) � 1, Θ(1)

k ∩Θ
(2)
k � θk.

0 5 10 15 20 25 30 35 40 45

Subarray 1
Subarray 2
Subarray 3

(1) MSC-DiSA

(2) GNSA

(a)

Subarray 1
Subarray 2

0 10 20 30 40 50

(1) CLA

(2) CADiS

(3) SCA

(4) NLA

(b)

Subarray 1
Subarray 2
Subarray 3

0 5 10 15 20 25 30 35 40 45 50

Subarray 4
Subarray 5

(1) ANAI-1

(2) MISC

(3) ANAII-1

(4) MRA

(c)

Figure 1: ,e structure of sparse arrays when M � 12.

Table 2: Parameters of sparse arrays.

Type of sparse array M1, M2, g1, g2, G2

CLA 7, 5, 4, 5, 0
CADis 5, 7, 7, 3, 10
SCA 5, 7, 5, 4, 8
NLA 6, 6, 1, 6, 0
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Theorem 3. Let the directions of sources have a random
distribution. When Mi − MSi

+ 1≥max(Lp)(p � 1, . . . , P)

and MSi
≥K, rank(RSSi

) � K.

Proof. See Appendix B. □

When Mi − MSi
+ 1≥max(Lp)(p � 1, . . . , P) and

MSi
>K, rank(RSi) � K and the requirement of using subspace

methods is satisfied. Also, rank(DRS2
DH) � rank(RS2

). ,en,
we know that g1, g2 are coprime integers, so we use the
subspace method to RSSi

and obtain the estimated values of the

kth signals, defined as Θ(1)
k � θ(1)

k,1 , . . . , θ(1)
k,2g1−1  and

Θ(2)
k � θ(2)

k,1 , . . . , θ(2)
k,2g2−1 . From ,eorem 2, common peak

finding [30] tells that the real value θk � Θ(1)
k ∩Θ

(2)
k .

3.2.2. Sparse Arrays with Q ULA-Subarrays. When it comes
to the sparse arrays with Q(Q> 2) ULAs-subarrays, we need
to point out that the sensor location of existing sparse arrays
satisfies (13). We just give the examples about ANAI-1,
MISC, ANAII-1, and MRA with M � 12 in Table 3.

Based on the analysis in sparse arrays with two subarrays,
we just need to select two subarrays, whose interelement
spacings are coprime integers, to solve the DOA estimation.
Besides the requirement for setting the inter-element
spacing, another two criteria for subarray parameters se-
lection are the number of sensors that are as large as possible
and the subarray apertures that are as large as possible. ,e
former is to estimate as many sources as possible, and the
latter is to ensure the accuracy of estimation. ,us, we can
obtain the receiving data X1 and X2 of two chosen subarrays
from X. ,en, we can use (16) to calculate the spatial
smoothing covariance matrix and apply common peak
finding [30] to find the DOAs of coherent signals.

4. Performance Analysis and
Simulation Experiments

4.1. Performance Analysis. We discuss max(Lp) of each
sparse array, that is, the maximum number of detectable
coherent signals in one group. For GNSA,
max(Lp)≤Q � M/M, so when Q is the maximum integer
no more than 

��
M

√
, max(Lp) achieving maximum is equal

to Q. For any sparse array consisting of Q ULAs, we arrange
the number of subarray sensors M1, . . . , MQ  in
descending order and have the set M1, . . . , MQ , where
M1 > · · · > MQ. Based on the theorem that the paper pro-
poses, we can have max(Lp)≤  M2/2 and
Kc ≤ M2 −  M2/2. ,us, when P � 1 and Ku � 0,
max(Lp) �  M2/2. Due toQ subarrays, max( M2) � ⌊(M −

Q + 2)/2⌋ achieves maximum in theory. So, the more the
number of ULA-subarrays, the smaller the value of max(Lp).

Next, we compare the value of max(Lp) of GNSAwith that
of CLA, NLA, ANAI-1, MISC, ANAII-1, and MRA. We vary
M from 8 to 20 with 2 intervals, and the results are shown in
Figure 2. max(Lp) becomes bigger with the increase of M. ,e
CLA and NLA with two ULA-subarrays have the biggest value

of max(Lp). But the ANAII-1 and MRA with 5 or more ULA-
subarrays have the smallest value, and only when M> 12, they
can use spatial smoothing to estimate coherent signals. Hence,
with a fixed number of sensors, the conclusion that the less
subarrays can have the bigger max(Lp) is corrected.

Moreover, based on the papers, where the sparse arrays
are proposed, the maximum array aperture of consecutive
virtual ULAs defined as Ω meets that
ΩMRA ≥ΩANAII−1 >ΩMISC >ΩANAI−1 >ΩNLA >ΩCLA, and
ΩGNSA is generally between ΩANAI−1 and ΩMISC. When they
apply spatial smoothing, the main factor affecting the ac-
curacy is the aperture of smoothing array, defined as Π.
,en, we assume that P � 1 and L1 � 2 and compare Π and
Π-Ω-ratio c � Π/Ω of different sparse arrays. Figure 3
presents that the more number of ULA-subarrays can
achieve bigger Ω, but for spatial smoothing, it is opposite
that the less number of ULA-subarrays can achieve biggerΠ.

4.2. SimulationExperiments. We use root mean square error
(RMSE) to quantify the accuracy of DOA estimation, given
by

RMSE �

�����������������

1
FK



F

f�1


K

k�1

θk,f − θk 
2




, (20)

where F is the Monte Carlo number, K is the number of
target signals, and θk,f is the DOA of the kth estimated
source by the fth Monte Carlo experiment. ,e simulation
conditions are shown in Table 4.

Simulation 1. feasibility of estimate coherent signals in
different sparse arrays.

In first simulation, we show the feasibility of estimate
coherent signals with maximum number in one group.,us,
assume that P � 1, Ku � 0, and L1 of each sparse arrays can
be seen in Figure 2. Set SNR � 0dB and J � 5000. ,e es-
timation values of 100 times experiments are shown in
Figure 4. ,e figure demonstrates that the sparse arrays can
use spatial smoothing to estimate DOAs of coherent signals.
Moreover, in the condition of max(Lp) and low SNR, all
estimated values are still close to the real values, which
means a favorable performance.

Simulation 2. RMSE performance comparison of different
SNRs.

In this simulation, we compare the RMSEs of different
sparse arrays and ULAs, when there are both uncorrelated
and coherent signals. We set K � 3, where
θ1,1 � 25°, θ1,2 � 0°, θ3 � 15°, and J � 5000. Because ANAII-
1 and MRA cannot estimate 3 signals after spatial
smoothing, we only compare the other arrays, and the
results are shown in Figure 5. Obviously, the RMSEs de-
crease with the increase of SNR. GNSA has the highest
RMSE due to the smallest Π. ULA has the second smallest
Π as 19, so the RMSE of it is just lower than that of GNSA.
,e other three sparse arrays have the close RMSE due to
their close values of Π.
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Table 3: Parameters of sparse arrays.

Arrays D Q Mq, gq, Gq 

ANAI-1 0, 1{ }, 6, 13, 20, 27, 34, 41{ }

41, 42, 43, 44, 45{ }
3 2, 1, 0{ }, 7, 6, 6{ }, 5, 1, 41{ }

MISC 0, 1{ }, 6, 14, 22, 30, 38{ }

38, 40, 42{ }, 45, 47, 49{ }
4 2, 1, 0{ }, 5, 8, 6{ }

3, 2, 38{ }, 3, 2, 45{ }

ANAII-1 0, 1{ }, 1, 5, 9{ }, 9, 16, 23, 30, 37, 44{ }

47, 49{ }, 49, 50{ }
5 2, 1, 0{ }, 3, 4, 1{ }, 6, 7, 9{ },

2, 2, 47{ }, 2, 1, 49{ }

MRA 0, 1{ }, 3, 6{ }, 6, 13, 20, 27, 34, 41{ }

41, 45, 49{ }, 49, 50{ }
5 2, 1, 0{ }, 2, 3, 3{ }, 6, 7, 6{ },

3, 4, 41{ }, 2, 1, 49{ }
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Figure 2: max(Lp) in different sparse arrays with different M.

8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

M

∏

GNSA
CLA
NLA
ANAI-1

MISC
ANAII-2
MRA

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

8 10 12 14 16 18 20
M

GNSA
CLA
NLA
ANAI-1

MISC
ANAII-2
MRA

γ

(b)

Figure 3: ,e comparison of Π and c in different sparse arrays.
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Figure 4: ,e estimation values of coherent signals in different sparse arrays.

Table 4: Simulation conditions for the experiments.

Simulation parameters Values
Antenna number 20
,e subarrays for smoothing in ULA 0, 1, 2, 3, . . . , 18, 19{ }

,e subarrays for smoothing in GNSA 0, 1, 4, 7, 9{ }, 19, 20, 23, 26, 28{ }

76, 77, 80, 83, 85{ }, 114, 115, 118, 121, 123{ }

,e subarrays for smoothing in CLA 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100{ }

0, 11, 22, 33, 44, 55, 66, 77, 88, 99{ }
,

,e subarrays for smoothing in NLA 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10{ }

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100{ }
,

,e subarrays for smoothing in ANAI-1 11, 22, 33, 44, 55, 66, 77, 88, 99, 110{ }

110, 111, 112, 113, 114, 115, 116{ }
,

,e subarrays for smoothing in ANAII-1 35, 50, 65, 80, 95, 110{ }

3, 11, 19, 27, 35{ }
,

,e subarrays for smoothing in MRA 28, 43, 58, 73, 88, 103{ }

103, 111, 119, 127, 135{ }
,

Monte Carlo number F � 100
SNR −5, 0, 5, 10, 15{ }

Snapshot 50, 100, 200, 500, 1000, 2000, 5000{ }
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Simulation 3. RMSE performance comparison of different
number of snapshots.

Similar to the simulation 2, we present the RMSEs of
different sparse arrays under different snapshots with
SNR � 10dB. From Figure 6, the RMSEs decrease with the
increase of snapshot numbers, but when J> 500, the
downtrend of RMSEs become slow. Other conclusions are
the same as those in simulation 2.

Simulation 4. RMSE performance comparison using FBSS.

In this simulation, we use FBSS to replace spatial
smoothing and do simulations 2 and 3 again. FBSS can be
seen as an improvement method of spatial smoothing, where
Π can be 1.5 times that of spatial smoothing [26]. ,us, we
do not need to present the analysis in Part 1 of this section
about using FBSS. But we should note that FBSS is not
applicable to GNSA because it needs that the subarrays have
uniform structure, where we still use spatial smoothing in
GNSA. ,e results are shown in Figures 7 and 8. Compared
with the results in simulations 2 and 3, FBSS has improved
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Figure 5: ,e RMSE versus SNR in different sparse arrays using spatial smoothing.
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Figure 6: ,e RMSE versus the number of snapshots in different sparse arrays using spatial smoothing.
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the accuracy. ,us, we can use FBSS in sparse arrays to find
more coherent signals and obtain higher accuracy.

5. Conclusions

In this paper, the DOA estimation methods using spatial
smoothing for coherent signals in sparse arrays are pro-
posed. We divide the sparse arrays into two parts. ,e first
type consists of several identical sparse arrays. ,e second
type can be decomposed of several ULA-subarrays. In view
of subarrays, spatial smoothing can be applied in sparse
arrays. Based on the analysis of the maximum number of
detectable coherent signals in one group, the sparse arrays

with less subarrays are capable to estimate more signals and
own bigger smoothing array aperture. Also, the simulation
experiments prove that CLA and NLA have better perfor-
mance than other arrays.

Appendix

A

Proof of 9eorem 1. ,e matrix RS can be rewritten as

RS �

R1

R2

⋱

σ2K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where RS is a block-diagonal matrix and

Rp �
1
Q



Q−1

q�0
ΦqRp Φq 

H
. (A.2)

DefineΦ � diag[e− jπ sin θ1,1 , . . . , e− jπ sin θK ], and (20) can
be denoted as

Rp �
1
Q



Q−1

q�0
ΦΔdqRp ΦΔdq 

H
. (A.3)

If rank(Rp) � Lp, rank(RS) � K. ,us, we rewrite Rp as

Rp � IK ΦΔd1 . . . ΦΔdQ−1 

Rp

⋱

Rp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IK

ΦΔd1

⋮

ΦΔdQ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

.

(A.4)

Based on (25), it can also be simplified to give
Rp � VpVH

p , where

Vp � CpΦ
Δd1Cp, . . . ,ΦΔdQ−1Cp , (A.5)

with Cp denoting the Hermitian square root of Rp.
Because rank(Rp) � rank(Vp), we need to prove that

rank(Vp) � Lp. We take column permutations to Vp, which
cannot change the rank of a matrix, and have

rank Vp  � rank

c11ν1 c12ν1 . . . c1LP
ν1

⋮ ⋮ . . . ⋮

cLp1νLp
cLp2νLp

. . . cLpLp
νLp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(A.6)

where ci,j represents element in the ith row and jth column
of Cp and ] is expressed as

νk � 1, e
jπΔd1 sin θk , . . . , e

jπΔdQ−1 sin θk . (A.7)

When each row of Cp has at least one nonzero element

and vectors ]1, . . . , ]Lp
  are linearly independent,

rank(Vp) � Lp. Because every signal has the positive energy,
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Figure 7: ,e RMSE versus SNR in different sparse arrays using
FBSS.
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every row of C cannot be all zeros. ,e matrix []1, · · · , ]Lp
]

can be seen as the manifold matrix of a sparse array and
0,Δd1, . . . ,ΔdQ−1  are denoted as the location of sensors.

Hence, we introduce the theorem in [32, 33], which tells
that when gcd(Δd1,Δd2, . . . ,ΔdQ−1) � 1, the array manifold
]k is invertible. Invertibility means that if θ1 ≠ θ2, then
]1 ≠ ]2.,en, we can obtain the conclusion that if Q≥Lp, the
rank of []1, . . . , ]Lp

] is Lp. So, we prove that if
gcd(Δd1,Δd2, . . . ,ΔdQ−1) � 1 and Q≥max(Lp),
rank(Vp) � Lp, and rank(Rp) � Lp for any p, then
rank(RS) � K. Hence, when M≥K, rank(RSS) � K.

B

Proof of 9eorem 3. In this situation, RSi
is also a block-

diagonal matrix, given by

RSi
�

R1,i

R2,i

⋱

σ2K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1)

and Rp,i is changed to

Rp,i �
1

Mi − MSi
+ 1



Mi−MSi

s�0
Ψgis

i Rp Ψgis

i( 
H

. (B.2)

Similar to the Proof of ,eorem 1, Rp,i � Vp,iVH
p,i, where

Vp,i � Cp,iΨ
gi

i Cp,i, . . . ,Ψ
gi Mi−MSi

 
i Cp,i

 , (B.3)

with Cp,i denoting the Hermitian square root of Rp,i. We just
need to prove that rank(Vp,i) � Lp because
rank(Rp,i) � rank(Vp,i). Considering the analysis in Ap-
pendix A, we should prove that each row of Cp,i has at least

one nonzero element and vectors ]1,i, . . . , ]Lp,i  are linearly

independent, where

νk,i � 1, e
jπgi sin θk , . . . , e

jπgi sin θk . (B.4)

It is easy to obtain that each row of Cp,i has at least one
nonzero element. []1,i, . . . , ]Lp,i] is a Vandermonde matrix

and 0, gi, . . . , gi(Mi − MSi
)  are denoted as the location of

sensors. Because gcd(gi, . . . , gi(Mi − MSi
)) � gi ≥ 1, ]k is

not invertible. For example, if gi � 2, θ1,1 � 30°, and
θ1,2 � −30°, then ]1,i � ]2,i and rank(Rp,i) � 1, while if
θ1,2 � −30.1°, rank(Rp,i) � 2. In general, assuming that
gi � α, if

sin θk − sin θl ≠
2πn

α
, (B.5)

for any integer n, ]k ≠ ]l and rank(Rp,i) � Lp. Considering
that the directions of sources generally have a random
distribution in real environment, the parameters

(sin θk, sin θl) satisfy (33) with probability one. In other
words, if gi > 1 and Mi − MSi

+ 1≥max(Lp), rank(Rp,i) �

Lp and rank(RSi
) � K in this situation. Hence, when

MSi
≥K, rank(RSSi

) � K.

Data Availability

,e data used in this article are provided by our simulations
and the data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is study was supported by the National Natural Science
Foundation of China (grant no. 61401513).

References

[1] F. Sun, Q.Wu, P. Lan, G. Ding, and L. Chen, “Real-valued doa
estimation with unknown number of sources via reweighted
nuclear norm minimization,” Signal Processing, vol. 148,
pp. 48–55, 2018.

[2] F. Sun, P. Lan, and G. Zhang, “Reduced dimension based two-
dimensional DOA estimation with full DOFs for generalized
co-prime planar arrays,” Sensors, vol. 18, no. 6, 2018.

[3] A. Moffet, “Minimum-redundancy linear arrays,” IEEE
Transactions on Antennas and Propagation, vol. 16, no. 2,
pp. 172–175, 1968.

[4] P. Vaidyanatha, “Sparse sensing with co-prime samplers and
arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2,
2011.

[5] P. Pal and P. Vaidyanatha, “Nested arrays: a novel approach to
array processing with enhanced degrees of freedom,” IEEE
Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–
4181, 2010.

[6] P. Pal and P. Vaidyanatha, “Coprime sampling and the music
algorithm,” in Proceedings of the Digital Signal Processing
Workshop & IEEE Signal Processing Education Workshop, Rio
de Janeiro, Brazil, July 2011.

[7] C. Liu and P. Vaidyanathan, “Remarks on the spatial
smoothing step in coarray music,” IEEE Signal Processing
Letters, vol. 22, no. 9, pp. 1438–1442, 2015.

[8] P. Pal and P. Vaidyanathan, “On application of lasso for sparse
support recovery with imperfect correlation awareness,” in
Proceedings of the 2012 Conference Record of the Forty Sixth
Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, CA, USA, November 2013.

[9] Z. Tan and A. Nehorai, “Sparse direction of arrival estimation
using co-prime arrays with off-grid targets,” IEEE Signal
Processing Letters, vol. 21, no. 1, pp. 26–29, 2013.

[10] J. Yang, G. Liao, and J. Li, “An efficient off-grid doa estimation
approach for nested array signal processingby using sparse
bayesian learning strategies,” Signal Processing, vol. 128,
pp. 110–122, 2016.

[11] Y. Zhang, S. Qin, and M. Amin, “Doa estimation exploiting
coprime arrays with sparse sensor spacing,” in Proceedings of
the IEEE International Conference on Acoustics, Florence,
Italy, May 2014.

10 International Journal of Antennas and Propagation



[12] S. Qin, Y. Zhang, and M. Amin, “Generalized coprime array
configurations for direction-of-arrival estimation,” IEEE
Transactions on Signal Processing, vol. 63, no. 6, 2015.

[13] S. Ren, W. Wang, and Z. Chen, “Doa Estimation Exploiting
Unified Coprime Array with Multi-Period Subarrays,” in
Proceedings of the 2016 CIE International Conference on Radar
(RADAR), Guangzhou, China, October 2016.

[14] S. Alamoudi, A. Aldhaheri, S. Alawsh, and A. Muqaibel,
“Sparse doa estimation based on ashifted coprime array
configuration,” in Proceedings of the Microwave Symposium,
Honolulu, HI, USA, June 2017.

[15] Junpeng, G. Hu, X. Zhang, and H. Zhou, “Generalized nested
array: optimization for degrees of freedom and mutual
coupling,” IEEE Communications Letters, vol. 22, no. 6,
pp. 1208–1211, 2018.

[16] H. Xu, W. Cui, F. Mei, B. Ba, and C. Jian, “,e design of A
novel sparse array using two uniform linear arrays consid-
ering mutual coupling,” Journal of Sensors, vol. 2021, Article
ID 9934097, 15 pages, 2021.

[17] C. Liu and P. Vaidyanathan, “Super nested arrays: linear
sparse arrays with reduced mutual coupling part i:Funda-
mentals,” IEEE Transactions on Signal Processing, vol. 64,
no. 15, pp. 3997–4012, 2016.

[18] C. Liu and P. Vaidyanathan, “Super nested arrays: linear
sparse arrays with reducedmutual coupling part ii: high-order
extensions,” IEEE Transactions on Signal Processing, vol. 64,
no. 15, 2016.

[19] J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented nested
arrays with enhanced dof and reduced mutual coupling,”
IEEE Transactions on Signal Processing, vol. 65, no. 21,
pp. 5549–5563, 2017.

[20] Z. Zheng, W. Wang, Y. Kong, and Y. Zhang, “Misc array: a
new sparse array design achieving increased degrees of
freedom and reduced mutual coupling effect,” IEEE Trans-
actions on Signal Processing, vol. 67, no. 7, pp. 1728–1741,
2019.

[21] M. Yang, A. Haimovich, B. Chen, and X. Yuan, “A new array
geometry for DOA estimation with enhanced degrees of
freedom,” in Proceedings of the 2016 IEEE International
Conference on Acoustics Speech and Signal Processing
(ICASSP), pp. 3041–3045, Shanghai, China, March 2016.

[22] M. Yang, J. Ding, B. Chen, and X. Yuan, “A multiscale sparse
array of spatially spread electromagnetic-vector-sensors for
direction finding and polarization estimation,” IEEE Access,
vol. 6, pp. 9807–9818, 2018.

[23] M. Yang, A. M. Haimovich, X. Yuan, L. Sun, and B. Chen, “A
unified array geometry composed of multiple identical sub-
arrays with hole-free difference coarrays for underdetermined
DOA estimation,” IEEE Access, vol. 6, pp. 14238–14254, 2018.

[24] Y. Zhang, H. Xu, R. Zong, B. Ba, and D. Wang, “A novel high
degree of freedom sparse array with displaced multistage
cascade subarrays,” Digital Signal Processing, vol. 90,
pp. 36–45, 2019.

[25] T. SHAN, “On spatial smoothing for direction-of-arrival
estimation of coherent signals,” IEEE Trans.acoust.speech
Signal Processing, vol. 33, no. No. 4, pp. 806–811, 1985.

[26] U. Pillai and H. Kwon, “Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Trans-
actions on Acoustics, Speech, & Signal Processing, vol. 37, no. 1,
pp. 8–15, 1989.

[27] F. Fang-Ming Han and X. Xian-Da Zhang, “An esprit-like
algorithm for coherent doa estimation,” IEEE Antennas and
Wireless Propagation Letters, vol. 4, pp. 443–446, 2005.

[28] H. Xu, D. Wang, B. Ba, W. Cui, and Y. Zhang, “Direction-of-
arrival estimation for both uncorrelated and coherent signals
in coprime array,” IEEE Access, vol. 7, pp. 18590–18600, 2019.

[29] Y. Hu, Y. Liu, and X. Wang, “DOA estimation of coherent
signals on coprime arrays exploiting fourth-order cumulants,”
Sensors, vol. 17, no. 4, 2017.

[30] C. Zhou, Z. Shi, Y. Gu, and X. Shen, “Decom: doa estimation
with combined music for coprime array,” in Proceedings of the
International Conference on Wireless Communications &
Signal Processing, Hangzhou, China, July 2013.

[31] Z. Zheng, Y. Huang, W.-Q. Wang, and H. C. So, “Direction-
of-arrival estimation of coherent signals via coprime array
interpolation,” IEEE Signal Processing Letters, vol. 27,
pp. 585–589, 2020.

[32] P. Vaidyanathan and P. Pal, “Direct-music on sparse arrays,”
in Proceedings of the International Conference on Signal
Processing & Communications, Bangalore, India, October
2012.

[33] P. Vaidyanathan and P. Pal, “Why does direct-music on
sparse-arrays work?” in Proceedings of the Conference on
Signals, Pacific Grove, CA, USA, November 2013.

International Journal of Antennas and Propagation 11


