
Research Article
Path Loss Characterization Using Machine Learning Models for
GS-to-UAV-Enabled Communication in Smart Farming Scenarios

Sarun Duangsuwan ,1 Phakamon Juengkittikul,2 and Myo Myint Maw3

1Electrical Engineering, Department of Engineering, Prince of Chumphon Campus,
King Mongkut’s Institute of Technology Ladkrabang (KMITL), Pathio, Chumphon 86160, (ailand
2Electrical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL),
Bangkok, (ailand
3Department of Computer Engineering and Information Technology, Mandalay Technological University (MTU),
Patheingyi Township, Mandalay, Myanmar

Correspondence should be addressed to Sarun Duangsuwan; ax_sarun@hotmail.com

Received 11 January 2021; Revised 20 June 2021; Accepted 24 July 2021; Published 3 August 2021

Academic Editor: Lorenzo Luini

Copyright © 2021 Sarun Duangsuwan et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e purpose of this paper was to predict the path loss characterization of the ground-to-air (G2A) communication channel
between the ground sensor (GS) and unmanned aerial vehicle (UAV) using machine learning (ML) models in smart farming (SF)
scenarios. Two ML algorithms such as support vector regression (SVR) and artificial neural network (ANN) were studied to
analyze the measured data in different scenarios with Napier and Ruzi grass farms as the measurement locations. )e proposed
empirical GS-to-UAV two-ray (GUT-R) model and the ML models were compared to characterize path loss prediction models.
)e performances of the path loss prediction models were evaluated using the statistical error indicators in different measurement
locations and UAV trajectories. To obtain the statistical error indicators, the accuracy path loss results of UAV trajectory at 2m
altitudes showed the SVR model (MAE� 1.252 dB, RMSE� 3.067 dB, and R2 � 0.972) and the ANN model (MAE� 1.150 dB,
RMSE� 2.502 dB, and R2 � 0.981) for the Napier scenario. In the Ruzi scenario, the SVR model (MAE� 1.202 dB,
RMSE� 2.962 dB, and R2 � 0.965) and the ANN model (MAE� 1.146 dB, RMSE� 2.507 dB, and R2 � 0.983) were presented. For
UAV trajectory at 5m altitudes, the SVR model (MAE� 2.125 dB, RMSE� 4.782 dB, and R2 � 0.933) and the ANN model
(MAE� 2.025 dB, RMSE� 4.439 dB, and R2 � 0.950) were resulted in the Napier scenario. In the Ruzi scenario, the SVR model
(MAE� 2.112 dB, RMSE� 4.682 dB, and R2 � 0.935) and the ANN model (MAE� 2.016 dB, RMSE� 4.407 dB, and R2 � 0.954)
were displayed. )e proposed ML models using SVR and ANN can optimally predict the path loss characterization in SF
scenarios, where the accuracy was 95% for the SVR and 97% for the ANN.

1. Introduction

SF is a global trend to produce new opportunities for ag-
ricultural farming. For agriculture 4.0, the solution of SF
needs automation systems, robotics, information services,
information and communication technologies (ICT), UAV-
used cases (both fixed- and rotary-wing), artificial intelli-
gence (AI), big data analytics, and the Internet of things
(IoT). UAV-based communications are the solution to raise
the services in SF because it has rapidly expanded to all areas
of agriculture, including pesticide and fertilizer spraying,

seed sowing, monitoring, growth assessment, and mapping
[1]. UAV applications in SF, such as mapping, spraying,
planting, harvesting, irrigation, and crop monitoring, are
also existent. For mapping, UAVs can be used to conduct 3-
dimensional (3D) mapping of agricultural fields, including
the surveying area of farmland, soil monitoring, and status of
the crop with a high-resolution map [2]. Additionally, the
planting application can be carried out by UAV [3]. Such a
system is used to distribute seeds and plant nutrients when
sowing to provide perfect conditions for plant growth.
Moreover, the UAV can identify the areas where water is
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scarce based on image processing and data acquisition for
the irrigation system. )e use of UAVs equipped with
spectral sensors can obtain data for water management and
irrigation system [4]. In [5], simultaneous localization and
mapping (SLAM) technology in real-time mapping was
presented using LiDAR to obtain data for low altitude
imaginary. It can recognize the position and identify ob-
stacles when the UAV tasks are performed. To monitor the
data acquisition, UAVs are equipped with multifunctional
sensors in a mobility network, especially in areas lacking
mobile station networks in the field [6].

Focusing on UAV-based communications in SF sce-
narios, such as air-to-ground (A2G) communication or
ground-to-air (G2A) communication, has been described
using UAVs to communicate with IoTdevices or GS such as
soil moisture sensors, humidity sensors, or multi-
environmental sensors. To realize reliable communications,
an analytical channel model between GS and UAV requires
the propagation characteristic under certain SF scenarios
[7]. )e received signal strength indicator (RSSI) and path
loss model are significantly essential parameters for link
budget analysis. For the GS-to-UAV communication link,
the power signal strength is limited at GS when the signal is
transmitted from GS to the receiver on the UAV. Conse-
quently, an adequate coverage zone for GS is limited. In this
situation, the communication link will be degraded, par-
ticularly when the signal propagates through free space or
dense crops. For that reason, the transmission link quality
and propagation performance variable must be considered
when the multiple GS are deployed in SF. )e propagation
characteristics of GS-to-UAV are severely impacted by the
surrounding environments. Both RSSI and path loss char-
acteristics are the link budget parameters that are employed
for critical network design aspects such as the proper level of
UAV trajectory and GS locations, coverage prediction,
coverage zone, etc. However, the complex SF environment
in such networks makes path loss prediction more difficult.
Hence, a precise path loss model in the wireless channel
must be addressed to predict the propagation characteristics
in SF [8]. Likewise, highly accurate models are required to
predict the path loss model and guarantee efficiency between
GS and UAV communications. Hereby, ML models are the
solution for highly accurate prediction models. Moreover,
the application of ML models can be used as the new data
prediction models in several works [9–15].

To survey the related works of the path loss prediction
models, the model of ML-based ANN and RF algorithms
was presented in [16]. )e performance indices show that
the proposed RF model had the best performance than the
ANN model. Although the performance of the ANN model
could not outperform the RF, the study in [17] shows that it
can be optimized for the path loss prediction in a very high
frequency (VHF) wireless channel. )e use of multilayer
perceptron (MLP) was accomplished at nine hidden neurons
and hyperbolic tangent sigmoid activation function, and the
LM learning algorithm was optimized with the probabilistic
parameters such as mean absolute error (MAE), mean
square error (MSE), root mean square error (RMSE),
standard deviation (SD), and the coefficient of

determination or R-square (R2) values. In [18], the ANN
algorithm was presented to predict the path loss charac-
terized at 450MHz, 850 MHz, 1800MHz, and 2600MHz for
the heterogeneous network (HetNet), where the results of
MAE were close to zero and SD was less than 7 dB. In [19],
four ML methods such as backpropagation neural network
(BPNN), SVR, RF, and AdaBoost were used to predict path
loss models for aircraft cabin scenarios. )e results showed
that the best performance for the lowest prediction error was
achieved by the RF method. )us, it can be seen that the RF
method would be suitable for the optimal path loss of
measured data in an indoor environment or small-scale
fading scenarios. Additionally, the performance of SVR has
similar results to BPNN for outdoor environments or large-
scale fading scenarios [20, 21]. )us, the path loss model
using deep learning neural network was proposed to im-
prove the prediction error for 5G mobile communication
[22]. At the 2.6GHz frequency band, the proposed model
with deep neural network (DNN) was studied by comparing
the ray-tracing model and the uMa 38.901 model.)e results
show that the DNN method can reduce the prediction error
by 4.7 dB when it is compared with the ray-tracing model
and empirical model for the satellite image application. In
[23], the authors presented the multiple linear regression
model to predict the path loss model for millimeter-wave
(MmWave) urban communication. In [24], the accuracy of
path loss prediction was proposed using the DNNmethod to
obtain observation data for the ray-tracing model. Toward
this end, ML techniques are capable of assessing the wireless
channel. In particular, the survey on ML techniques for
UAV-based communications was presented in [25]. Nev-
ertheless, there are a few considerations of ML models for
predicting the path loss characterization in SF scenarios.

Using ML techniques in SF to predict the path loss
characteristics is performed to the reliable communication
between the GS location and UAV trajectory.

)e major contributions and novelties of this paper are
as follows:

(1) )e new channel model called GS-to-UAV com-
munications in SF is presented by investigating RSSI
and path loss characteristics.

(2) RSSI and path loss characteristics are predicted using
two ML models such as SVR and ANN models. )e
SVR and ANN models are considered because these
algorithms are appropriate to evaluate the data
driven in the large-scale fading scenarios. Also, the
path loss prediction is a supervised regression
problem; thus, it can be solved by SVR and ANN
algorithms.

(3) )e validation model and results are evaluated with
the statistical error indicators such as MAE, RMSE,
and R2 and compared with the empirical GUT-R
path loss model.

)e remainder of this paper is organized as follows. )e
methodology is presented in Section 2 where the mea-
surement setup, the empirical GUT-R model, and the ML
models are described. Section 3 presents the results of the
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comparative performance of RSSI-based prediction models
and path-loss-based prediction models. Finally, the con-
clusion is described in Section 4.

2. Methodology

)e application of the GS andUAV-enabled communication
in SF is described in this section. Due to the limit of radiation
energy from the GS, UAV as amobile base station (MBS) can
be equipped with a transceiver module to transmit signals
for multiple GS. Figure 1 shows the system model of soil
moisture monitoring using multiple GS and a single UAV-
based communication for SF. )e system model illustrates
that multiple GS are installed in the large-scale farm for
sensing the soil moisture values. )e GS consists of solar cell
panels to supply the energy for the capacitive soil moisture
sensor and the module microcontroller unit or MCU node.
)us, the communication link between GS and UAV is
based on Wi-Fi standard IEEE 802.11 g. )e voltage and
current of the GS module are used at 3.3 V and 240mA,
respectively. )e benefit of this system model is helping the
users monitor soil moisture data as rapidly in the large-scale
farm [26].

To evaluate the RSSI and path loss characterization
between the GS and UAV of the system model, the mea-
surement setup, GUT-Rmodel, andMLmodel are described
in Sections 2.1, 2.2, and 2.3, respectively.

2.1. Measurement Setup. )e geometric 3D model for the
measurement setup is considered using the Cartesian co-
ordinate system, as shown in Figure 2. )e Cartesian
(x, y, z) system represents the position of GS installation
and UAV altitude. )e UAV altitudes in z-axis, hUAV, were
set at 2m and 5m. Additionally, the height of GS, hg, was set
at 1.5m, while the horizontal distance, dc, was set from the
GS point until 20m. In the measurement, the UAV was
equipped with a Wi-Fi module transceiver to communicate
with the GS.

In order to measure the RSSI and path loss character-
istics, we consider a single GS test kit position at the Car-
tesian (x3, y3, z) or Napier33 position as well as the GS
position at the Cartesian (x1, y3, z) or Ruzi13 position. In
this experiment, the GS test kit and UAV were connected
using Wi-Fi 2.4GHz frequency wireless links, and the
measurement data of RSSI can record through the Internet
by the application program interface (API) software as
shown in Figure 3. After that, the path loss values can be
calculated in the offline postprocessing. Figure 4 shows the
top view of the measurement location and side view of the
measurement setup in the Napier scenario.)e dimension of
the Napier scenario was 25m wide and 45m long. Figure 5
shows the top view of the measurement location and the side
view of the Ruzi scenario, while the dimension of the Ruzi
scenario was 30m wide and 50m long. Table 1 shows the
measurement setup parameters. In this work, the mea-
surement locations were experimentally performed at the
Tropical Animal Research Institute, Ramkhamhaeng Uni-
versity, )ailand.

2.2. GUT-RModel. )e propagation characteristics between
GS and UAV can be investigated using the empirical GUT-R
model. Figure 6 shows the geometrics of the GUT-R model
where the total received E-field at the UAV is EU(dc) and
then the result of the direct line-of-sight (LOS) component,
E(d′), and the ground reflected component, Er(d″). )e
expression is as follows:

EU dc( 􏼁 � E d′( 􏼁 + Er d″( 􏼁. (1)

)e traveling two waves are noted at UAV: the direct
wave that travels distance, d′, and the reflected wave that
travels distance, d″. )e E-field due to the LOS at the UAV
can be expressed as follows:

E d′( 􏼁 �
E0d0

d′
cos 2πfc t −

d′
c

􏼠 􏼡􏼠 􏼡, (2)

and the E-field for the ground reflected wave, which has a
propagation distance of d″, can be expressed as follows:

Er d″( 􏼁 � Γ
E0d0

d″
cos 2πfc t −

d″
c

􏼠 􏼡􏼠 􏼡, (3)

where fc is the carrier frequency and E0 is the free-space
E-field at a reference distance d0 from the GS; then, d>d0. Γ
denotes the reflection coefficient for ground.

)e EU(dc) can be expressed as the sum of equations (2)
and (3) as follows:

EU dc( 􏼁 �
E0d0

d′
cos 2πfc t −

d′
c

􏼠 􏼡􏼠 􏼡

+(− 1)
E0d0

d″
cos 2πfc t −

d″
c

􏼠 􏼡􏼠 􏼡,

(4)

where Γ � − 1 denotes the perfect ground reflection
component.

Considering the UAV altitude hUAV and GS height hg,
the path difference between the LOS and ground reflection
path can be expressed as follows:

Δ d �
2hUAVhg

dc

. (5)

)e phase difference Δθ between the two-ray model
components and the time delay τdc

between the arrival of the
two components can be given as follows:

Δθ �
2πΔdc

λ
, (6)

τdc
�
Δθ
2πfc

. (7)

When the distance dc is larger, the reflection distance d″
is very small, and the amplitudes of E(d′) and Er(d″) are
identical and differ only in phase that can be expressed as
follows:

E0d0

d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≈

E0d0

d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≈

E0d0

d″

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (8)
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)e total for the received E-field, EU(dc), in the case of
long distance, dc, can be expressed as follows:

EU dc( 􏼁 �
E0d0

d′
cos ω

d″ − d′
c

􏼠 􏼡􏼠 􏼡 −
E0d0

d″
cos Δθ, (9)

EU dc( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

����������������������������������

E0d0

dc

􏼠 􏼡

2

cos (Δθ − 1)
2

+
E0d0

dc

􏼠 􏼡

2

sin2 Δθ

􏽶
􏽴

.

(10)

In terms of the power received, PUAV(dc), it is related to
the square of the EU(dc) E-field. )e received power at the
horizontal distance, dc, from the GS for the two-ray model
can be expressed as follows:

PUAV dc( 􏼁 � PgGgGu

h
2
gh

2
UAV

d
4
c

⎛⎝ ⎞⎠, (11)

where Gg and Gu represent the antenna gain of GS and the
antenna gain of the receiver at the UAV, respectively. Pg is
the power transmitted from the GS. In equation (11), we note
that at large distances, dc≫

�������
hghUAV

􏽱
, the received power

falls off with the distance raised that is more rapid path loss
in free space. At the large values of dc, the path loss for the
GUT-R model can be expressed in dB as follows:

P
GUT− R
L (dB) � 40 log dc − 10 log Gg + 10 log Gu􏼐

+ 20 log hg + 20 log hUAV􏼑.
(12)

At short distances, dc, it can be obtained using equation
(4) to compute the total EU(dc) E-field. When the

Figure 4: Top view of the measurement location and side view of the example test: UAV trajectory at 2m altitudes in the Napier farm.

Figure 5: Top view of the measurement location and side view of the example test: UAV trajectory at 5m altitudes in the Ruzi farm.

Table 1: Measurement setup parameters.

Parameters Values
Carrier frequency 2.4GHz
GS antenna gain (IoT module) 3.0 dBi
UAV antenna gain (Wi-Fi module) 5.1 dBi
Transmitter power (Wi-Fi module) 20 dBm
Horizontal distance 20m
UAV altitudes 2m and 5m
GS height 1.5m

UAV

h U
AV

Horizontal distance, dc

GS

hg

E (d′)

E r 
(d″

)

θ

Figure 6: )e geometrics for the empirical GUT-R model.
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substitution in equation (6) is evaluated for Δθ � π/2, then
dc � 4hghUAV/λ has appeared.

2.3. Machine Learning Model. )e procedure of ML-based
RSSI and path loss prediction model is shown in Figure 7. In
this section, the data sets are considered as RSSI and path
loss from the measured data collection that is separated as
the training data set 80% and test data set 20%, respectively.
For such procedure of ML-based prediction model, four
sections including the preparation of training and test sets,
model selection of SVR and ANN algorithms, model
training, and the evaluation by calculating the statistical
error indicators such as MAE, RMSE, and R2 are performed
to build the validation model [27–29]. After the validation
model has been built, RSSI and path loss measured data can
be generated with new data inputs to predict the output
observation using the prediction models.

)e model selection of SVR and ANN algorithms is
performed in Algorithms 1 and 2.

In thenext step, the evaluated data by the statistical error
indicators such as MAE, RMSE, and R2 for RSSI and path
loss are expressed as follows:

MAE �
1
N

􏽘

N

i�1
xi,Test − x

SVR,ANN
Predict

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

1
N

􏽘

N

i�1
yi,Test − y

SVR,ANN
Predict

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(13)

RMSE �

���������������������

1
N

􏽘

N

i�1
xi,Test − x

SVR,ANN
Predict􏽨 􏽩

2

􏽶
􏽴

,

���������������������

1
N

􏽘

N

i�1
yi,Test − y

SVR,ANN
Predict􏽨 􏽩

2

􏽶
􏽴

,

(14)

R
2

� 1 −
􏽐

N
i�1 xi,Test − x

SVR,ANN
Predict􏽨 􏽩

􏽐
N
i�1 xi,Test − x

SVR,ANN
Predict􏽨 􏽩

,

1 −
􏽐

N
i�1 yi,Test − y

SVR,ANN
Predict􏽨 􏽩

􏽐
N
i�1 yi,Test − y

SVR,ANN
Predict􏽨 􏽩

,

(15)

where N � 50 represents the total number of test data sets
and xi,Test and yi,Test are the test data sets. )e xSVR,ANN

Predict and
ySVR,ANN
Predict are the average of the predicted value.

3. Evaluation

In this section, the results of RSSI and path loss charac-
terization of the GUT-R model, the measurement data, the
proposed SVR model, and the proposed ANN model are
shown. In Section 3.1, the comparative performance results
of RSSI-based prediction models are described. )e com-
parative performance of path loss-based prediction models
is shown in Section 3.2, and the discussion is described in
Section 3.3.

3.1.RSSI-BasedPredictionModels. In Figure 8, the RSSI level
is powered at 10 dBm to − 32 dBm for UAV trajectory at 2m
altitudes in the Napier scenario. )e horizontal distance
between UAV and GS (Napier33 position) is separated from
0m to 20m. It can be observed that the measured data is
related to the GUT-R model that depends on free-space loss.
Besides, the validation models from the SVR and ANN
model curves can predict the RSSI measured data where the
statistical errors of the ANNmodel are smaller than the SVR
model as shown in Table 2. To consider the propagation
effect of this scenario, we observe that there is some power
fluctuated from ground reflection at 3m to 5m distance,
which is reflected into the UAV. )us, this position may
fluctuate the power more than others. As a result of the
prediction model, it is clear that the MAE of the SVR model
is 1.636 dBm and 1.596 dBm for the ANN model. While the
RMSEs of the SVR and ANN models are 3.336 dBm and
3.196 dBm, respectively.)e R2 of the SVR and ANNmodels
are 0.957 and 0.964, respectively. As a result, it is clear that
the ANNmodel outperforms the SVRmodel slightly because
the predictive curve of ANN model can approach the
measured data better than the SVR curve.

In Figure 9, the measured data of RSSI level is 5 dBm to
− 28 dBm in the Ruzi scenario. We observe that the effect
from ground reflection occurs at a 2m distance. To perform
the statistical errors, it can be seen that the MAE of the SVR
model is 1.121 dBm and 1.112 dBm for the ANN model. )e
RMSEs of the SVR and ANN models are 1.870 dBm and
1.628 dBm, respectively.)e R2 of the SVR and ANNmodels
are 0.974 and 0.981, respectively, as shown in Table 2. As a
result, the performance of both the SVR and ANN models
can absolutely predict the measured data in this scenario.

For UAV trajectory at 5m altitudes, the GUT-R model
curve is 2 dBm to − 58 dBm, while the measured data is
2 dBm to − 70 dBm as shown in Figures 10 and 11, re-
spectively. It can be seen that the measured data is inde-
pendent of the ground reflection because of the large
distance, dc. To perform the statistical error indicators, the
MAE of the SVR model is 1.785 dBm and 1.698 dBm for the
ANN model. )e RMSEs of the SVR and ANN models are
3.718 dBm and 3.219 dBm, respectively. )e R2 of the SVR
and ANN models are 0.979 and 0.988, respectively. Simi-
larly, in Figure 10, the MAE of the SVR model is 1.734 dBm
and 1.456 dBm for ANN model. )e RMSEs of the SVR and
ANN models are 3.266 dBm and 2.743 dBm, respectively.
)e R2 of the SVR and ANN models are 0.977 and 0.983,
respectively. )e statistical error indicators of RSSI when
UAV trajectory is at 5m altitudes are shown in Table 3.

3.2. Path Loss-Based PredictionModels. Figure 12 shows the
path loss comparison of the GUT-R model, the measured
data, and the prediction models when the UAV trajectory is
at 2m altitudes in the Napier scenario. )e path loss-based
GUT-R model ranges from − 24 dB to 38 dB in this scenario;
however, it can be seen that the measured data is varied from
− 20 dB to 40 dB. )e MAE between the GUT-R model and
the measured data is 12.214 dB and 14.334 dB of RMSE,
respectively, as shown in Table 4. Additionally, we can show
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the performance results of the SVR and ANN models that
are used to train the training set of the measured data. It can
be seen that the performanceMAE of the SVRmodel is 1.252
and 1.150 for the ANN model. )e performance RMSEs of
the SVR and ANNmodels are 3.067 and 2.502. R2 of the SVR
and ANNmodels are 0.972 and 0.981, respectively. Although

the prediction errors of both the SVR and ANN models are
slightly different, the ANN-based prediction model can
better predict the path loss precisely in the Napier scenario.

)e comparison of path loss characteristics in the Ruzi
scenario for the UAV trajectory at 2m altitudes is shown in
Figure 13. We observe that the measured data increases at

Data sets (RSSI and path loss)

ML

Training set Test set

Model
selection

Model training Evaluation
(MAE, RMSE and R2)

GUT-R
model

Preprocessing

Output

RSSI/path loss predictionValidation modelPreprocessingNew data

Input

Figure 7: Procedure of ML-based RSSI and path loss prediction model.

Hyperparameter setting:
(1) Let the x � [ri, dc] be the RSSI training data sets and y � [PLi, dc] be the path loss training data set.)e data set was separated as

80% for the training set and 20% for the test set.
(2) Let the function f(ϕ(x)) and f(ϕ(y)) be the basis function for RSSI and path loss of the hyperparameter setting, respectively.

)e hyperplane in the feature space is f(ϕ(x)) � 􏽐
N
i�1(m · xi + b) and f(ϕ(y)) � 􏽐

N
i�1(m · yi + b), where m and b denote the slope

and intercept of the regression model.
Model training:

(3) )e predicted value is xSVR
Predict � min(1/2)‖f(ϕ(x))‖2 + C 􏽐

N
i�1(xi + xi) and ySVRPredict � min(1/2)‖f(ϕ(y))‖2 + C 􏽐

N
i�1(yi + yi) for

RSSI and path loss, respectively, where the value C> 0 controls the iteration between the test and training sets, xi and yi represent
the average mean of RSSI and path loss test set, and ‖•‖ is the Euclidean norm.

ALGORITHM 1: SVR.

Hyperparameter setting:
(1) Let x � [ri, dc] for RSSI training data sets and y � [PLi, dc] for the path loss training data set. )e data set was separated as 80%

for the training set and 20% for the test set.
(2) Let two input layers [ri, dc] for RSSI, where ri is the received power level and dc is horizontal distance between GS and UAV. For

path loss, [PLi, dc] denotes two input layers, where PLi is the path loss level.
(3) One hidden layer and one output layer using RBF-based neural network (NN) were set, where the number of neurons k � 4.
(4) )e model of ANN is expressed by x � f 􏽐

k
j�1 wj(f 􏽐

N
i�1 w1jxi) for RSSI and y � f 􏽐

k
j�1 wj(f 􏽐

N
i�1 w2jyi) for path loss, where

w1j and w2j represent the synaptic weights between the two input layers and a hidden layer for input RSSI training set and input
path loss training set and wj denotes the connection weight between the neurons of the hidden and output layers.
Model training:

(5) )e predicted value of RSSI is xANNPredict � 􏽐
k
j�1 w1j exp| − (‖xi − cj‖/2σ2j)|, and the model of path loss is

yANNPredict � 􏽐
k
j�1 w2j exp| − (‖yi − cj‖/2σ2j)|, where cj and σ2j are the mean and standard deviation of a Gaussian function, respectively.

ALGORITHM 2: ANN.
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10m to 20m of the separation distance, and the path loss
ranges from 25 dB to 32 dB. )is phenomenon may occur
from the scattering surrounding environments. All path loss
statistical error indicators are shown in Table 4 for the Ruzi
scenario when UAV trajectory is at 2m altitudes.

When the UAV trajectory is at 5m altitudes, the path
loss-based GUT-R model varies from − 22 dB to 23 dB

because the influence of ground reflection ray in terms of
Er(d″) is decreased as shown in Figure 14. Obviously, the
prediction model using the ANN model in the blue curve is
from 0 dB to 66 dB. According to the comparison result
between the SVR and ANN models, the ANN model can
predict the measured data better than the SVR model.
Likewise, the RMSE values for the SVR and ANNmodels are
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Figure 8: RSSI between UAV trajectory at 2m altitudes and GS (Napier33) in the Napier scenario.
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Figure 9: RSSI between UAV trajectory at 2m altitudes and GS (Ruzi13) in the Ruzi scenario.

Table 2: RSSI statistical error indicators when UAV trajectory is at 2m altitudes.

Models
Napier scenario Ruzi scenario

MAE RMSE R2 MAE RMSE R2

GUT-R 10.590 12.290 0.334 10.246 12.539 0.289
SVR 1.636 3.336 0.957 1.121 1.870 0.974
ANN 1.596 3.196 0.964 1.112 1.628 0.981
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better than the GUT-R model when the accuracy of R2 is
0.267 for the GUT-R model, 0.933 for the SVR model, and
0.950 for the ANN model as shown in Table 5.

In Figure 15, the comparison of the measured data and
GUT-R model for the Ruzi scenario shows that the RMSE is
high up to 32.523 dB and the accuracy of R2 is 0.121. On the
other hand, the prediction errors of the SVR and ANN
models are better than the GUT-Rmodel, where the RMSE is

4.682 dB for the SVR model and 4.407 dB for the ANN
model.

3.3. Discussion. )e result of the path loss characteristic
using the empirical GUT-R model depends on parameters
such as the antenna gain, GS height, the UAV height, and the
horizontal separation distance. Meanwhile, the actual path
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Figure 10: RSSI between UAV trajectory at 5m altitudes and GS (Napier33) in the Napier scenario.
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Figure 11: RSSI between UAV trajectory at 5m altitudes and GS (Ruzi13) in the Ruzi scenario.

Table 3: RSSI statistical error indicators when UAV trajectory is at 5m altitudes.

Models
Napier scenario Ruzi scenario

MAE RMSE R2 MAE RMSE R2

GUT-R 18.235 20.092 0.215 18.432 20.238. 0.139
SVR 1.785 3.718 0.979 1.734 3.266 0.977
ANN 1.698 3.219 0.986 1.456 2.743 0.983
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loss measured data is greater than the GUT-Rmodel because
the measured data might increase in terms of insertion loss
and mismatch polarization loss between GS and UAV an-
tennas. )us, the consideration of mismatch polarization
loss for GS and UAV communications is crucial.

)e performance of the ANNmodel provides better than
the SVR model slightly in both the Napier and Ruzi farms of
this work. To discuss the performance of the SVR model, the
number of C control of the iterative data processing model

was done at 230 iterations using MATLAB simulation. To
minimize the prediction error between the training and test
sets, SVR adopts an insensitive loss function of the predicted
value output xSVRPredict and ySVRPredict, respectively. )e loss
function is influenced by a priori information about the
noise distribution affecting the data sets. To this end, the R2

of the SVR model is 0.951, or the performance percentage is
95%. To discuss the ANN model, we found that two input
layers as [PLi, dc], one hidden layer where the best number
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Figure 12: Path loss between UAV trajectory at 2m altitudes and GS (Napier33) in the Napier scenario.

Table 4: Path loss statistical error indicators when UAV trajectory is at 2m altitudes.

Models
Napier scenario Ruzi scenario

MAE RMSE R2 MAE RMSE R2

GUT-R 12.214 14.334 0.367 12.142 14.243 0.321
SVR 1.252 3.067 0.972 1.202 2.962 0.965
ANN 1.150 2.502 0.981 1.146 2.507 0.983
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Figure 13: Path loss between UAV trajectory at 2m altitudes and GS (Ruzi13) in the Ruzi scenario.
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of neurons were four and one output layer, were given a
proper prediction model in this work. )e hyperplane of
RBF-NN can control the iteration of weighting between the
training and test sets as easily, which is optimally weighted as
200 iterations.)us, the R2 of the ANNmodel is 0.967, or the
performance percentage is 97%.

In this work, the performance of the ANN model can
smoothly predict the accuracy path loss characteristics better
than the SVR model, for example, SF scenarios. Further-
more, we compared the performance of the R2 value with the
previous works for the path loss prediction models in SF
environments, in [8, 30, 31], as shown in Table 6.
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Figure 14: Path loss between UAV trajectory at 5m altitudes and GS (Napier33) in the Napier scenario.

Table 5: Path loss statistical error indicators when UAV trajectory is at 5m altitudes.

Models
Napier scenario Ruzi scenario

MAE RMSE R2 MAE RMSE R2

GUT-R 20.122 21.634 0.267 29.124 32.523 0.121
SVR 2.125 4.782 0.933 2.112 4.682 0.935
ANN 2.025 4.439 0.950 2.016 4.407 0.954
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Figure 15: Path loss between UAV trajectory at 5m altitudes and GS (Ruzi13) in the Ruzi scenario.
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4. Conclusions

In this paper, the path loss characteristics in realistic
propagation SF scenarios for GS-to-UAV-enabled com-
munication were studied by deploying ML models as the
prediction models. )e measurement data such as RSSI and
path loss characteristics are experimentally investigated in
different measurement locations such as Napier and Ruzi
farm SF scenarios. To predict the accuracy model and build
the validation models, the measured data of RSSI and path
loss data sets are separated as the training and test sets for the
supervised ML models. )e performance results show that
the supervised method ML models based on SVR and ANN
can accurately predict the path loss characterization in SF. It
can show that the accuracy is 95% for the SVR model and
97% for the ANNmodel.)e performance of the SVRmodel
is less than the ANN model at least 2% for this work.
Furthermore, we show that the ML-based prediction models
are more accurate than the empirical GUT-R model. )is
work is useful for seeking an accurate and reliable channel
model for the network planning of GS and UAV commu-
nications in SF scenarios.
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