Hindawi

International Journal of Antennas and Propagation
Volume 2021, Article ID 4699373, 9 pages
https://doi.org/10.1155/2021/4699373

Research Article

Hindawi

Radar High-Resolution Range Profile Target Recognition by the
Dual Parallel Sequence Network Model

Jizhou Wu (), Hongmin Zhang

, and Xuanhao Gao

National Digital Switching System Engineering and Technical Research Centre, Zhengzhou, China

Correspondence should be addressed to Hongmin Zhang; zhmin1206@163.com

Received 5 July 2021; Revised 25 November 2021; Accepted 2 December 2021; Published 20 December 2021

Academic Editor: Giuseppina Monti

Copyright © 2021 Jizhou Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using traditional neural network algorithms to adapt to high-resolution range profile (HRRP) target recognition is a complex
problem in the current radar target recognition field. Under the premise of in-depth analysis of the long short-term memory
(LSTM) network structure and algorithm, this study uses an attention model to extract data from the sequence. We build a dual
parallel sequence network model for rapid classification and recognition and to effectively improve the initial LSTM network
structure while reducing network layers. Through demonstration by designing control experiments, the target recognition
performance of HRRP is demonstrated. The experimental results show that the bidirectional long short-term memory (BiLSTM)
algorithm has obvious advantages over the template matching method and initial LSTM networks. The improved BiLSTM
algorithm proposed in this study has significantly improved the radar HRRP target recognition accuracy, which enhanced the

effectiveness of the improved algorithm.

1. Introduction

Radar high-resolution range profile (HRRP) is the sum of
projection vectors of the echoes received in the radial radar
after the signals emitted by wideband radar are scattered by
targets. HRRP contains the structure distribution infor-
mation of target scattering points in the radial direction of
the receiving antenna [1]. Through analysis, the size
structure of the target itself and the parameters of equivalent
scattering center distribution can be obtained, which is an
important data source for target recognition and classifi-
cation [2, 3]. SAR images have abundant two-dimensional
structural information of targets. However, imaging requires
movement posture angle accumulation of marks [4]. In
practical applications, it is difficult to obtain high maneu-
vering flight process data of non-cooperative targets [5, 6],
while HRRP is easy to get [7]. The technology to suppress
distance ambiguity is mature enough [8]. Therefore, HRRP is
widely applied in the field of radar automatic target rec-
ognition (RATR). In the fast and accurate recognition and
classification of targets by HRRP, how to extract compre-
hensive features from known data and complete the analysis

and processing of target information is a hot topic in this
study.

In response to the above problems, many researchers
have carried out extensive experiments and studies [9, 10].
Duran [3] proposed a parametric statistical distribution
model for azimuth sensitivity, translation sensitivity, and
range sensitivity of radar HRRP. Zhou et al. [11] proposed a
subspace fuzzy optimization transformation (FOT) method,
which preserves the local structure and maximizes the
distance between clustering centers. This kind of algorithm
requires a large amount of data and has low recognition
accuracy. Reference [12] uses sparse coding dictionary
learning to recognize targets. The above methods all analyze
the target and lack sufficient attention to the correlation
between radar HRRP range cells. Subsequently, a radar
HRRP model based on the hidden Markov model is pro-
posed in the Reference [13-16], and HMM is used to cal-
culate the transition probability of sequence data of
multirange cells. In this method, the HRRP database and
database index are established, and paragraphs are divided
according to the azimuth angle. Statistical modeling is
carried out for each paragraph at the training time. The
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maximum posterior probability is calculated when the
sample belongs to the segment. Finally, the target recog-
nition is carried out according to the matching similarity
probability. This method makes use of the sequence cor-
relation of HRRP data. However, the segmentation recog-
nition method requires much data samples and many
calculations. The accuracy of the model trained in the early
stage will significantly affect the classification accuracy
during verification.

Nowadays, neural networks have many applications in
the field of target recognition [17-19]. The sequence cor-
relation of HRRP has received a lot of attention and ap-
plication in RNN. Reference [20] proposes an attention
model based on a cyclic neural network according to the
time series characteristics of HRRP. The attention model
encodes the time domain data after giving different weights
to the data in each distance unit. The hidden layer coding
features are used to recognize the target. Reference [21] uses
a bidirectional self-circulating neural network combined
with an attention mechanism to intercept the forward and
reverse bidirectional data-sliding windows of time domain
HRRP data and inputs them into independent GRU net-
works. After training, the features are spliced for target
recognition and classification. Document [22] uses a bidi-
rectional long short-term memory network to extract target
feature information and then performs fusion to output
classification results. Reference [23] realizes deep feature
mining of samples by stacking long and short memory
networks, thus obtaining a better recognition. At present, a
deep belief network [24] is also a common practice. Ref-
erence [25] creates a cyclic recurrent gamma belief network
(RGBN) to extract the deep structural features of the target.
In addition, a mixture of random gradient Markov chain
Monte Carlo (MCMC) and a cyclic variational reasoning
model is proposed for scalable training and fast out-of-
sample prediction. This kind of method uses a cyclic neural
network to analyze and process the data of sequence
structure, weakens the segmentation requirement of target
attitude angle, explores the correlation within the sample,
and analyses the characteristics of the model itself and the

structural correlation characteristics of the internal
information.
2. The Proposed Method

In the traditional HRRP data processing, due to the high
dimension of data and the existence of information re-
dundancy, the method of dimension reduction before sta-
tistical recognition is adopted, and its type is determined by
checking the posterior probability of the sample to be tested.
Such methods mainly include AGC, gamma model, and
gamma mixture model [26]. However, the above example
has a low degree of freedom. These methods are not suitable
for target recognition of small sample data. Moreover, the
description of the statistical characteristics of the target is
not comprehensive, and the features of the target cannot be
fully captured, thus affecting the accuracy of target recog-
nition. In addition, the factor analysis (FA) model can better
capture the characteristics of the target. However, its
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robustness is not strong, which is greatly affected by the
attitude sensitivity of the target. In order to get a more
comprehensive model of the target, factor analysis needs to
master much target data for modeling statistics in the early
training stage. In the above method, HRRP data are regarded
as a combination of independent range cell echo sequences
without considering the correlation between radar-received
subechoes. The relative position of the scattering center is
fixed, because of the relative change of the radar line-of-sight
direction caused by the attitude change during the move-
ment. Therefore, the position of a particular scattering center
will shift on the distance unit. The echo data of all scattering
centers of the target in the three-dimensional space are
mapped in the one-dimensional space between the target
and the receiving antenna. Fluctuation changes between the
distance units will be formed based on the shift changes of
the scattering center.

Time series correlation in each distance unit is an es-
sential means for target recognition. To fully extract se-
quence correlation features [27], this study uses a
bidirectional long short time network and gate structure to
model the data. It proposes a dual parallel network model
based on a cyclic neural network. The model extracts features
from HRRP sequence data by multichannel coding and then
adds the output features of each classification network by
dynamic weight fusion. Compared with previous algo-
rithms, this model has the characteristics of a small amount
of training data and no need to manually segment and
establish templates. In addition, the model can fully extract
the structural features of samples through the network
characteristics of long-term memory, which is more in line
with the theoretical basis of HRRP data. When fusing
multichannel target features, the network model is more
robust by adjusting the weights, and the recognition accu-
racy is always kept at a high level. Experiments based on
measured data verify the effectiveness of this model.

The innovations of the model are as follows:

(1) To fully improve the feature extraction ability of
LSTM and improve the accuracy of target recogni-
tion by the network, a multilayer bidirectional LSTM
network model is introduced to process HRRP se-
quence recognition tasks. The network structure is
shown in Figure 1

(2) To distinguish the vital information of sequence, a
dual parallel network structure is proposed to pro-
cess sequence tasks

(3) That emotional weight adjust fusion mechanism is
set according to the size of the target information
data extract by the independent sequence network

2.1. Dual Parallel Sequence Network Structure. The input data
are the HRRP sequence of the aircraft target. The high-res-
olution one-dimensional range profile data are the vector
accumulation in each scattering echo unit of the target in the
opposite direction along the incident direction received by the
wideband radar, i.e., the backscattering echo integration in the
whole range cell space received by the radar antenna, i.e.,
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FIGURE 1: Dual parallel LSTM network structure.
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where P, is the transmitter’s transmission power, G is the
antenna gain, A is the working wavelength, o is the radar
cross section (RCS) of the target, R is the distance between
the target and the radar antenna, and L, and L, are the
system and atmospheric loss.

At the time £, the backscatter power P, within a range
cell AR at the radar receiving end is calculated as

P<t —2_Ro>_ P’ J P*(6,9)
"\ ¢ ) (4am’L, ) aroR'L, (R)

do(R,0,¢). (2)

According to the scattering point model, the scattering
point is an ideal geometric point. If the transmitted signal is
p(t), for multiple scattering point targets at different dis-
tances, the echo can be written as

s, (t) — ZAlp(t _ %)e‘j(Zch/c)Ri’ (3)

A; and R;(t,,) are, respectively, the amplitude of the echo
from the i-th scattering point and the distance at a certain
moment; p(-) is the normalized echo envelope; f, is the
carrier frequency; and c is the speed of light.

If the single-frequency pulse is used for transmission, the
narrower the pulse is, the wider the signal frequency band is.
However, it is difficult to transmit very limited pulses with
very high peak power. Generally, wideband signals with a
large time width are used, and the narrow pulses are

obtained through processing after receiving. We change the
echo signal of formula (3) to the frequency domain to
discuss how to deal with it. It is expressed as

S.(f)= Z Aip(f)e_j(h (fc+f)/c)R‘. (4)

The radar echo is very sensitive on the complex plane due
to the change in target attitude and distance, and the relative
phase of each scattering point considerably varies. Fur-
thermore, the echo amplitude in a single distance unit
greatly varies. In the input layer of this study, radar HRRP
(high-resolution range profile) uses the scattering point
model to describe the vector projection of the target scatterer
echo in the radar line-of-sight angle direction. One-di-
mensional information is used to count the three-dimen-
sional distributed scatterer subechoes of the target for vector
summation, and the projection data include the position
distribution of the weak and robust scattering points of the
target and the estimation of the radial radar size, which
reflects the robust shape and local scattering rate charac-
teristics of the target. Based on the above analysis, the
scattering point model can be expressed as

N; ) Ri . Ri
x; = Z;Aﬁ(At Q- 2?)exp<—]2nfc?>. (5)

To obtain robust echo data, the time domain charac-
teristics of radar HRRP are usually obtained after the signal
echo in each range cell is modulated. HRRP data containing
T-range cells can be expressed as

x:[|x1|,|x2|,...,|xT|]. (6)

2.2. Parallel Sequence Layer

2.2.1. LSTM Network Layer. The LSTM module includes two
states such as memory cell state ¢, and hidden state h,, and
three “gate” structures of input gate i,, forgetting gate f, and
output gate o,. The detailed structure is shown in Figure 2. For
input HRRP sequence data x = [x,x,,...,xy], the calcu-
lation process using the LSTM model is as follows:

i, =o(W%, +U"n,_, +b?),
fo= (W%, + U, 4 bD),
o, = U(W(O)xt +Uh,, + b(o)), (7)
¢ =10 tanh(W(C)xt + U, + b(c)) +f 06
h, = 0,0 tanh(c,),

where © is expressed as Hadamard product, o and tanh are
nonlinear mapping function, i, € R™! is a hidden layer at
the t-th time, x, € R™! is input at the t-th time, W € R
and U € R™™ are weight matrix of the model, and b € R™!
is an offset of the model.

The forgetting gate f, is used to reset the memory cell,
and the input gate 7, and the output gate o, control the input
and output of the memory cell.
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F1GURE 2: LSTM cell structure model.

The memory unit ¢,_; calculates whether the information
at the current time ¢ is discarded or not through the su-
perposition of the calculation results of the forgetting gate f,
and the output gate o, and then updates the memory unit ¢,
at time t. The hidden state h,_; contains the practical in-
formation hidden by the forward propagation input se-
quence before the index position time ¢, and the hidden state
h, is updated by the joint action of the current sequence
index position time memory unit ¢, and the output gate o,.
Through the collective effort of the memory unit ¢, and the
hidden state h,, the valid data in the sequence data can be
retained [28]. The information of the previous time of HRRP
data can be taken into account when feature extraction is
performed at time ¢. At the same time, it solves the problems
of long term, gradient explosion, and gradient disappearance
in traditional networks. The association of information is
realized before and after sequence data, information is saved
and transmitted for a longer time, and time series correlation
is fully used to identify the input HRRP sequence [27].

2.2.2. GRU Network Layer. The structure of the GRU net-
work is quite different from that of the LSTM network. In the
GRU network unit, there are only two gate structures, which
are the update gate z, and reset gate r,, and a hidden state r,.
The detailed structure is shown in Figure 3. The reset gate z,
is the oblivion degree of the gate setting to the previous time
information, and the importance degree of the gate setting is
updated to the current time information [27]. For the input
HRRP sequence data x = [x;, x,,...,%y], the calculation
process using the GRU module is as follows: [29].

ry = G(W'f s X+ U'r . ht—l + br])’
zp=0(W,-x,+U,-h_, +b,),

- 8
h, = tanh(W; ~x,Uy (r,0h,_) + bh>, (®)

h,=(1-z2,)0h,_, +z0h,

Through comparative analysis, we can conclude that
both LSTM and GRU networks belong to feature extraction
of time series information. The LSTM network adjusts that
information reserved at different time by setting a memory
unit. Thus, additional weights are set for extra time infor-
mation in the sequence to extract sufficient details in the
distance unit where the HRRP target is located. Therefore,
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Ficure 3: GRU cell structure model.

the LSTM network has high weights for the input x, of
strong scattering center time points, which are distributed
in the HRRP sequence. The features are mainly repre-
sented by the above scattering center distance unit. The
GRU network determines the weight adjustment of cur-
rent time information and historical information through
the amount of information at the present time. Similar to
the update gate z, of the LSTM forgetting gate, the GRU
network determines the degree of forgetting input in-
formation x, at the current time. The amount of infor-
mation x, at the current time is large, and the weight is
high. The weight of reserved information (1-z,) for
historical state information h,_, is inversely reduced. After
continuously inputting multiple bits of input x,, the input
needs to save a large amount of information, and then, the
weight z, increases. The weight of historical state infor-
mation (1 — z,) rapidly decreases due to the superposition
of multistep calculations, and the historical hidden state
information data h, are diluted. Therefore, the GRU
network focuses on the feature extraction and recognition
of paragraph information gathered by the main scattering
centers.

2.3. Dropout Layer. To avoid the phenomenon of overfitting
and the problem of considerable training time, the network
structure proposed in this study adds a dropout layer and
randomly discards 50% of hidden layer nodes in each batch
of training, thereby reducing the interaction between hidden
layer nodes, improving the training speed of the model,
preventing the overfitting phenomenon of the model, and
enhancing the generalization of the model.

2.4. Full Connection Layer. The full connection layer weights
and sums the spatial feature data of the hidden layer in the
network and maps the feature data to the classification
results, which is equivalent to the function of a classifier. In
the network structure proposed in this study, the parallel
network obtains two groups of classification results, namely,
the  classification  results for LSTM  branches
Frstm = (f11> f12 f13) and the classification results for
GRU branches Fery = (fa1 foo fas)-
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2.5. Fusion Layer. The fusion layer adopts a dynamic gate
structure, which selects the strategy of weight fusion
adjustment to fuse the output value of the parallel loop
network structure. The weights of parallel input from the
full connection layer to the fusion layer depend on the
state of network feature extraction. The full connection
layer of the parallel network, respectively, outputs the
output value of the target type number for transmission
and output to carry out logical regression (softmax re-
gression) classification, input data in the LSTM structural
unit at all times pass through the input gate i, to generate
an LSTM network input gate unit sequence Iy sTM-forget>
and similarly, the GRU network model will generate an
update gate unit sequence Zgpy_ypdate 2long with the data
input z,.

> iL]T)

Sz

ILSTM—forget = [11’ CIREE

(9)

ZGRU-update = (21,25 - -

The output weights d of the two independent models are

selected to be set as the ratio of the two norms of the gating
unit sequence, that is,

|| ILSTM—forget

>

dLSTM = "

LSTM—forget +||ZGRU—update

” z GRU-update

+ ZGRU—update

deru =
|| LSTM—forget

The fusion layer outputs a final hidden layer output
sequence F, after weighting output weight sequences d| ¢\
and dgpy and fusing the classification results of the full
connection layers Fygry and Frgry:

F, =digrm * Frstm + daru * Foru- (11)

2.6. Output Layer. After obtaining the hidden layer output

sequence F,, softmax layer and classification layer classifiers

are used to output the category of the sample to be tested.
exp (Fai)

S, = PVai)
Y jexp(F;) (2

where S; represents the probability that the sample sequence
to be tested belongs to class I. Finally, the classification layer
identifies the type as the item with the highest probability
value in class j.

3. Experiments and Analysis

3.1. Experimental Data. The experimental data source is the
data obtained from the field measurement of three types of
small- and medium-sized aircraft by a research institute in
China using C-band broadband radar, and HRRP data of
aircraft are the actual flight data of Yark-42, Cessna Citation
S/I, and AN-26, respectively. The above three types of
aircrafts are medium and large jet aircraft, small jet aircraft,

and small and medium propeller aircraft. ISAR performance
and aircraft structural parameters are shown in Table 1.

The flight path projection of the three types of aircrafts in
the experiment is shown in Figure 4, covering all azimuth
angles of the target flight, which has sufficient guarantees for
the comprehensiveness of classification learning. The pur-
pose of distinguishing the training and test sets without
overlapping is achieved by segmenting the flight path.

According to the sections in the figure, each aircraft is
divided into five to seven tracks. The training set selects 2 or
3 sections of Yak-42, 6 or 7 sections of Cessna Citation S/II,
and 5 or 6 sections of AN-26. Time domain characteristics of
HRRP data samples are shown in Figure 5. The training
samples are 3,000 in each category, totaling 9,000 samples,
which cover the data of each corner domain of the target to
ensure the completeness of the training set. The other
sections are used as test sets and to verify the recognition
performance. The test data are 10,000 samples in each
category, totaling 30,000 samples.

The same training set and test set were set up in the
comparative experiment, and the sequence dimensions of
HRRP data after preprocessing were 256. The network
hidden layer state dimension K is set to 10. In this model, the
parameters of generation training are mainly in the LSTM
network structure unit O gy = {Wi,Ui,bi,W pUpby,
W, U,b,,W,U,b,} and GRU network structure
O6ru = {W,,U,,b,,W_,U_,b,,W,,U,,b,}. The learning
rate is set to It = 0.5°d(#/20) x [r - After multiple rounds of
experiment comparison, the initial learning rate Ir, is set to
0.5 to speed up the convergence, and the learning rate is
reduced to 1/2 of the original value every ten cycles.

3.2. Model Performance Comparison

3.2.1. Comparison of Recognition Performance. Table 2
shows the recognition performance of DPSN proposed in
this study compared with other algorithms. The recognition
performance is the proportion of the number of correct
samples identified in the test set to the entire test set. The
comparison models include maximum cross correlation
(MCC), adaptive Gaussian classifier (AGC), and hidden
Markov model (HMM). In addition, this study also com-
pares long short-term memory (LSTM) and gated recurrent
unit (GRU).

From Table 2, we can see that compared with the tra-
ditional model, the recurrent neural network can better learn
the time series relationship in sequence data, considering the
time series correlation can effectively improve the recog-
nition accuracy of sequence data. Traditional models mostly
use statistical recognition and kernel methods to obtain
statistical distribution parameters of sample information for
model matching recognition. However, HRRP data have
high dimensions and correlation before and after the data, so
it is difficult to obtain higher recognition accuracy through
statistical models. At the same time, the classification based
on the kernel method maps the data from the linear in-
separable original space to the high-dimensional separable
space, which requires too large a number of samples and too



TaBLE 1: Experimental ISAR performance and aircraft structural parameters.
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Center frequency 5520 MHz
Radar parameters Pulse repetition frequency 400 MHz
P Sampling frequency after demodulation 10 MHz
Bandwidth 400 MHz
Aircraft Captain (m) Width (m) Height (m) Model
Yak-42 36.38 34.88 9.83 Large jet aircraft
AN-26 23.8 29.2 9.83 Medium propeller aircraft
Cessna Citation S/II 14.4 15.9 4.57 Small jet aircraft
80 15 15
.Y
60 | W5 5 51
2 \4 210 ™ 210t N
o 40~ 3 & 5 .'\J6 l/ 3 /!7 6
- 25 z 2|5\
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FIGURE 4: Projections of target trajectories onto the ground plane. (a) Yak-42. (b) Cessna Citation S/II. (c) An-26.
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FiGURE 5: Time domain characteristics of HRRP data samples. (a) Yak-42. (b) Cessna Citation S/II. (c) An-26.
TaBLE 2: Comparison of recognition performance.
Method MCC AGC HMM SVM LSTM GRU BiLSTM DPSN
Recognition performance 0.62 0.85 0.87 0.86 0.92 0.93 0.92 0.96

large a dimension of the kernel matrix, which significantly
increases the computational complexity of the model. As can
be seen from the following figure, the DPSN algorithm has
significantly higher recognition accuracy than other types of
networks in the comparison of network models using se-
quence input. The network depth in the above table is set to
10. We can find that the DPSN algorithm can maintain a
good recognition effect.

3.2.2. Comparison of Recognition Performance by Changing
Network Depth. Figure 6 is a comparison of recognition
accuracies of network depth changes. The DPSN has little

changes in recognition accuracy and high robustness with
network depth changes. The performance of the algorithm
is still good after the depth changes. Compared with
LSTM, GRU, and other network models, it is found that
the recognition performance depends very much on
adjusting depth parameters. Taking the BiLSTM network
as an example, the number of depth layers is set to 5 and 6,
and the recognition accuracy is 15% different. Therefore,
the dual parallel network can better overcome the in-
fluence of the depth of the sequence network on target
recognition, and the longitude fluctuation of recognition
is slight, so it has better target classification and recog-
nition ability.
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TaBLE 3: Comparison of network model stability.
Category LSTM GRU BiLSTM DPSN
Mean value 0.9085 0.9001 0.8953 0.9599
Variance 5.2646e - 04 8.6888¢ — 04 4.4243e—- 04 1.7376e — 04

DPSN

LST™M
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<
GRU
BiLSTM
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FiGure 7: Comparison of recognition performance of algorithms for reducing the size of training data.

3.3. Comparison of Deep Robustness Experiments

3.3.1. Comparison of Recognition Performance by Monte
Carlo Simulations. Table 3 shows the stability comparison of
network recognition accuracy with the change in network
model depth. The experiment selects 2-20 layers to traverse
the network depth. After 100 Monte Carlo simulations, the
experimental data of recognition accuracy of different al-
gorithms are obtained. The average value is the average
accuracy of all recognition results of the algorithm, and the
variance is the statistical variance value of recognition re-
sults. From the data, the average recognition accuracy of
DPSN is higher than other algorithms. Statistical variance
accuracy value is lower than that of the same class of al-
gorithms. Experiments show that the DPSN algorithm is
reliable, its recognition performance does not violently

fluctuate with the change in network depth, and it has good
robustness.

3.3.2. Comparison of Recognition Performance by Reducing
Training Data. Figure 7 is a comparison chart of recognition
accuracy of the different algorithms with a reduced amount
of training data. The abscissa is the scaling of multiple
training data, a value of 1 does not reduce the size of the data,
10,000 training data are used for each type of target, and a
total of 30,000 pieces of training data can be seen from the
figure. When the training data are reduced by ten times to
10% of the original data volume, when only 1,000 pieces of
training data are retained in various types, all kinds of al-
gorithms generally maintain stable recognition perfor-
mance. After further reducing the data volume, the DPSN



algorithm still maintains stable recognition performance,
while LSTM, GRU, and BLSTM all produce a corresponding
15% reduction in recognition accuracy. DPSN algorithm still
maintains good recognition performance under small
sample data. Besides, the recognition performance of DPSN
keeps a high level with the change of network depth, and
there is no violent fluctuation. A good recognition can still
be achieved when the network depth is low.

4. Conclusions

Aiming at the problem of radar HRRP automatic target
recognition, a HRRP target recognition method based on a
dual parallel network is proposed. By setting up an inde-
pendent dual parallel time series network, the radar one-
dimensional sequence data are extracted, and the time series
correlation features between the range cells of the target
sequence are captured. On this basis, a fusion mechanism of
dynamic gate structure weight fusion adjustment is pro-
posed, which effectively improves the stability of feature
extraction and is very robust to the depth change of the
network. Experiments show that the proposed model can
extract compelling features for recognition, with good
recognition performance and high network robustness.
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