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Interrupted-sampling repeater jamming (ISRJ) is a new type of DRFM-based jamming designed for linear frequency modulation
(LFM) signals. By intercepting the radar signal slice and retransmitting it many times, ISRJ can obtain radar coherent processing
gain so that multiple false target groups can be formed after pulse compression (PC). According to the distribution characteristic
of the echo signal and the coherence of ISRJ to radar signal, a new method for ISRJ suppression is proposed in this study. In this
method, the position of the real target is determined using a gated recurrent unit neural network (GRU-Net), and the real target
can be, therefore, reconstructed by adaptive filtering in the sparse representation of the echo signal based on the target locating
result. ,e reconstruction result contains only the real target, and the false target groups formed by ISRJ are suppressed
completely.,e target locating accuracy of the proposed GRU-Net can reach 92.75%. Simulations have proved the effectiveness of
the proposed method.

1. Introduction

Linear frequency modulation (LFM) signal is widely used in
wideband radar systems for its large time-bandwidth
product and high Doppler tolerance [1, 2]. By coherent
processing of LFM, noise jamming and other noncoherent
jammings can be greatly suppressed. However, with the
widespread application of digital radio frequency memory
(DRFM) technology, a number of new types of radar
jamming have been developed. DRFM has the ability to
sample, store, modulate, and forward radar signals. By
coherently replicating the radar signal, the generated jam-
ming signal can retain the intrapulse modulation charac-
teristic of the radar signal and can thus obtain the coherent
processing gain at the radar receiver. ,erefore, the appli-
cation of DRFM has greatly reduced the transmission power
requirement of the jammer, making it light enough to be
loaded onto the target to flexibly interfere with the radar
system.

Interrupted-sampling repeater jamming (ISRJ) is a
newly proposed radar coherent jamming model based on
DRFM [3]. By intercepting, delaying, and repeatedly for-
warding the transmitted radar signal within a signal pulse
width, a series of realistic coherent false target groups can be
formed after range pulse compression (PC) [4]. ,e
mathematical principle and performance of ISRJ are ana-
lyzed in [5]. On this basis, many researchers have analyzed
and improved the jamming performance of ISRJ and have
gradually applied ISRJ to jamming radar of various systems
including synthetic aperture radar (SAR) and inverse syn-
thetic aperture radar (ISAR) [6–11]. ISRJ can be adapted to
both receive-transmit time-sharing antenna system and
antenna system with two antennas working asynchronously
[12]. Moreover, the instant sampling and forwarding process
of ISRJ does not need to receive signals of complete signal
duration, so the jammer can adjust parameters at any time to
flexibly change the jamming mode, which poses a great
threat to the radar system [13].
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Nevertheless, the research studies on countering ISRJ are
still lacking so far. ,e research study of ISRJ counter-
measures mainly focuses on signal processing and waveform
design. In terms of signal processing, for dechirping radar, a
band-pass filter is designed [14] by using the discontinuity
characteristic of ISRJ in the time-frequency (TF) domain.
However, this method damages the continuity of the target
signal in the frequency domain, resulting in strong sidelobe
components of the PC result. In [15], the PC result of the
echo signal is transformed into TF domain, and an adaptive
filter is constructed to filter out ISRJ based on the discon-
tinuity of false target in TF domain. A parameter estimation
method using TF analysis and deconvolution of ISRJ is
proposed in [16], and ISRJ is suppressed by interference
cancellation through the reconstruction of the jamming
signal. Based on signal sparse recovery, [17, 18] propose new
ideas for jamming suppression. A wideband jamming
suppression method based on TF domain filtering and
sparse recovery is verified in [17]. In [18], the energy
function is first used to extract the signal part not disturbed
by ISRJ; then, the target reconstruction is completed based
on the sparsity of the signal in the frequency domain after
dechirping. In the aspect of waveform design, intrapulse
frequency random coded signal is used in [19] to suppress
the false target ahead of the real target generated by im-
proved ISRJ through frequency modulation. In [20], a hy-
brid modulated signal is adapted to make the subpulses of
the signal orthogonal to each other, and the real target is
distinguished from the false target by subpulse compression.

Deep learning has recently shown excellent performance
and broad application prospects in computer vision, speech
recognition, natural language processing, and other fields. In
terms of radar jamming suppression, due to the wide variety
of radar signals and jamming models, how to make better
use of deep learning methods has become the focus of re-
search studies of scholars. Jamming suppression is regarded
as an image processing problem in [21, 22]. First, the short-
time Fourier transform (STFT) is applied to obtain the TF
spectrum of the signal as the input of the convolutional
network, and then, the jamming-free signal is output directly
through the convolutional network. In [23], combined with
the method of target detection, the author uses a single shot
multibox detector (SSD) to detect the jamming signal in the
TF domain and performs adaptive filtering according to the
detected jamming types and jamming parameters to com-
plete jamming suppression. For the dechirping radar system,
a bidirectional gated recurrent unit (GRU) is used in [24] to
classify signal segments in the time domain and filter out the
part interfered by ISRJ. It can be seen that the current deep
learning countermeasures against radar jamming are basi-
cally independent of traditional research studies, and the
prior knowledge that may help the network understand the
jamming model better is not fully utilized.

In this study, a method against ISRJ is proposed based on
the coherence of ISRJ with respect to the real target signal
and the different TF distribution characteristics between real
target and false target groups. ,is method can reconstruct
the real target through adaptive sparse filtering using the
target locating result of the proposed GRU neural network

(GRU-Net). ,e rest of this study is arranged as follows.
Section 2 first introduces the signal model of the target signal
and ISRJ and then analyzes the amplitude response and TF
characteristics of the ISRJ PC result. Section 3 proposes the
anti-ISRJ method based on GRU-Net target locating and
sparse recovery. ,e process of real target locating using
GRU-Net, sparse representation of the echo signal, and real
target reconstruction is introduced. Section 4 conducts some
simulations to validate the effectiveness of this method
against ISRJ and studies the factors affecting the real target
locating. Finally, the main conclusions are drawn in Section
5.

2. Principle of ISRJ

2.1. Signal Model. ,e LFM pulse radar transmits the LFM
signal pulse by pulse and receives an echo signal from the
target. Suppose that the target is equipped with an ISRJ
jammer, the received echo signal will be polluted by ISRJ,
which will seriously damage the imaging quality of the target
and the subsequent detection.

Assume that the normalized LFM signal transmitted by
radar is

s(t) � rect
t − Tp/2

Tp

􏼠 􏼡 · e
jπkt2

, (1)

where

rect
t

Tp

􏼠 􏼡 �

1, −
Tp

2
≤ t≤

Tp

2
,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

represents a rectangular window of width Tp, Tp is the pulse
width of LFM signal, k � B/Tp represents the chirp rate, and
B is the bandwidth of the LFM signal. ,e carrier frequency
of the signal is omitted because it does not affect the
derivation.

Assume that the distance between the target and the
radar is Rt, the target echo signal received by the radar can be
expressed by

st(t) � Ats t − τt( 􏼁, (3)

where τt � 2Rt/c represents the time delay of the target echo
signal, c is the speed of light, and At is the amplitude of target
echo signal, which can be calculated by radar equation.

,e ISRJ jammer first intercepts and samples a slice of
radar signal and then retransmits it many times.,is process
is repeated until the end of the radar pulse. Figure 1 shows
the principle of ISRJ. Ts is the repeat sampling interval, TI is
the sampling pulse width, M is the retransmission times of a
single slice sampling, Ts � (M + 1)TI, N is the number of
radar signal slices that can be intercepted by the jammer
within the duration of a radar signal pulse, and N � Tp/Ts.

,e sampling equation p(t) � rect[(t − TI)

/TI]∗􏽐
N−1
n�0 δ(t − nTs) is a rectangular envelope pulse se-

quence with pulse width TI and pulse repetition interval
PRT � Ts, where ∗ denotes convolution operator.
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,erefore, radar signals intercepted and sampled by
jammers can be described by

xs(t) � p t − τt( 􏼁 · s t − τt( 􏼁 � 􏽘
N−1

n�0
rect

t − TI/2 − τt − nTs

TI

􏼠 􏼡 · e
jπk t− τt( )

2

, (4)

After intercepting and sampling the radar signal, the
jammer retransmits the intercepted signal slice several times,
and the resulting jamming signal can be obtained as follows:

J(t) � Aj 􏽘

M

m�1
xs t − mTI( 􏼁

� Aj 􏽘

M

m�1
􏽘

N−1

n�0
rect

t − TI/2 − τt − nTs − mTI

TI

􏼠 􏼡 · e
jπk t− τt− mTI( )

2

,

(5)

where Aj is the amplitude of the jamming signal, which can
also be calculated by radar equation.

Finally, the echo signal received by radar includes target
echo signal, jamming signal, and noise signal n(t), which obeys
a Gaussian distribution. ,e echo signal can be expressed by

Echo(t) � st(t) + J(t) + n(t). (6)

2.2. PC Result of ISRJ. ,e matched filter of LFM radar can
be expressed as s∗(−t). Taking the first retransmission of the
nth jamming slice as an example (for convenience, the time
delay is set at zero, which does not affect the results), the PC
process can be regarded as the convolution between the
matched filter and the jamming slice. With TI <Tp, the PC
result of that jamming slice is
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Figure 1: ,e principle of ISRJ.
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where φ � πk(T2
I − t2) + 2πk(nTs + TI)(t − TI). Equation

(7) indicates that the PC result of that jamming slice is a
“sinc” function with the peak value at TI. ,erefore, for the
first retransmission of all jamming slices, the amplitude
response of the PC result can be expressed by
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􏼌􏼌􏼌􏼌
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(8)

,e PC result of the same intercepted radar signal slice
with different retransmission times only differs at time delay,
so the amplitude response of the whole ISRJ PC result can be
represented by

|PC(t)| � 􏽘
M

m�1
PCm(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽘

M
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. (9)

,e above analysis shows that the amplitude response of
the ISRJ PC result delay is a series of false target groups in the
form of “sinc” with different delays. It mainly depends on
some key parameters, such as N, M, TI, and Aj.

2.3. TF Analysis of PC Result. ,e TF analysis can show the
joint distribution of signal energy both in time and fre-
quency domains. Generally, TF transformation is realized by
STFT, which can be expressed as follows:

STFT(t, f, sig(t)) � 􏽚
−∞

−∞
sig t′( 􏼁 · win t′ − t( 􏼁 · e

− j2πft′dt′,

(10)
where win(t) is a sliding window function, and sig(t) is the
input signal.

For the PC result of the echo signal, when a rectangular
window is used, the TF distribution can be represented by

tf τs, f( 􏼁 � STFT τs, f,PCe(t)( 􏼁

� 􏽚
∞

−∞
rect

t − τs

Twin
􏼠 􏼡 · e

− j2πft
· PCe(t)dt,

(11)

where PCe(t) is the PC result of the echo signal, τs is the
sliding time, and Twin is the width of the sliding window.,e
TF distribution of PCe(t) is shown in Figure 2.

As can be seen from Figure 2, the real target signal after
PC presents a long and concentrated strip-shaped distri-
bution in the TF domain, while the TF distribution of a
certain jamming slice of ISRJ after PC is discontinuous in the
TF domain and presents the form of “sinc” in the time
domain and frequency domain, respectively. For jamming
slices with the same retransmission time, the TF distribution
is a series of “sinc” functions of the same time unit and
different frequency units. For jamming slices intercepted
from the same signal slice but with different retransmission
times, the TF distribution can be expressed as multiple
regularly distributed “sinc” functions of the same frequency
unit and different time units.

To sum up, the ISRJ jammer intercepts and retransmits
slices of the target echo signal, and each jamming slice cor-
responds to a single fragment that discontinuously distributes
in the TF domain after PC, while the real target signal after PC
presents a continuous strip distribution in the TF domain.
,erefore, the real echo target and the false target groups

4 International Journal of Antennas and Propagation



formed by ISRJ can be well distinguished after PC according to
different distribution characteristics in the TF domain.

3. The Proposed Method

3.1. Main Steps of the Proposed Method. ,e TF distribution
of ISRJ after PC is relatively short and discontinuous
compared to the real echo target signal. Additionally, the
distribution of different false target groups in the time
domain is correlated among each other. In view of these
characteristics, combined with GRU-Net, a new method
against ISRJ is proposed in this study, the detailed process of
which is listed in Algorithm 1.

3.2. Real Target Locating Based on GRU-Net. In order to
accurately determine the time unit of the real target in the TF
domain after PC, a gated recurrent unit neural network is
proposed in this study. Stacked with two bidirectional GRU
layers, GRU-Net can process the input data in both forward
and backward directions along the time axis. ,erefore, for
the target locating task in this study, bidirectional GRU
layers can make better use of distribution information of PC
results and the correlation information between different
time units compared with monodirectional GRU layers, thus
locating the real target with less error probability.

,e input of the GRU-Net is a normalized TF image of
the echo signal after PC. ,e size of TF image is Nr × Nr,
where Nr is the number of range sampling points. As the
recurrent neural network is especially suitable for processing
serialized data and further discovers the relationship among
the internal elements of the sequence, the input TF image is
regarded as a sequence signal along the time axis, where
every column of the image I, a vector of length Nr, is one
element of the sequence. ,e length of the sequence is Nr

accordingly. As shown in Figure 3, by extracting the features
of these elements, GRU-Net can map the tth element It to a
single value pt, which indicates the probability of column t

containing a target.

As shown in Table 1, an adaptive average pooling layer is
applied at the beginning to reduce the dimension of input
elements to a fixed size. Bidirectional GRU contains two
independent GRUs working along with the opposite tem-
poral directions, which are separately shown with blue and
orange parts in Figure 3, so the output size is doubled
compared to a single GRU. ,e output of GRU at the tth
time unit ot depends both on the input at the tth time unit it
and the last hidden state ht−1, so we input the down-sampled
element step by step. After two GRU layers, a linear layer
takes the output vector of GRU2 as input and outputs a
single value pt at each time unit. In the end, softmax is
applied along the time axis to normalize pt, and the final
target location can be obtained by

rt � argmax
t∈ 1,2,3,...,Nr{ }

􏽥pt, (12)

where 􏽥pt is the normalized pt.

3.3. Sparse Recovery of Target Echo Signal. Since the gener-
ation process of ISRJ is intercepting, sampling, and delayed
forwarding of the radar target signal, each ISRJ slice is
equivalent to a target echo signal with smaller pulse width.
,erefore, based on the coherence of ISRJ relative to the
target echo signal, the echo signal can be represented by the
dictionary, which is constructed by the target echo signal.

Echo(t) � st(t) + J(t) + n(t) � Dσ1 + n(t), (13)

where D is the dictionary of sparse representation, which is
a Nr × L matrix, Nr is the number of sampling points in
range direction, and L is the number of range gates. Each
column of the dictionary is a delayed form of transmitting
signal, and different column corresponds to different time
delay.,e specific form of the dictionary can be expressed as

D � [s(t)s(t − Δτ)s(t − 2Δτ) · · ·], (14)
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Figure 2:,e PC result of the echo signal in TF domain, time domain, and frequency domain.,e main graph shows the TF distribution of
the PC result, the corresponding PC result in the time domain is shown below the main graph, and the corresponding PC result in the
frequency domain is shown to the left of the main graph.
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whereΔτ is the time delay between two adjacent columns, and
the range resolution of sparse representation is ΔR � Δτ · c. σ1
is a L × 1 vector representing the energy factor of the real
target and the false targets generated by ISRJ. When the real
target distributes sparsely in the range domain, the false target
groups formed by intercepting and retransmitting the real
target signal can also be considered as sparsely distributed in
the range domain. σ1 has only several nonzero coefficients on
the corresponding range gate of the real target and main false
targets generated by ISRJ. ,e echo signal, therefore, has a
sparse representation using the above dictionary.

,e sparse representation can be obtained by solving the
following convex optimization equation:

min
σ1

echo(t) − Dσ1
����

����
2
2 + λ σ1

����
����1, (15)

where ‖ · ‖p is the lp norm, and the non-negative coefficient λ
is used as a trade-off factor to compromise the sparsity ‖􏽢σ1‖1
and residual 􏽢r � echo(t) − D􏽢σ1 of the optimization solution
􏽢σ1 of this equation. ,e larger the λ is, the sparser the 􏽢σ1, but
the residual will also be correspondingly larger. ,e sparse
representation of the echo signal is shown in Figure 4.

Input: ,e echo signal Echo(t), the sliding window win(t), the trained GRU-Net, the dictionary D.
Output: Target locating result rt, the reconstructed target echo signal 􏽢st

Begin
(1) Perform pulse compression of Echo(t);
(2) Implement STFT to transform the PC result PCe(t) into TF domain;
(3) Normalize the TF data;
(4) Input the normalized TF data into the GRU-Net;
(5) Obtain the GRU-Net target locating result rt;
(6) Carry out the sparse representation 􏽢σ1 for Echo(t);
(7) Construct an adaptive filter Filter according to rt to filter out the corresponding peaks of the false target groups in the sparse

representation domain;
(8) Reconstruct the target echo signal 􏽢st through D and amplitude compensation to obtain the jamming-free result;

End

ALGORITHM 1: ,e proposed method.

Average pool

Fully connected layer

p t
+1p t
–1 p t

softmax

GRU1

It–1 It+1It

Input

Output

GRU1 GRU1

GRU2 GRU2 GRU2

Figure 3: Pipeline of the proposed GRU-Net. ,e network is stacked by an average pooling layer, two bidirectional GRU layers, and a fully
connected layer.
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As can be seen from Figure 5, noise is greatly suppressed
in the process of solving Equation (15). Because the real
target echo signal and ISRJ are consistent with the dictio-
nary, peaks can be generated at the positions corresponding
to the real target and the main false target groups, and the
height of the peaks represents the corresponding energy.

According to the sparse representation of the echo signal
and the target locating result of GRU-Net, an adaptive filter
can be constructed in the sparse representation domain to
filter out the peaks of false targets and retain the peak of the
real target, which can be represented by

Filter � e1 e2 · · · eL􏼂 􏼃, (16)

where

ei �
1, i � rt,

0, else,
, t � 1, 2, 3, . . . , L􏼨 (17)

,en, the reconstructed target echo signal can be
expressed by

􏽢st � ε Dσopt � ε D􏽢σ1 · Filter, (18)

where ε is the amplitude compensation factor, which is the
ratio of the target amplitude before jamming suppression to
the reconstructed target amplitude.,rough multiplying the
PC result of the reconstructed signal by ε, the final signal
reconstruction result where ISRJ and noise are greatly
suppressed can be obtained.

4. Simulations

4.1. Data Training. ,e proposed method can accurately
reconstruct the target signal if the real target position is

correctly located, which is regarded as successful antijam-
ming. ,erefore, the performance of the proposed method
depends on the target locating precision of GRU-Net, which
can be expressed by

Ps �
Nc

Nt

, (19)

where Nc is the number of correct locating samples, and Nt

is the total number of samples.
,e proposed GRU-Net is trained by supervised

learning. In order to obtain an accurate target position, 4,000
groups of simulated echo signals with random parameters
are generated, which are divided into the training set, val-
idation set, and test set in accordance with the ratio of 8 :1 :1.
,e parameter ranges of training samples are listed in
Table 2.

Since the task for GRU-Net is more like a multi-clas-
sification problem, we choose one-hot encoding as our
training label, which can be denoted as

yt �
1, t � ttar,

0, else,
, t � 1, 2, 3, . . . , Nr􏼨 , (20)

where ttar is the position of the real target.
,e network is optimized by the stochastic gradient

descent (SGD) optimization algorithm based on a weighted
cross-entropy loss, i.e., as follows:

Loss � − 􏽘

Nr

t�1
yt ln pt( 􏼁 + β 1 − yt( 􏼁ln 1 − yt( 􏼁􏼂 􏼃e

12
, (21)

where yt is the corresponding target label. Weight β is a
hyperparameter designed to balance the importance of

0

0.2

0.4

0.6

0.8

1

0
100

real target

N
or

m
al

iz
ed

 am
pl

itu
de

false target groups
formed by ISRJ

200 300 400 500
Range unit

600 700 800 900 1000

Normalized PC result of the echo signal
Normalized sparse representation

Figure 4: Sparse representation of echo signal. ,e blue line demonstrates the sparse representation result of the echo signal, and the red
part shows the corresponding PC result. ,ere are two false target groups, which means the retransmission time M� 2.
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positive/negative examples, which is set to 0.001 in our
experiments.

In the optimization process, the network is trained
for 100 epochs with a total of 128 samples per minibatch.
,e initial learning rate is set to 0.0001, with momentum
of 0.9 and weight decay of 0.0005. To check the con-
vergence property of the proposed GRU-Net, the curve of
loss value and target locating precision versus the
number of training epochs is shown in Figure 5 by a red
line and a green line, respectively. It can be seen that the
training loss decreases rapidly with the increase in
training rounds while the detection accuracy of the real
target position continues to rise, and they both remain
stable in the end. After training for 100 epochs, the final
target locating precision stays at 92.75%.

In order to prove the advantages of the proposed
GRU-Net, we construct a LSTM-Net by replacing the
GRU layers of GRU-Net with LSTM layers under the
condition that the network structure and training
hyperparameter remain unchanged, and a contrast ex-
periment is carried out to compare the target locating
precision between the two networks. Experimental result
shows that after training for 100 epochs, the target lo-
cating precision Ps of both neural networks is maintained
at 92.75%. However, the model size of LSTM-Net is
206 kB, while the model size of GRU-Net is 155 kB, which
means that GRU-Net has a lower computational burden
compared to LSTM-Net, while the target locating

performance of the two neural networks is very close to
each other.

A hypothesis test can verify the stability and excellence of
the proposed network [25]. To further prove the advantage
of GRU-Net in the target locating task, we perform a one-
tailed t-test on the generated dataset, and the intermediate
result of the statistical hypothesis calculation process is listed
in Table 3. ,e target locating precision Ps is taken as an
evaluation matrix in the t-test. It can be seen from Table 3
that the average test Ps value of GRU-Net is
μ � (1/m1) 􏽐

m1
s�1 􏽢εs � 0.9217, and the variance is

σ2 � [1/(m1 − 1)] 􏽐
m1
s�1 (􏽢εs − μ)2 � 1.9167 × 10− 5(m1 � 6).

Finally, the critical value τt can be obtained by
τt �

���
m1

√
|μ − ε0|/σ � 3.730 (where ε0 is the assumed

minimum Ps value, and ε0 � 0.915). ,e critical value τt is
larger than the given value of 3.365 by the one-tailed t-test table,
whichmeans that the testPs value ofGRU-Net is larger than the
assumed test Ps value (0.915) with a confidence degree of
(1 − α � 0.99).

4.2. Factors Affecting Target Locating Precision. Since the
target locating precision is highly correlated with the input
TF data, we consider that the target locating precision may
be related to the signal-to-noise ratio (SNR), jamming-to-
signal ratio (JSR), and TI of the echo signal. Among them,
SNR and JSR represent the power ratio of signal to noise and
interference to signal, respectively, which can be defined as

Table 1: Structure of the proposed GRU-Net

Layer Output shape Params num
Input placeholder [Nr, Nr] 0
Average pooling [Nr, 128] 0
Bidirectional GRU1 [Nr, 32 ∗ 2] 31104
Bidirectional GRU2 [Nr, 16 ∗ 2] 7872
Linear + softmax [Nr, 1] 33
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Figure 5: Training process curves. ,e red and green lines denote loss value and target locating precision, respectively.
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(22)

where σn
2 denotes noise power.

In order to study the effect of SNR and JNR on target
locating precision, a series of Monte Carlo simulations are
carried out in this study. ,e generated test sets are divided
into 8 modes with different retransmission times M and a
number of jamming slices N. ,e settings of these eight
modes are shown below in Figure 6. In the Monte Carlo
simulations, the test sets are generated from 5 dB to 20 dB at
3 dB JSR intervals and from -10 dB to 10 dB at 5 dB SNR
intervals, respectively. ,is results in 30 test groups per
mode, and 100 Monte Carlo simulations are conducted in
every test group.

In consideration of controlling variables, the bandwidth
B and the pulse width Tp of the target echo signal are set at
9MHz and 26 μs, respectively. ,e repeated sampling in-
terval Ts is separately set at 0.26 Tp and 0.39 Tp, corre-
sponding to two different numbers of jamming slices N.
Other parameters remain the same as those listed in Table 1.

When M � 1, it means that the jammer intercepts a slice
of the radar signal and directly retransmits the intercepted
slice once. At this time, the jamming signal is called
interrupted-sampling direct jamming (ISDJ), which differs
from ISRJ only in the retransmission time of jamming slices.
According to Section 2, the TF distribution of false target
groups after PC is discontinuous compared with the real
target, but there are only few correlations in the range
domain because there is only one false target group.

,e changing trend of target locating precision Ps in 8
modes of ISRJ and ISDJ versus JSR and SNR is shown in
Figure 7. Some key conclusions can be drawn from Figure 7,
which are shown in the following:

(1) In the case of fixed JSR, Ps increases with the increase
in SNR in the same mode.

(2) When SNR is small, target locating is relatively prone
to error, but the changing trend of Ps is not obvious
versus JSR. In general, a larger JSR has a greater
negative impact on Ps.

(3) When the retransmission time M is fixed, the more
the sampling numbers of the signal, the more chaotic
the TF distribution of the echo after PC, and the Ps,
in general, is relatively low.

(4) ,e TF distribution of the echo after PC is chaotic
when the sampling number N and the retrans-
mission timeM are large (see mode 4 and mode 8),
which is, in general, unfavorable for target
locating.

(5) It can be seen that GRU-Net not only has an excellent
performance in target locating in the case of ISRJ but
also can realize target locating based only on the
distribution difference in the TF domain between
real target and false target groups in the case of ISDJ,
which means that the proposed method has the
ability to suppress not only ISRJ but also ISDJ.

According to Equation (9), when the sampling number
N and retransmission time M are fixed, the TF distribution
of ISRJ after PC is mainly related to TI. For the purpose of
learning the specific impact of TI on Ps, 1,000 test data are
generated with N and M fixed at 4, and TI is uniformly
distributed in the interval of 1.35 ∼ 1.80 μs. ,e mislocated
data are statistically analyzed, and the statistical result is
shown in Figure 8. It can be seen that when TI is smaller,
despite that the amplitude of false targets is smaller, the false
target groups are more densely distributed in the range
domain, which may result in lower target locating precision.

4.3. ;e Jamming Suppression Performance of the Proposed
Method. In view of the fact that the proposed GRU-Net can
achieve high target locating precision under ISRJ, the
jamming suppression performance of the proposed method

Table 2: Parameter ranges of training samples

Parameter Value
Sampling frequency fs/MHz 20
Pulse width Tp/μs 20–30
Bandwidth B/MHz 6–10
Target range R/km 5–15
Repeat sampling interval Ts/μs 5–12
Retransmission time M {1, 2, 3, 4}
Signal-to-noise ratio SNR/dB −10 to 10
Jamming-to-signal ratio JSR/dB 5–20

Sampling number Retransmission time Mode No.

3

4

1

2

3

4

Mode 1

Mode 5

Mode 2
Mode 6

Mode 3
Mode 7

Mode 4
Mode 8

Figure 6: ,e setting of eight modes.

Table 3: Hypothesis test of GRU-Net on the generated dataset

Statistical parameter Value
μ 0.9217
ε0 0.915
σ2 1.9167 × 10− 5

τt 3.730
1 − α 0.99
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Figure 7: Ps versus SNR and SJR. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f ) Mode 6. (g) Mode 7. (h) Mode 8.
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is, therefore, tested.,e bandwidth B and the pulse width Tp

of the target echo signal are set at 9MHz and 30 μs, re-
spectively.,e repeated sampling intervalTs is set at 0.38Tp,
and the intercepted radar signal slice is retransmitted three
times. ,e real target position is at 1,300m. Under the
condition that SNR is 5 dB and JSR is 15 dB, the TF data of
the echo signal are first input into the proposed GRU-Net,
and the actual position of the real target can be acquired,
which is shown in Figure 9.

On the other hand, this echo signal is sparsely repre-
sented, and the result is shown in Figure 10. It can be seen
from the result of sparse representation that there are three
false target groups formed by retransmission, and the am-
plitude of main false targets in each false target decreases
rapidly from the middle to the two sides.

According to Equation (17), an adaptive filter is con-
structed based on the target locating result by GRU-Net.
After sparse domain filtering and amplitude compensation,
the target signal is reconstructed, and the final jamming
suppression result is obtained, which is shown in Figure 11.
It can be seen that the proposed method successfully sup-
pressed ISRJ and noise after signal reconstruction.

5. Conclusions

Based on the distribution characteristic of the echo signal
and the coherence of ISRJ with respect to the radar signal, an
ISRJ suppression method using sparse representation and
deep learning target locating is innovatively proposed in this
study. First, the TF domain data of the echo signal after PC
are input into the proposed GRU-Net, and the location of
the real target can be acquired according to the different TF
distribution characteristics and the correlation information
between the false target groups formed by ISRJ and the real
target. ,en, the coherence of the target signal and ISRJ
relative to the constructed dictionary is used to sparsely
represent the received echo signal. As a result, there are

peaks at the exact range position of the real target and the
strong false target groups, and the real target is, therefore,
reconstructed after filtering in the sparse domain to achieve
ISRJ suppression. Simulation results have demonstrated the
effectiveness of the proposed method.

Because of the noncoherence between the noise signal
and the constructed dictionary, the noise signal is also
greatly suppressed besides ISRJ. ,e method proposed in
this study is not limited to the suppression of ISRJ. For other
kinds of sliced forwarding jammings with different for-
wardingmodes or different modulationmodes, they forward
or modulate slices of radar signal so that the generated
jamming signal is discontinuous both in the time domain
and frequency domain compared with radar signal. Based on
this characteristic, the proposed method can also be used to
distinguish the real targets from the false targets in the TF
domain under these types of jammings. ,erefore, the
proposed method also has great reference significance for
the suppression of other DRFM-based slice forwarding
jammings.
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