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Target localization plays an important role in the application of radar, sonar, and wireless sensor networks. In order to improve the
localization performance using only two stations, a hybrid localization method based on angle of arrival (AOA) and time
difference of arrival (TDOA) measurements is proposed in this paper. Firstly, the optimization model for localization based on
AOA and TDOA are built, respectively, in the sensor network. Secondly,the majorization-minimization (MM) method is
employed to create surrogate functions for solving the multiple objective optimization problem. Next, the hybrid localization
problem is solved by the projected gradient decent (PGD) method. Finally, the Cramer–Rao lower bound (CRLB) for the joint
AOA and TDOAmethod is derived for the comparison. Simulations proved that the proposed method has improved localization
performance using AOA and TDOA measurements from only two base stations.

1. Introduction

Source localization in the sensor network is a fundamental
problem which has received an upsurge of attention in
recent years. A number of separated sensors in the network
will be employed to measure the emitted or reflected signal
from the target [1]. Many algorithms have been presented in
literature to determine the source position, based on the time
of arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA), and received signal strength (RSS) method.

Localization problem based on the TOA method in the
quasi-synchronous network is addressed in [2], in which a
two-step linear algorithm is presented for estimating the
passive object position. TOA-based localization problem in
an adverse environment is solved in [3], which employs two
convex relaxation methods for mitigating non-line-of-sight
(NLOS) effect. Using a single transmitter and multiple re-
ceivers, the optimal geometries for TOA localization con-
figuration in the two-dimensional environment are analyzed
in [4]. With the help of floor plan information, Liu et al. [5]
propose an effective geometrical localization method based
on TOA in the non-line-of-sight (NLOS) environment
without considering multiple-bound scattering signal paths.

A coarse position estimation algorithm-based TDOA is
presented in [6], which is robust with regard to the initial
position without redundant receivers. As a further step, a
low-complexity nonlinear expectation maximization local-
ization algorithm is presented in [7]. Target location is es-
timated by the TDOA data in [8], where empirical mode
decomposition is used to decompose seismic signals, and
multiple features of intrinsic mode functions are extracted.
)e work of [9] transforms a TDOA model into a TOA
model, by presenting a semidefinite programming method.
)e TDOA method is also employed in passive radar source
localization [10], taking advantage of the characteristics of
the same sensor in different positions.

For obtaining the best localization performance, the
angular separation requirements for AOA sensors are
established in [11]. A closed-form solution for 3D locali-
zation using AOAs is presented in [12] to handle the effect of
sensor position errors in a wireless sensor network. In the
AOA localization system, an evaluation function by frame
theory is derived and proved in [13], in order to solve the
sensor augmentation problem.

Localization algorithm based on the RSS method in
NLOS environment is presented in [14], by correcting the
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NLOS measurements. A novel fingerprinting paradigm is
introduced for RSS localization in [15], which obtains a
significant gain for multiple sources and multipath envi-
ronments. In [16], RSS localization methods based on
convex optimization are presented to solve the noncoop-
erative and cooperative problems in sensor networks.

However, localization based on the TOA method needs
an accurate time synchronization. TDOA-based approach
requires at least four located sensors. RSS algorithms are
based on known exact received signal without multipath
effect, and the AOAmethod can perform well only when the
target is not far away from the sensors [17]. )ere are many
advantages with the hybrid localization method [17, 18],
which has already attracted many attentions. Using the
hybrid-bearing AOA and TDOA sensors [19], the con-
strained optimization method is employed to estimate the
maximum likelihood values. )e RSS-assisted TOA-based
localization method is presented in [20], which improves the
efficiency and localization accuracy of the indoor geo-
location system. In adverse NLOS environment, a new
mitigation method is proposed using the combined RSS and
TOA measurements in [21]. Combining TDOA and RSS
measurements, a two-step position estimator is presented in
[22] for the visible light positioning system. )e hybrid
AOA- and RSS-based localization method is presented in
[23] for 3D wireless sensor network without central pro-
cessor. Using the same hybrid method, a simple closed-form
solution method is proposed by using the spherical coor-
dinate conversion in [24]. Using the hybrid measurements of
TDOA and AOA methods, the mean square error matrix is
derived under small error condition in [25], and a closed-
form solution based on two base stations (CFS-2BSs) is
proposed. In order to reduce the sensors for target locali-
zation, we propose a hybrid TDOA/AOA localization ap-
proach only with two sensors, taking advantage of the
complementary property between the TDOA- and AOA-
based localization methods.

)is paper investigates the localization problem based on
AOA and TDOA measurements from two stations. )e
main contributions of this paper are summarized as follows:

(1) A localization model using only two stations is de-
veloped, which is converted to be a multiple opti-
mization problem.

(2) )e MM method is used to solve this optimization
problem, which maximizes the similarity between
unknown and known information for AOA and
TDOA measurements.

(3) A single objective optimization model is constructed
after the derivation based on the MM. )e PGD
method is employed to solve this problem effectively.

(4) Simulations prove the superior localization perfor-
mance using only two stations in the sensor network.

)is paper is organized as follows. Section 2 describes the
basic TDOA localization model. Section 3 proposes the
hybrid localization method based on AOA and TDOA data
from two base stations. CRLB is derived for evaluating the
localization performance in Section 4. Section 5 shows the

simulation results based on the proposed method. Section 6
gives the conclusion of this paper.

Notations. Bold uppercase (e.g., H) and lowercase (e.g., b)
letters represent the matrices and vectors, respectively. )e
notations (·)T and (·)H stand for transpose and Hermitian of
their argument, respectively. ‖ · ‖2 denotes the l2 norm of a
vector. )e gradient of f at x is denoted by ∇f(x).

2. Basic Localization Methods Based on TDOA

LetAi � [xi, yi]
T denotes the position of ith base station and

ϕ � [x, y]T represents the unknown position of the master
station. )e distance di between the ith base station and the
master station can be written as

di �

�����������������

x − xi( 􏼁
2

+ y − yi( 􏼁
22

􏽱

� ϕ − Ai

����
����2, i � 1, 2, . . . , M,

(1)

where M is the number of base stations. Time differenceΔti,1
from the ith and 1th base station can be defined as

Δti,1 �
di

c
−

d1

c
, (2)

where c is the propagation speed. Distance difference can be
derived as

Δdi,1 � cΔti,1. (3)

Taylor iteration method and Chan’s method are pro-
posed, respectively, as the classical localization methods
based on the time difference.

An iterative method is employed to solve the hyperbolic
equations for estimating the MS position in the Taylor it-
eration method, where a local linear least square (LS) so-
lution is selected based as the deviation (Δx,Δy) of each
iteration. )e position of master station can be written as

x � x0 + Δx,

y � y0 + Δy,
(4)

where (x0, y0) is initial coordinate values for the iteration
and Δx and Δy can be derived as

[Δx,Δy]
T

� GT
t C

−1Gt􏼐 􏼑
−1
GT

t C
−1ht, (5)

where C is the covariance matrix for the time difference
estimation and Gt and ht are written as, respectively, as
follows:

Gt �

x1 − x

d1
−

x2 − x

d2

y1 − y

d1
−

y2 − y

d2

x1 − x

d1
−

x3 − x

d3

y1 − y

d1
−

y3 − y

d3

. . . . . .

x1 − x

d1
−

xM − x

dM

y1 − y

d1
−

yM − y

dM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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ht �

Δd2,1

Δd3,1

. . .

ΔdM,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Besides, Chan’s method is proposed to obtain a non-
iterative solution. Let ϕc � [ϕ, d1] be the solution, which can
be derived as

ϕc � GT
c C

−1Gc􏼐 􏼑
−1
GT

c C
−1hc, (7)

where

hc �
1
2

Δd2
2,1 − x

2
2 + y

2
2􏼐 􏼑 x

2
1 + y

2
1􏼐 􏼑

Δd2
3,1 − x

2
3 + y

2
3􏼐 􏼑 + x

2
1 + y

2
1􏼐 􏼑

. . .

Δd2
M,1 − x

2
M + y

2
M􏼐 􏼑 + x

2
1 + y

2
1􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gc �

x2 − x1 y2 − y1 d2,1

x3 − x1 y3 − y1 d3,1

. . .

xM − x1 yM − y1 dM,1
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.

(8)

3. Hybrid Localization Method Based on AOA
and TDOA

3.1.MultipleObjectives’Design. )e unknown location of the
target from the noisy measurements of angle of arrival (AOA)
can be estimated, as there is a nonlinear relationship between
the AOA and target location. Only two base stations with two
angles [θ1, θ2] are considered, C1 � [cos θ1, cos θ2]

T, which
is assumed to be known in Figure 1.

In Figure 1, β1 and β2 are the azimuth angles of the base
stations. θ1 can be written as follows:

θ1 � β1 − β2. (9)

Based on the AOA measurements of every BS, the first
fitness function is designed as follows:

min
ϕ

F1 − C1
����

����
2
2, (10)

where the vector F1 is designed as follows:

F1(i) � cos β1, sin β1( 􏼁 cos β2, sin β2( 􏼁
T

�
AT

i

Ai

����
����2

ϕ − Ai( 􏼁

ϕ − Ai

����
����2

�
AT

i ϕ − Ai( 􏼁

Ai

����
����2 ϕ − Ai

����
����2

.

(11)

Using the TDOA data from the two base stations, the
sum of squared range difference errors is used to design the
second fitness function, which is defined as

min
ϕ

F2 − C2
����

����
2
2, (12)

where

F2(i) � ϕ − Ai

����
����2 − ϕ − A1

����
����2,

C2(i) � Δdi,1.
(13)

3.2.HybridOptimizationModel. In order to solve the hybrid
optimization problems based on (10) and (12), the minor-
ization-maximization method is employed to create the
surrogate functions here. Let Γ1 � ‖F1 − C1‖

2
2, where Γ1 can

be majorized by g1(ϕ|ϕ(t)), which is derived as follows:

g1 ϕ|ϕ(t)
􏼐 􏼑 � Γ1 ϕ(t)

􏼐 􏼑 +
zΓ1
zϕ

|
T

ϕ(t)

ϕ − ϕ(t)
􏼐 􏼑, (14)

where ϕ(t) is the solution at the t th iteration, and

zΓ1
zϕ

� 2
zF1
zϕ

F1 − C1( 􏼁. (15)

Let Bi � AT
i /‖Ai‖2; then,

F1(i) �
Bi ϕ − Ai( 􏼁

ϕ − Ai

����
����2

. (16)

)e gradient of F1(i) can be written as

zF1(i)

zϕ
�
BT

i ϕ − Ai

����
����
2
2 − Bi ϕ − Ai( 􏼁 ϕ − Ai( 􏼁

ϕ − Ai

����
����
3
2

,

zF1
zϕ

�
zF1(1)

zϕ
,
zF1(2)

zϕ
􏼢 􏼣.

(17)

BS1
(x1, y1)

BS2

(0, 0)

(x2, y2)

MS
(x, y)

θ2θ1

β2

β1

Figure 1: Angles of MS and BSs.
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Let Γ2 � ‖F2 − C2‖
2
2, where Γ2 can be majorized by

g2(ϕ|ϕ(t)), which can be written as follows:

g2 ϕ|ϕ(t)
􏼐 􏼑 � Γ2 ϕ(t)

􏼐 􏼑 +
zΓ2
zϕ

|
T

ϕ(t)

ϕ − ϕ(t)
􏼐 􏼑, (18)

where

zΓ2
zϕ

� 2
zF2
zϕ

F2 − C2( 􏼁,

zF2
zϕ

�
ϕ − Ai

ϕ − Ai

����
����2

−
ϕ − A1

ϕ − A1
����

����2
.

(19)

Based on (14) and (18), the final objective function for
the localization using two stations is designed as

Φ(ϕ) � g1 ϕ|ϕ(t)
􏼐 􏼑 + λg2 ϕ|ϕ(t)

􏼐 􏼑, (20)

� η + fT
1 ϕ − ϕ(t)
􏼐 􏼑 + ξ + fT

2 ϕ − ϕ(t)
􏼐 􏼑, (21)

where λ is the scalarization coefficient, and

η � Γ1 ϕ(t)
􏼐 􏼑, (22)

f1 �
zΓ1
zϕ

|ϕ(t), (23)

ξ � λΓ2 ϕ(t)
􏼐 􏼑, (24)

f2 � λ
zΓ2
zϕ

|ϕ(t). (25)

)en, we use the PGD method to solve the optimization
problem. ϕk can be calculated iteratively by

ϕk � proϕ ϕk−1 − tk∇Φ ϕk−1( 􏼁( 􏼁, (26)

� argmin
ϕ

ϕk−1 − tk∇Φ ϕk−1( 􏼁
����

����
2
2, (27)

where proϕ is the Euclidean projection. )e gradient of Φ
can be written as

∇Φ(ϕ) � f1 + f2. (28)

In conclusion, the hybrid localization procedure based
on the TDOA and AOA data is described in Algorithm 1.

4. Derivation of Cramer–Rao Lower Bound

Only Gaussian range sampling error is assumed in the lo-
calization here, so Fisher’s information matrix [26] is then
given by

J(ϕ) �

J11 J12

J21 J22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−Eϕ
z
2Γ1

zx
2􏼢 􏼣 −Eϕ

z
2Γ1

zxzy
􏼢 􏼣

−Eϕ
z
2Γ1

zxzy
􏼢 􏼣 −Eϕ

z
2Γ1

zy
2􏼢 􏼣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where I(ϕ) is defined as the inverse matrix of J(ϕ):

I(ϕ) �

I11 I12

I21 I22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � J−1
(ϕ) �

1
J11J22 − J12J21

J22 −J12

−J21 J11

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(30)

where Ji,j and Ii,j are, respectively, the element of J and
I, i � 1, 2 and j � 1, 2. )e localization CRLB based on the
AOA method can be computed as follows:

σ2CRLB−AOA � Eϕ (􏽢ϕ − ϕ)
2

􏽨 􏽩 � I11 + I22. (31)

Based on the AOAmeasurements, (31) can be derived as

σ2CRLB−AOA �
b1

b2 − b3
, (32)

where

b1 � σ2R 􏽘

N

i�2
cos θi − cos θ1( 􏼁

2
+ sin θi − sin θ1( 􏼁

2
􏽨 􏽩,

b2 � 􏽘
N

i�2
cos θi − cos θ1( 􏼁

2
􏽘

N

i�1
sin θi − sin θ1( 􏼁

2
,

b3 � 􏽘
N

i�2
cos θi − cos θ1( 􏼁 sin θi − sin θ1( 􏼁( 􏼁⎡⎣ ⎤⎦

2

,

(33)

where σ2R is the Gaussian error variance of C2 and θi denotes
the angle between the MS and ith BS with respect to a
reference direction.

Using the same method, CRLB based on the TDOA
method can be calculated as

σ2CRLB−TDOA �
a1

a2 − a3
, (34)

where

a1 � σ2t 􏽘

N

i�1

ti

xi − x
􏼠 􏼡

2

+
1

xi − x
􏼠 􏼡

2
⎡⎣ ⎤⎦,

a2 � 􏽘
N

i�1

ti

xi − x
􏼠 􏼡

2

􏽘

N

i�1

1
xi − x

􏼠 􏼡

2

,

a3 � 􏽘
N

i�1

ti

xi − x( 􏼁
2

⎛⎝ ⎞⎠

2

,

(35)

where ti � yi − y/xi − x, where ti is supposed to contain a
Gaussian error with average and variance of 0 and σ2t ,
respectively.

)e answer to the multiobjective optimization problem
is a set of solutions that defines the best trade-off between
competing objectives. Here, the log-likelihood function for
the multiobjective optimization problem can be written as

Γ3 �
Γ1

max Γ1( 􏼁σ2t
+
Γ2

max Γ1( 􏼁σ2R
�
Γ1
c1

+
Γ2
c2

, (36)

where c1 � max(Γ1)σ2t and c2 � max(Γ1)σ2R.
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)e CRLB for the localization based AOA and TDOA
using two base stations can be derived as

σ2CRLB−TDOA−AOA �
2d1

d2 − d3
, (37)

d1 �
1
c1

􏽘

2

i�1

t
2
i +1

xi − x( 􏼁
2 +

2
c2

1− cos θ2 cos θ1 − sin θ2 sin θ1( 􏼁,

(38)

d2 �
1
c1

􏽘

2

i�1

t
2
i +1

xi − x( 􏼁
2

⎡⎣ ⎤⎦
2
c2

1− cos θ2 cos θ1 − sin θ2 sin θ1( 􏼁􏼢 􏼣,

(39)

d3 �
1
c2

cos θ2 − cos θ1( 􏼁 sin θ2 − sin θ1( 􏼁 − 􏽘
2

i�1

1
c1

ti

xi − x
⎡⎣ ⎤⎦

2

.

(40)

5. Simulations

To verify the effectiveness of the proposed approach,
computer simulations are conducted for comparisons with
other methods. As it is shown in Figure 2, the coordinates of
the BSs are, respectively, set to BS1: [0, 0]Tcm,
BS2: [60, 0]Tcm, BS3: [0, 60]Tcm, and BS4: [60, 60]Tcm; the
MS location is chosen randomly according to a uniform
distribution defined over the region formed by the BSs.

In our proposed localization algorithm, BS1 and BS2 are
selected as the two stations. )en, 15 TDOA and AOA
measurements from the selected BSs are obtained. )e root
of mean squared error (RMSE) of MS estimation [􏽢xk, 􏽢yk]T

from the kth BS is given by

RMSE(k) �

�������������������

􏽢xk − x0( 􏼁
2

− 􏽢yk − y0( 􏼁
2

􏽱

, (41)

where [x0, y0]
T denotes the true position of MS.

5.1. Comparison with the Classical TDOA Localization
MethodsUsingMore BSs. As we know, it is necessary for the
classical TDOA-based methods to employ more than 3

stations realize the localization. To start with the comparison
of the localization methods, the results of the classical source
localization method are presented in Figure 3. Based on
Taylor iteration method and Chan’s method, it can be ob-
served that the estimated value is much closer to the sensor
position whenever more BSs are employed. )is is because
Taylor iteration and Chan’s methods apply the iterative and
noniterative solutions to achieve their optimum perfor-
mance, respectively. )us, they are considerably affected by
the accuracy of TDOA measurements. Under the same
TDOA measurement condition, it can be observed that the
proposed algorithm has much better localization accuracy
than the classical methods using three BSs, while it uses only
two BSs. In some cases, e.g., Chan’s method, using three BSs,
a superiority of more than one order of magnitude is ob-
servable. Since increasing the number of BSs is expected to
improve accuracy, reformulating the proposed method to a
higher number of BSs is expected to result in even higher

(i) Input: Information of AOA and TDOA, Number of iterations (K1, K2)

(ii) Result: MS position
(1) Set t � 0; start from one random position ϕ(0)

(2) repeat
(3) Construct surrogate functions by using formulas from (22) to (25).
(4) Design objective function (20)
(5) Set k � 0 and ϕ0 to some initial vector, e.g., ϕ0 � [ϕ(t)T]T

(6) repeat
(7) Compute ϕk using (27)
(8) k � k + 1

untilk≤K2;
(9) Obtain ϕK2
(10) t � t + 1
untilt<K1;

ALGORITHM 1: )e joint localization method based on TDOA and AOA information.
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Figure 2: Positions of MSs and BSs.
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accuracy. However, the reformulation is beyond the topic of
this article and can be addressed in future investigations.

5.2. Comparison with Single Objective Optimization-Based
Methods. In order to prove the effectiveness of the proposed
method using only two stations, source localization results
using 3 BSs are presented here based on optimizationmethods,
including weighted least squares (WLS-O-3BSs) [7], and op-
timization using time difference of arrival (TDOA-O-3BSs)
[21]. )ey are then compared with the proposed methods.
Figure 4 depicts localization error for a various number of
testing points. It can be observed that the results obtained in
this work outperform others, being able to achieve a lower
localization error. Specifically, an improvement of the order of
one degree of magnitude is observable in terms of peak lo-
calization error, i.e., the highest deviation in estimation.

Using two stations, the TDOA (TDOA-O-2BSs), AOA
(AOA-O-2BSs) based on equations (10) and (12), and CFS-2BSs
in [25] are realized, respectively.)e results are demonstrated in
Figure 5. Due to the lack of measurement information, there are
large errors in the TDOA and AOA measurements, and the
single objective function for optimization cannot perform very
well in such an environment. CFS-2BSs, in [25], proves its good
localization performance through the simulations, but its per-
formance depends on the covariance matrix of the measure-
ment noise. Interestingly, the proposed method shows very low
localization error in a broad range for testing point numbers.
When all methods use 2 base stations, the achieved accuracy
improvement is about two orders of magnitude compared to
TDOA and less than one order of magnitude compared to the
AOA method in terms of peak localization error.

5.3. Comparison with Other Multiobjective Optimization-
Based Methods. )ere are many optimization methods for
the multiple objectives, such as the conventional

multiobjective particle swarm optimization (MOPSO) [27]
and nondominated sorting genetic algorithm (NSGAII)
[28, 29], which can be used to solve the localization problems
using two stations. Here, the proposed algorithm is com-
pared with the MOPSO and NSGAII algorithms to dem-
onstrate its superiority over a range of state-of-the-art
investigations. In this regard, the population is set to 100 for
all three optimizers, and the maximum number of iterations
is set to 200. Four simulations are conducted using different
optimization methods for the same multiple objectives in
equations (10) and 12), where their results are demonstrated
in Figure 6. Besides, the percentages of crossover and
mutation populations and the mutation rate of NSGAII are
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Figure 5: Performance of localization methods using 2 BSs.
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set to 0.7, 0.4, and 0.02, respectively. )e root CRLB in
equations (34) and (38) is also computed and depicted in the
same figure, labeled as AOA-CRLB and TOA-AOA-CRLB,
respectively. Under the same conditions, the localization
RMSE of the proposed method is smaller than other
methods, being significantly close to CRLB.

Based on the theory of projected gradient descent, our
proposed converges at rate O(1/k), where k is the iteration
number. )e runtime comparison results using the same
computer are depicted in Figures 7 and 8. )e experiments
confirm the effectiveness of the proposed MM-based method
in solving optimization and localization problems under the
uncertainties of MS positions. )is is because the

nondominated sorting GA (NSGAII) must sort out all the
individuals according to the Pareto-domination relationship
and selects the individuals with better ranks to form the next-
generation population, but with a lower convergence speed
[30]. For conventional MOPSO, the neighborhood of one
particle is formed by some nearest particles according to the
objective space of one objective, but the best particle in the
neighborhood cannot be determined very well by the fitness of
the other objective. )e CFS-2BSs method proposed by con-
structing relationships between the hybrid measurements and
the unknown source position is not the iterative imple-
mentation method, which takes less computations.

6. Conclusion

In this paper, a significant increase in the positioning ac-
curacy is achieved by using the MM and PGD methods, and
the TDOA and AOA information together, while decreasing
the number of required base stations. Accordingly, the lo-
calization problem is formulated for a two station scenario
and is then derived by the MM method and then solved by
the PGDmethod.)en, theoretical CRLB analysis is realized
to establish a basis for the accuracy comparison. )e ex-
tensive performance comparison with several state-of-the-
art localization methods and some other optimization
methods reveal the superiority of the proposed method.
Specifically, they show that the proposed algorithm can
achieve a superior localization accuracy using only two base
stations compared to other recent methods required three or
more base stations.

Data Availability

We note that there are no data-sharing issues since all of the
numerical information is produced by solving the equations
of the proposed algorithm, which are realized by MATLAB
software in the paper.
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Figure 6: Localization performance comparison of optimization
methods.
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