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-e contrast source inversion (CSI) is an effective method for solving microwave imaging problems which is widely utilized. -e
core of the CSI is to change the conventional inverse scattering problem into an optimization problem. -e two items in the
objective function describe the state error and data error, respectively. As it is all known, there is almost no complete performance
comparison based on Fresnel data for the CSI and its related improved algorithms. In addition, the performance of the algorithm
under different weights was not analyzed before and the convergence speed of original CSI is slow. Firstly, this paper compares the
performance of traditional CSI and its improved algorithms from three aspects of qualitative imaging effect, convergence speed,
and objective function value based on Fresnel data. Secondly, the influence of the state error and the data error under different
weights on the convergence rate and the objective function value are studied. For the limitation of a slower convergence rate, the
CSI with weights (W-CSI), the CSI with dynamic reduction factor (CSI-DRF), and its related algorithms, which can get better
convergence rate compared with their relative original algorithms, are proposed. Eventually, the future research work
is prospected.

1. Introduction

-e technology of microwave imaging uses the obtained
scattered field data to reconstruct the geometric shape,
position, and material parameters of scatterers [1]. In recent
years, it has been widely employed in biomedicine, earth
remote sensing, nondestructive testing, and other fields [2].
Most microwave imaging algorithms are based on the
Lippmann–Schwinger equation. Due to the highly nonlinear
and ill-posed characteristic of this equation, the solution and
calculation process of it are extremely challenging [3].

Based on the theoretical research of electromagnetic
inverse scattering, a variety of microwave imaging algo-
rithms have been proposed. Currently, the microwave im-
aging algorithms commonly utilized are mainly divided into
three categories. -e first type is stochastic optimization
algorithm, such as evolution strategy [4], particle swarm

optimization [5], and whale optimization algorithm [6].-is
type of algorithms converts the microwave imaging problem
into an optimization problem and obtains the result by
continuous iterating. -e second type of algorithms is based
on the gradient optimization theory [7–9]. -is type of
algorithm has lower computational cost and smaller cal-
culation error. -e third type of algorithms is based on
neural networks. With the continuous development of deep
learning technology, the solution of microwave imaging is
gradually combined with this emerging technology [10–12].

-e contrast source inversion (CSI) is a classic micro-
wave imaging algorithm that was proposed by Van den Berg
and Kleinman in 1997 [13]. On the basis of the traditional
data error equation, the state error equation was introduced.
-is item played a regularizing role, facilitating precise
search. To a certain extent, a stable solution to themicrowave
imaging problem could be obtained.
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As it is all known, the Fresnel data is often applied to test
the performance of microwave imaging algorithms [14].
-ere is almost no complete performance test of inversion
algorithms based on the Fresnel data in the literatures related
to the CSI and its correlative modified algorithms. In ad-
dition, there is almost no research for the different weights in
the two terms of original objective function. In fact, although
the data error and state error under different weights will not
significantly affect the qualitative imaging results, it will
affect the convergence rate and the value of the objective
function obviously. Meanwhile, the original CSI has the
drawback of a slower convergence speed [15, 16].

Firstly, this paper compares the performance of the
contrast source inversion and its improved algorithms in
terms of qualitative imaging results, objective function value,
and convergence speed based on the Fresnel scattering data.
Secondly, the influence of data error and state error under
different weights on the convergence rate and the value of
the objective function are discussed. -en, the weight and
dynamic reduction factor (DRF) are introduced to improve
the convergence value of original CSI and cross-correlated
contrast source inversion (CC-CSI). -e results prove that
the proposed improved methods can obtain the better
convergence rate.

-e structure of paper is arranged as follows. In Section
2, the basic model of the microwave imaging problem is
described. In Section 3, the original CSI and its improved
algorithms are described. In Section 4, the performance of
different algorithms is compared based on Fresnel data. In
Section 5, the influence of the state error and the data error
under different weights is studied. -e improved methods
for the original algorithms are proposed.

2. The Forward Model of Scattering Field

-e research object of the microwave imaging problem is the
unknown scatterer located in the domain of interest (DOI).
-e data of the field outside the area can be obtained through
the receiving antennas, and the information of the unknown
object is calculated through inversion algorithms. -e basic
model of microwave imaging is shown in Figure 1.

Taking the two-dimensional microwave imaging prob-
lem as an example, the radiation characteristics of the in-
cident antenna are usually known, so the distribution of
incident field Einc in the DOI can be obtained by calculation.
An unknown scatterer in a certain time-harmonic electro-
magnetic wave will excite a secondary electromagnetic field
in the whole space due to electromagnetic induction and
polarization, that is, the scattering field Esca. -e scattered
field is superimposed on the incident field to obtain the total
field Etot [17]:

Etot � Einc + Esca. (1)

According to the definition of the incident field, the
Helmholtz equation is obviously satisfied:

∇2Einc + k
2
0Einc � 0, (2)

where k0 � ω ����ε0μ0
√ .

According to Maxwell’s equations, the total field satisfies
the following relationship:

∇2Etot + k
2
0Etot � −iωμ0J + ∇ ∇ · Etot( . (3)

Vector operation relations are used in the derivation
process:

∇ ×(∇ × E) � ∇(∇ · E) − ∇2E. (4)

According to (1)–(4), the scattered field satisfies the
following equation:

∇2Esca + k
2
0Esca � −iωμ0 I +

∇∇
k
2 J. (5)

-en, the Dyadic Green function is employed. -e so-
lution of the scattering field is obtained as follows:

Esca(r) � iωμ0
D

G r, r′( J r′( dr′. (6)

Eventually, the Lippmann–Schwinger equation de-
scribing the phenomenon of electromagnetic scattering is
derived:

Etot(r) � Einc(r) + iωμ0
D

G r, r′( J r′( dr′. (7)

It is difficult to obtain an analytical solution to the above
integral equation, and generally, only the discretization
method can be used to transform the integral equation into
the linear equation to obtain approximate numerical solu-
tions. Commonly used discretization methods are the
method of moments (MoM), finite difference time domain
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Figure 1: -e basic model of microwave imaging.
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(FDTD), finite difference frequency domain (FDFD), and so
on [18].

3. CSI and Its Improved Algorithms

A novel construction method of the objective function was
given by the CSI method [13]. In the contrast source in-
version, data error and state error are defined as follows:

FData �
j E

sca
j − G

Sωj

�����

�����
2

j E
sca
j

�����

�����
2 ,

FState �
j χE

inc
j − ωj + χG

Dωj

�����

�����
2

j χE
inc
j

�����

�����
2 .

(8)

-e final objective function is the sum of two terms:

FCSI � FData + FState �
j E

sca
j − G

Sωj

�����

�����
2

j E
sca
j

�����

�����
2

+
j χE

inc
j − ωj + χG

Dωj

�����

�����
2

j χE
inc
j

�����

�����
2 .

(9)

-e first term measures the error in the data equation
and the second term measures the error in the object
equation [19].

-e performance of original CSI can be improved by
combining with regularization methods [15]:

FMR−CSI � FCSIFMR. (10)

In (10), FMR is the regularization factor, which is defined
as follows:

FMR �
1
S



D

|∇χ|
2

+ σ2n−1

∇χn−1



2

+ σ2n−1

dr, (11)

where S is the area of domain D and σ2n−1 is the parameter
that controls the effect of the regularization.

Cross-correlated CSI (CC-CSI) is a novel modified al-
gorithm which was proposed in 2017. In the CC-CSI, an
additional error term, which correlates the data and state
errors, is added to the cost functional of original CSI.

-is additional error term is defined as follows [16]:

FCCj
� Esca − Gs χEinc + χGDωj . (12)

-erefore, the improved cost function for CC-CSI is
defined as follows [20]:

FCC−CSI � FCSI +
j Fccj

�����

�����
2

S

j Esca
����

����
2
S

. (13)

4. Experimental Results and Comparisons

In this section, tomeasure the performance of the original CSI
and its correlative improved algorithmsMR-CSI and CC-CSI,
the Fresnel data, which is chosen from [14], is applied.
Qualitative imaging results, objective function value, and
convergence speed are applied to measure the algorithms’
performance. -e Fresnel data comes from actual measure-
ment in the microwave anechoic chamber. -e type of
scatterers and the field parameter settings are explained in
detail in [14]. -e data support for the research [14] can be
found in the website link, which is from the literature.

In addition, the objective function values are obtained
according to (9), (10), and (13), respectively.

4.1. “U-shaped” Groove. -e “U-shaped” groove is a struc-
ture commonly utilized for the verification of imaging al-
gorithms. Because of the obvious phenomenon of field
coupling inside the groove, this structure is very suitable for
measuring the performance of the imaging algorithms. -e
imaging results are shown in Figure 2.

Figures 2(a)–2(c) are the reconstruction results of
contrast source for CC-CSI, MR-CSI, and CSI successively.
-e order and meaning of the figures below are arranged
according to this rule.

It can be seen from the imaging results that the field
coupling in the “U-shaped” groove is a difficulty for the
current imagingmethods. Although CC-CSI can reconstruct
the shape of the “U-shaped” groove well, the imaging result
is not very good in the coupling area in the groove. Due to
the addition of the regular term, MR-CSI can constrain the
objective function well. -erefore, the better imaging results
for the coupling area in the groove can be obtained. -e
original CSI cannot obtain the shape characteristics of the
“U-shaped” groove. -e objective function values are shown
in Figure 3:

It is obvious that although the original CSI can obtain the
smallest objective function value and the fastest convergence
rate among the three algorithms, it cannot obtain good
imaging results. -e existence of regularization in MR-CSI
and CC-CSI can effectively improve imaging accuracy and
reduce errors. MR-CSI can obtain the faster convergence
speed and smaller objective function value.

4.2. Two Scatterers (Asymmetric). -e imaging problem of
two asymmetric regular scatterers is very classical. Due to its
asymmetry, the scattering field distribution is not uniform,
and there is also a coupling phenomenon between two
scatterers, so it is particularly adapted for measuring the
performance of imaging algorithms.

-e imaging results are shown in Figure 4.
It can be seen from the imaging results that both CC-CSI

and MR-CSI can reconstruct the position, the quantity, and
the shape of the original scatterers. However, CSI can only
reconstruct one scatterer. Some information of the scatterers
has been missing through the reconstruction process of
original CSI. -e optimal function values are shown in
Figure 5:
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It can be seen from the convergence curves that CSI has
the fastest convergence speed and minimum objective
function value. However, according to the comprehensive
qualitative imaging results, this is a premature algorithm and
cannot image scatter well. MR-CSI has achieved a faster
convergence speed, and the performance is similar to CC-
CSI. MR-CSI can obtain the faster convergence speed and
smaller objective function value.

4.3. Two Scatterers (Symmetry). Unlike B, the two scatterers
employed in this section are symmetrical, which are shown
in Figure 6. -e field distribution of such symmetrical
scatterers is more uniform than that of the asymmetrical
scatterer in B.

It can be seen from the imaging results that both CC-CSI
and MR-CSI can reconstruct the position, the amount, and
the shape of the original scatterers. However, CSI only
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Figure 2: -e imaging results of “U-shaped” groove.
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Figure 3: -e objective function values of “U-shaped” groove.
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Figure 4: -e imaging results of two scatterers (asymmetric).
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reconstructs one scatterer. -e limitations of original CSI
performance are almost identical to those in B.-e objective
function values are shown in Figure 7:

It can be seen from the convergence curves that CSI has
the fastest convergence speed. -e original CSI method does
not have any additional regularization terms, so a smaller
objective function value can be obtained. However, it does
not play a good constraint on the solution of nonlinear
equations, so the imaging performance is not good. MR-CSI
can obtain the faster convergence speed and smaller ob-
jective function value.

4.4. Single Scatterer (TE Wave). -e previous three sets of
performance tests all use TM wave incidence. In this part,
the TE wave incidence is applied. -e results of imaging are
shown in Figure 8.

TE waves have a magnetic field component but no
electric field component in the propagation direction.
Generally speaking, TE wave imaging is more difficult than
the TMwave. From the imaging results, the three algorithms
are not able to reconstruct the scatterers well. -e objective
function values are shown in Figure 9:

It can be seen from the convergence curve that CSI has
the fastest convergence speed. MR-CSI can obtain the
smallest objective function value. Compared with CC-CSI,
MR-CSI can obtain a faster convergence speed and a smaller
objective function value. -e initial value of the iteration is
very large.

4.5. Double Scatterers. -e imaging problem of two regular
scatterers, because of its relatively simple scattering theory, is
widely used to compare the performance of related im-
provement algorithms for the imaging. -e imaging results
are shown in Figure 10.

It can be seen from the imaging results that all the al-
gorithms can reconstruct the position and shape of the
original scatterers. -e position, quantity, and material
parameters of the scatterers have been well reconstructed.
-e objective function values are shown in Figure 11.

It can be seen from the curve of the objective function
value that CSI has the fastest convergence speed. CC-CSI can
obtain the faster convergence speed, and MR-CSI can obtain
the smaller objective function value under intercomparison.
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Figure 5: -e objective function values of two scatterers (asymmetric).
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Figure 6: -e imaging results of two scatterers (symmetry).
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4.6. Single Scatterer. -e microwave imaging problem of
single and regular scatterer under multifrequency condition
is relatively simple because the analytical solution of the
scattered field can be accurately solved by the finite element
method (FEM). -e results of imaging are shown in
Figure 12:

-e results of imaging are shown in Figure 13.
It can be seen from the imaging results that all three

algorithms can reconstruct the shape, position, and material
parameters of the scatterer. And, it can be seen from the
convergence curves that CSI has the fastest convergence
speed. Because this kind of imaging problem is relatively
simple, the original CSI does not contain any regular terms,
so the fast convergence speed can be obtained.

In summary, according to the inversion results of Fresnel
data above,

(1) -e objective function of the original CSI is only
composed of the state error and the data error.
-erefore, in the process of iterative solution, a
smaller convergence value can be obtained, com-
pared to its improved algorithms.
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Figure 7: -e objective function values of two scatterers (symmetric).
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Figure 8: -e imaging results of the single scatterer (TE wave).
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(2) Because there is no constraint of the regular terms,
the original CSI cannot overcome the nonlinearity of
the electric field integral equation (EFIE) well when
solving some inverse scattering problems, and the
solution result will be affected.

(3) According to the “no free lunch” theory, there is no
single algorithm that can be applied to all situations.
-erefore, in the microwave imaging problem, any
algorithm has its specific advantages and
disadvantages.

(4) -e performance of original CSI and its improved
algorithms cannot perform very well in solving the

scatterers with field coupling and solving the
problem of TE wave inversion.

(5) Although, in most cases, MR-CSI has better con-
vergence speed and objective function value, the
superiority and robustness of CC-CSI are still ob-
vious considering the imaging effect, which has been
proved in related literature.

5. Influence ofDifferentWeights for theResults

In this section, firstly, the influence of different weights on
the value of the objective function is analyzed, and then, two
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different improvement strategies are proposed for the slow
convergence of original CSI.

5.1. 6e Analysis of Different Weights. In order to measure
the influence of different weights on the imaging effect
conveniently, a single and regular-shaped scatterer is uti-
lized, which is shown in Figure 14. And, the details can also
be found in [14].

-e definition of objective function value is the same as
(9).

In order to discuss the influence of error terms with
different weights on the convergence rate and objective
function value, the objective function of the original CSI is
improved as follows:

F � α
j E

sca
j − G

Sωj

�����

�����
2

j E
sca
j

�����

�����
2 +(1 − α)

j χE
inc
j − ωj + χG

Dωj

�����

�����
2

j χE
inc
j

�����

�����
2 ,

(14)

where α and 1 − α are the coefficients of weight.
-e different weight settings are shown in Table 1. -e

weight setting includes a set of original objective functions
without weights, six sets of different error weights, and two
groups which are added with the square root operation
based on the original objective function.

Figures 15(a)–15(i) correspond to group 1 to group 9 in
the table, respectively. In order to facilitate the comparison
of the influence of different weights on the convergence
results clearly, all the curves are drawn together in Figure 16.

From the results shown in the figure, it can be seen that
(h) and (i) are the convergence curves with the addition of
the square root operation. -e convergence curve is smooth,
but the convergence value of the objective function is sig-
nificantly increased.

Among the four convergence curves (d)–(g) with fixed
weights, the initial value of curve (g) at the beginning of the
iteration is larger, although the value of the objective
function decreases rapidly. When the function value tends to
be stable, a larger objective function value is still obtained.
-e initial value of curve (e) is small at the beginning of the
iteration. Although the value of the objective function in-
creases rapidly, when the value of the objective function
tends to be stable, a smaller value of the objective function is
still obtained.

For curve (e), the weight of its state error is greater than
the data error weight; for curve (g), the weight of its state
error is smaller than the data error weight. -rough the
convergence results, it can be known that increasing the
weight of the data error appropriately can effectively reduce
the convergence value of the objective function.

In order to explore the influence of fixed weights on the
imaging of scatterers with field coupling phenomenon, U-
shaped groove is also used to detect performance. -e
convergence curves are shown in Figure 17. Obviously, the
rule obtained from Figure 17 is the same with Figure 16.

-e weights used above are all fixed weights. Inspired by
the stochastic optimization algorithms, random weights are
used, and the weights are random numbers between 0 and 2.
-e scatterer is a U-shaped groove. -e convergence curves
are shown in Figure 18.

It can be seen from Figure 18 that, for CSI with random
weights, no matter how the weights of state error and data
error change, the value of the objective function fluctuates
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Figure 15: -e convergence results with different weights.
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Figure 16: -e convergence results of CSI with fixed weights for the regular scatterer.
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greatly at the beginning of the iteration. Obviously, this is
due to the uncertain weights in the iterative process.
However, as the iteration continues, the change of the
objective function gradually stabilizes and gradually tends
to be 0.

Cross-correlated contrast source inversion (CC-CSI) is a
new type of improved CSI algorithms, which was proposed
in 2017. First, fixed weights are utilized to explore the impact
on the convergence speed of CC-CSI, and then, random
weights are utilized, and the weight is a random number
between 0–2.-e scatterers all employU-shaped groove.-e

convergence results of CC-CSI with fixed weights for “U-
shaped” groove are shown in Figure 19.

It can be seen from the figure that the convergence speed
and objective function value of the traditional CC-CSI are
the largest compared with the CC-CSI with weights. Among
them, appropriately reducing the weight of the cross-cor-
relation regular term is beneficial to improve the conver-
gence speed and reduce objective function value.

-e convergence results of CC-CSI with random weights
for “U-shaped” groove are shown in Figure 20.

With random weights, the irregularity of the CC-CSI
convergence curve matches the randomness of the weights
exactly.

In summary, adding appropriate weights can effectively
increase the convergence speed of the inversion algorithms
and improve the value of the objective function.

5.2. 6e Algorithms with Weights. According to the rules
summarized above and on the basis of traditional algo-
rithms, two inversion algorithms with weights are pro-
posed: contrast source inversion with weights (W-CSI) and
cross-correlation contrast source inversion with weights
(W-CC-CSI).

-e objective function of W-CSI is defined as follows:
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where α ∈ (0, 0.5) and β ∈ (0.5, 1).
-e objective function of W-CC-CSI is defined as

follows:
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Figure 17: -e convergence results of CSI with fixed weights for “U-shaped” groove.
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where α ∈ (0, 1), β ∈ (0, 1), c ∈ (0, 1), and α, β> c.
First, take the U-shaped groove as an example to verify

the performance of W-CSI. -e comparison of convergence
curves is shown in Figure 21.

-en, take the U-shaped groove as an example to verify
the performance of W-CC-CSI. -e comparison of con-
vergence curves is shown in Figure 22.

It can be seen from the convergence curves that the
proposed W-CSI and W-CC-CSI can achieve faster
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convergence speed and smaller objective function value,
compared with original CSI and CC-CSI.

5.3. 6e Algorithms with Dynamic Reduction Factor. In the
field of stochastic optimization algorithms, convergence
factor and dynamic reduction rate are methods commonly
employed to improve convergence speed. For instance, Jia
and Lu [21] proposed a new type of dynamic reduction rate,
and it was applied to the antenna design. Good results could
be obtained. CSI is a gradient-based inversion algorithm
which can be combined with many different technologies to
improve the performance. -erefore, the “dynamic reduc-
tion factor (DRF)” is also introduced in the traditional CSI

inspired from the literature to improve the convergence
speed, which is defined as follows:

r � a∗ 1 −
t

T
 

2
, (17)

where a is a constant, t is the current number of iterations,
and T is the maximum number of iterations. In this article,
the value of a is 1.

In traditional CSI, the coefficients of the state error and
the data error are both equal to 1. -e proposed dynamic
reduction factor is a quadratic function that gradually equals
to 0 as the number of iterations increases. As the iteration
progresses, the step length of search can be reduced, and the
oscillation phenomenon in the search can be effectively
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reduced. To a certain extent, the introduction of DRF can
change the distribution of isopleths, in order to better find
the value of the objective function. It can be seen in Figure 23
that the DRF can achieve a faster convergence speed.

-en, the dynamic reduction factor is applied to the CSI,
and the novel objective function is defined as follows:
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In addition, the dynamic reduction factor is applied to the
CC-CSI, and the novel objective function is defined as follows:
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In order to measure the performances of the improved
algorithms with the dynamic reduction factor, the same
scatterers, as in Section 4, are applied for verification. -e
same detailed information of scatterers can be found in [14].
-e results are shown in Figures 24 and 25.

It can be seen that the algorithms with the dynamic
reduction factor CSI-DRF and CC-CSI-DRF can obtain the
faster convergence speeds, and the convergence curves
gradually tend to be zero, compared with the original al-
gorithm CSI and CC-CSI.

6. Conclusion

In this paper, the performance of traditional CSI and its
improved algorithms from three aspects of qualitative im-
aging effect, convergence speed, and objective function value

based on Fresnel data are compared. It can be seen that the
original CSI does not contain any regular terms, so it can
obtain a faster convergence speed in the iterative process.
However, in the face of seriously ill-posed inverse scattering
problems, sometimes it cannot solve well. Although the
introduction of the regular term effectively improves the
imaging accuracy, the convergence speed is reduced. In
addition, the inversion of TE wave is a problem that needs to
be solved.

Secondly, the influence of the state error and the data
error under different weights on objective function value and
convergence rate are discussed. Fixed weights and random
weights are used to verify the performance of the algorithms.
-e dynamic reduction factor (DRF) is introduced to im-
prove the convergence rate. -e CSI with weights (W-CSI),
CC-CSI with weights (W-CC-CSI), CSI with dynamic
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result of “single scatterer (TE wave).” (e). -e comparison result of “double scatterers.” (f ). -e comparison result of “single scatterer.”

International Journal of Antennas and Propagation 15



reduction factor (CSI-DRF), and CC-CSI with dynamic
reduction factor (CC-CSI-DRF) are proposed, which can get
better convergence value and faster speed compared with
their related original algorithms.

However, at the same time, the inverse scattering
problem used in this article is relatively simple, and there are
fewer types of scatterers, and no lossy materials are involved.
-ere is one thing which should be noted. With the con-
tinuous development of artificial metamaterials, imaging
algorithms for complex scatterers and complex environ-
ments have gradually become a research hotspot. In the
future research work, the effective combination of emerging
algorithms and related knowledge of complex electromag-
netic scattering will be a new research goal.

In addition, the stochastic optimization algorithm has
been well applied in engineering problems because of its
good performance, such as butterfly optimization (MBO),
earthworm optimization algorithm (EWA), and elephant
herding optimization (EHO). In the future research, com-
bining microwave imaging with these new optimization
algorithms is also a research direction.
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