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A dual-band base station antenna is introduced in this paper. *e proposed antenna is composed of baluns, bowtie patches, and a
split ring. *e two pairs of bowtie patches excited by the two orthogonal balun structures can achieve dual polarization. *e split
ring is used to yield two additional resonances to broaden the impedance bandwidth. In this way, a compact dual-band base
station antenna is obtained with the size of 0.41 λc × 0.41 λc × 0.13 λc (λc is the wavelength in the free space at the lowest operating
frequency band) and the average gain of 8.2 dBi. Moreover, the operating frequency bands of the proposed antenna cover
2515–2675MHz, 3400–3600MHz, and 4800–5000MHz, which can function as an element for macro- or microcells in sub-
6GHz communications.

1. Introduction

Because of the rapid development of mobile communica-
tion, the demands for high-speed and low-latency data
services are enormously increasing [1]. It is considered that
the sub-6GHz band ranging from 2 to 6GHz serves as the
primary frequency band in the early era of the fifth gen-
eration (5G), providing an optimal balance between cov-
erage and capacity. *e frequency bands of N41
(2515−2675MHz), N78 (3400−3600MHz), and N79
(4800−5000MHz), divided by the *ird Generation Part-
nership Project (3GPP), are specified for sub-6GHz com-
munication. To obtain ubiquitous access in indoor scenarios,
microbase stations need to be densely deployed. *erefore,
dual-band base station antennas with compact size and low
cost are highly in demand.

As we know, the microstrip antenna has merits of low
profile, easy fabrication, and low cost, but a narrow im-
pedance bandwidth [2]. By loading parasitic elements
[3, 4], another resonance occurs near the main resonant
frequency. A parasitic loop is placed below the two

crossed dipoles and a parasitic disk, so that the bandwidth
in [5] is also enhanced. A hybrid-mode antenna is a
promising candidate to broaden the bandwidth through
sequentially exciting several modes in a shared aperture
structure [6]. A dual-wideband dual-polarized aperture-
shared patch antenna with high isolation was presented in
[7], which is composed of an X-band linearly polarized
antenna and S-band circularly polarized antenna. *e
stacked patches are applied in the S-band antenna, where
the upper parasitic patch is used to increase the gain and
bandwidth and also works as a ground plane for the
X-band exciting patch. *e X-band feed coaxial line
perforates the center of the parasitic patch and S-band
excited patch so that the shared aperture antennas are
tightly integrated with high isolation. However, the
complexity of this antenna may be not suitable for base-
station applications.

By utilizing a pair of ring dipoles and Y-shaped feeding
lines, a broadband dual-polarized antenna for LTE/5G base
applications was presented in [8]. When one ring dipole is
excited, the other is regarded as the parasitic element to
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broaden the bandwidth effectively. It achieves a wide band of
48.6% from 2.21 to 3.63GHz with a stable gain of 8.3 dBi.
Also, a compact dual-band dual-polarized base station was
proposed in [9]. *e dual-band performance is achieved by
integrating a small oval-shaped loop within the large oval-
shaped loop without increasing the size of the radiating
patch. It covers the frequency bands from 3.3 to 3.8GHz and
4.8 to 5.0GHz. However, these antennas either cover the
low-mid frequency band or mid-high frequency band within
sub-6GHz.

In this paper, two pairs of bowtie patches and a split ring
(SR) are shared in a common aperture. *e SR is regarded as
a parasitic patch to broaden the impedance bandwidth. A
dual-band base station antenna is achieved for sub-6GHz
communication, which covers the frequency bands of N41
(2515−2675MHz), N78 (3400−3600MHz), and N79
(4800−5000MHz).

2. Antenna Design and Analysis

2.1. Antenna Structure. *e geometry of the proposed an-
tenna is presented in Figure 1. *e antenna consists of four
parts: top substrate, bottom substrate, and two balun
structures. *e substrates used are the low-cost FR4 material
with a relative permittivity of 4.40 and a loss tangent of 0.02.
*e thickness of both top and bottom substrates is 0.80mm,
while that of the balun substrate is 0.60mm. *e rest di-
mensions of the presented antenna are detailed in Table 1.

Two pairs of orthogonal bowtie patches are printed on
the upper side of the top substrate. *is setup is to ease the
assembly and soldering process since the bowtie patches are
electrically connected with the balun structures. *e SR is
placed on the lower surface of the top substrate, improving
the matching and radiation performance through the in-
troduction of additional resonances. Moreover, to make the
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Figure 1: Geometry of the proposed antenna. (a) Perspective view, (b) the major radiator (two pairs of bowtie patches and an SR), (c) the
balun structure in the xoz plane, and (d) the balun structure in the yoz plane.
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two ports as symmetrical as possible, the microstrip feeding
line of the balun near the upper substrate is convex in the xoz
plane and concave in the yoz plane. Also, the amplitude of
the bump and depression is the same, as shown in
Figures 1(c) and 1(d). In addition, the balun also plays the
role of impedance transformer.

2.2. Operating Principle. To understand the operating
principle of the proposed antenna, the evolution of the
proposed antenna is shown in Figure 2. *e occurrence of
the adjacent resonances can effectively widen the impedance
bandwidth once the inductance and capacitance of the two
modes compensate for each other [2–5]. It can be noted that
the structure in Figure 2(b) has one more SR compared with
Figure 2(a), which is the same as the structure in Figure 2(d)
compared with Figure 2(c). Meanwhile, the structure in
Figure 2(c) has one more balun structure compared with
Figure 2(a), which is the same as the structure in Figure 2(d)
compared with Figure 2(b). Together with the three refer-
ence antennas, the structure evolution is helpful to dem-
onstrate the functionality of the SR and the balun. *e
inductance component is provided with the ring itself, while
the capacitance one is located at the split ends [10]. Addi-
tional resonances are excited by the SR, where the bandwidth
could be expanded through the presence of the adjacent
resonances.

Figure 3 presents the input impedance of the proposed
and reference antennas. *ere is only one resonance when
only the bowtie patch functions. At the presence of SR, two
additional resonances occur. We can see that the third and

fifth resonances of the proposed antenna are determined by
the SR. Comparing Ref. 1 with Ref. 3 or Ref. 2 with the
proposed antenna, we can find that the balun structure is
used not only to transform the impedance and match the
50Ω SMA but also to generate additional resonances to
increase the impedance bandwidth. Compared to a whole
ring patch, the SR has less stored energy and thus a lower
Q-factor [11] which implies a wider bandwidth for the
proposed antenna.

Figure 4 displays the simulated current distributions
on the bowtie patches and SR at different frequencies. *e
currents of the SR and the bowtie patches are in the
opposite direction, which is of benefit to reducing stored
energy near the antenna volume [12]. *e current near the
center of the bowtie patches is spread due to the presence
of the parasitic SR. To further illustrate the role of the SR,
the comparison with and without the SR is conducted in
Figure 5. *ere is around 1-dBi increase on the gains with
the SR because of the improvement in both the matching
and radiation performance by introduction of the third
and fifth resonances. It is noted that there is a gain drop
near 4.0 GHz because of the generation of the trapped
mode; however, it has little effect on the operating band of
this antenna.

3. Results and Discussion

To verify this design, a prototype of the presented antenna
has been fabricated and tested, as shown in Figure 6. Nylon
screws are applied to support the frame. *e reflection
coefficient was measured by using a Keysight E5071C vector
network analyzer, whereas the gain and radiation patterns
were measured by using a Satimo StarLab system, ranging up
to 5.80GHz.

Figures 7 and 8 illustrate the measured S parameters
and peak realized gains of the proposed antenna, re-
spectively. *e measured impedance bandwidth ranges
from 2.30 to 3.70 GHz and 4.70 to 5.90 GHz, where the
frequency bands of N41, N78, and N79 are covered. *e
measured mutual coupling between the two ports is lower
than −23 dB. *e radiation patterns of the proposed an-
tenna in the xoz plane and the yoz plane are displayed in
Figure 9. *e measured results are consistent with the
simulated ones.

A comparison between the proposed antenna and pre-
vious dual-band base station antennas is presented in Ta-
ble 2. Two crossed dipoles are used to realize the dual
polarization in [14], and the structure is sturdy, but the
impedance bandwidth is low.*e structure of the antenna in
[17] is simple, and it could cover the WLAN 2.4-GHz
(2.40–2.48GHz) and 5-GHz (5.15–5.85GHz) with isolation
>27 dB. *e profile in [18] is low, but the size is a little large.
Compared with [18, 19], the proposed antenna could cover
the most frequency bands for sub-6GHz communications.
For the simulated radiation efficiency in the operating band,
the minimum value is 91.62% at 3.60GHz while the max-
imum value is 95.19% at 3.40GHz, which exhibits the ad-
vantage of the proposed antenna because of the lossy
substrate [20, 21].

Table 1: Dimensions of the proposed antenna.

Parameter Value (mm)
R1 26.5
R4 18.0
L2 32.0
L5 4.0
L8 7.9
L11 3.0
W2 15.2
W5 3.2
W8 7.5
R2 15.6
gap 4.0
L3 7.1
L6 9.0
L9 2.2
L12 0.6
W3 12.5
W6 2.5
W9 1.0
R3 22.0
L1 60.0
L4 1.0
L7 1.2
L10 2.2
W1 60.0
W4 1.6
W7 4.8
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Figure 3: Input impedance of the evolution of the proposed antenna. (a) Real part and (b) imaginary part.

(a) (b) (c) (d) (e)

Figure 4: Simulated current distributions on the bowtie patches and SR. (a) 2.6 GHz, (b) 3.5GHz, (c) 4.0 GHz, (d) 4.8GHz, and (e) 5.2 GHz.
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Figure 2: Evolution of the proposed antenna. (a) Ref. 1: patch + GND. (b) Ref. 2: patch + SR +GND. (c) Ref. 3: patch + balun + GND.
(d) Proposed antenna: patch + SR + balun + GND.
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Figure 5: Comparison with and without the SR: (a) S parameters and (b) gains.

Figure 6: Photograph of the antenna prototype.
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Figure 7: Measured S parameters of the proposed antenna.
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Figure 8: Measured peak realized gains of the proposed antenna.
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Figure 9: Continued.
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Figure 9: Simulated and measured radiation patterns of the proposed antenna at (a) 2.6GHz, (b) 3.5GHz, and (c) 4.8GHz.

Table 2: Comparison with dual-band base station antennas.

References Size of major radiator (λc × λc × λc)∗ VSWR Bandwidth (GHz) Isolation (dB) Gain (dBi)
[13] 0.97× 0.97× 0.10 <2.0 0.81–0.96 (17%) & 1.69–2.24 (28%) >26 8.8± 0.6/9.9± 0.7
[14] 0.35× 0.35× 0.18 <1.5 1.68–2.30 (31%) & 2.51–2.68 (7%) >25 7.4± 0.6/7.3± 0.5
[15] 0.50× 0.50× 0.24 <2.0 2.40–2.48 (3%) & 5.15–5.85 (13%) >30 8.4± 0.2/9.0± 1.0
[16] 0.63× 0.63× 0.14 <2.0 0.69–0.96 (33%) & 3.50–4.90 (33%) >30 8.9± 0.5/8.2± 0.8
[17] 0.30× 0.30× 0.13 <2.0 2.40–2.65 (10%) & 5.00–6.40 (25%) >27 7.8± 0.1/9.7± 0.4
[18] 0.48× 0.48× 0.09 <2.0 3.30–3.70 (11%) & 4.70–5.00 (6%) >40 8.0± 0.3/10± 0.5
[19] 0.34× 0.34× 0.27 <1.5 1.71–2.69 (45%) & 3.35–3.60 (7%) >35 8.1± 0.4/6.6± 0.5
*is work 0.41× 0.41× 0.13 <2.0 2.31–3.77 (48%) & 4.71–5.89 (22%) >23 8.2± 0.7/8.1± 0.6
∗*e electric sizes are at the lowest operating frequency point.
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4. Conclusions

In this paper, a dual-band base station antenna with an SR is
presented for sub-6GHz communications. Both the band-
width and radiation performance are improved by two
additional resonances induced at the presence of an SR. *e
proposed antenna can cover the three frequency bands of
2515−2675MHz, 3400−3600MHz, and 4800−5000MHz.
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