
Research Article
A Novel Hybrid Algorithm for Transient Near-Field
Scattering from Rough Surface in 2-D Case

Wei Tian ,1,2 Bing Wei ,1 and Qian Yang 1

1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
2School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China

Correspondence should be addressed to Bing Wei; bwei@xidian.edu.cn

Received 18 May 2021; Accepted 13 August 2021; Published 26 August 2021

Academic Editor: Muhammad Zubair

Copyright © 2021 Wei Tian et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel hybrid algorithm is proposed to reduce the computation cost of the finite-difference time-domain (FDTD) method in
calculating the transient near-field scattering from rough surface. )e scattering problem is split into the FDTD calculation of
equivalent sources on the contour enclosing rough surface and the calculation of the near-field radiation with the two-dimensional
(2-D) time-domain Huygens’ principle. )e radiation fields are found from a surface integral of the temporal convolution for
which the direct numerical integration of the convolution is computationally expensive. In this paper, the 2-D time-domain
Green’s function as the convolution kernel is approximated with a sum of exponential terms by using the Prony’s method. )en,
the semianalytical recursive convolution (SARC) approach is applied to complete the update of the near-field radiation.
Compared with the traditional FDTD, this hybrid algorithm can significantly reduce the memory usage and run time, especially
for the large distance between the rough surface and observation point.

1. Introduction

With the extensive application of the wide-band radar, the
transient electromagnetic (EM) scattering from the rough
surface has gained increasing attention, which plays im-
portant role in the field of radar surveillance, EM imagining,
target identification, and stealth, etc. [1–4]. )e previous
researches are mainly focused on the simulation of the EM
scattering from rough surface in the far-field zone [5–7]. In
fact, the near-field scattering problem is the widespread
presence of the target working above background, such as
the low-altitude cable over ground or sea. Only by mastering
the near-field scattering characteristics from rough surface,
we can systematically analyze the EM interference from
background and obtain the relatively complete coupling
result of target.)erefore, it is of critical importance to study
an efficient time-domain algorithm on the near-field scat-
tering for the coupling analysis of the low-altitude target and
the protection of the sensitive electronic device.

In the past decade, the numerical method has been
widely used in the EM analysis owning to the rapid

development of the high performance computer [8–11].
Among them, the finite-difference time-domain (FDTD)
method is a powerful and popular technique for numerically
solving the transient field problem, and it has achieved
successful applications in the far-field scattering from rough
surface [12–14]. However, when the FDTD is used to
simulate the near-field scattering, a brute-force way is to
enlarge the computational domain to enclose the rough
surface and observation point, which will lead a heavy
burden to the computation resource available. Moreover, the
farther the near-zone observation point is from rough
surface, the heavier the computation burden will be. By now,
some hybrid algorithms combining the FDTD and analyt-
ical-approximate method have been proposed to reduce the
FDTD space lattice and improve the computational effi-
ciency. In [15], the FDTD associated with the Kirchhoff
surface integral was proposed to calculate the near-field
response of the dipole antenna in the three-dimensional (3-
D) case, where the dipole antenna was assigned in the FDTD
region, and the near-field response outside the FDTD space
was calculated by the Kirchhoff surface integral. For the
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two-dimensional (2-D) problem, by means of the 2-D time-
domain Huygens’ principle, the temporal convolution in-
tegral needs to be solved to obtain the near-field response
exterior to the FDTD region, which complicates the com-
putation even more. )e direct integration of the temporal
convolution is computationally expensive, and hence it is
applicable for the EM analysis of the small model such as the
infinitely long line source in [16, 17]. Xu et al. in [18]
employed the trapezoidal approximation to solve the tem-
poral convolution, and then the near-field scattering exterior
to the FDTD region was computed by applying the scheme
of treating the radiation field as the equivalent cylindrical
wave, which can be accurately used for the target with
cylinder shape. However, for the large rough surface model,
the characteristics of the structure and scattering wave make
the simulation of the near-field scattering with these ap-
proaches difficult. In recent years, a fruitful semianalytical
recursive convolution (SARC) approach was introduced in
the dispersive medium problem, realizing the high-efficient
computation of the convolution integral [19, 20]. But when
the 2-D time-domain Green’s function is acted as the
convolution kernel, the recursive operation is difficult to
realize due to its specific structure. In this paper, this dif-
ficulty is overcome by applying the Prony’s method to ap-
proximate the convolution kernel with a sum of exponential
terms, which avoids the complex analysis of the convergence
of the series expansion scheme in [21]. )e hybrid algorithm
combining the FDTD with the 2-D time-domain Huygens’
principle is proposed to calculate the transient near-field
scattering from the rough surface, in which the normal part
of the convolution integral is calculated by the SARC ap-
proach and the singular part is done using the linear in-
terpolation. Because a great deal of FDTD meshes between
the rough surface and near-zone observation point are re-
moved, the memory usage and run time in the proposed
algorithm are dramatically reduced than those in the tra-
ditional FDTD method. Meanwhile, this hybrid algorithm
retains the unique advantages of the FDTD method.

)e rest of this paper is organized as follows: in Section 2,
the hybrid algorithm combining the FDTD with the 2-D
time-domain Huygens’ principle is elaborated, including
the Prony approximation of the convolution kernel and the
SARC approach for solving the near-field radiation of the
equivalent sources. In Section 3, the accuracy and efficiency
of the proposed hybrid algorithm are verified through the
comparison of the numerical results by the hybrid algorithm
and by the traditional FDTD method. Section 4 draws the
conclusions of this paper and offers the recommendations
for future work.

2. Hybrid Algorithm for Near-Field
Scattering from Rough Surface

For the FDTD calculation of the transient near-field scat-
tering, a common way is to expand the FDTD region to
enclose the rough surface and the near-zone observation
point, as shown in Figure 1(a). With the increase in the
height of observation point, the memory usage and run time
will sharply increase, thus often making it difficult to realize

the FDTD calculation of the near-field scattering. For the
proposed hybrid algorithm, however, the FDTD region only
contains the rough surface as indicated in Figure 1(b); the
near-field response at the observation point P is regarded as
the radiation of the equivalent sources on the output
boundary of the FDTD region. Comparing Figures 1(a) and
1(b), it can be seen that the computational domain in the
hybrid algorithm is much smaller than that in the FDTD
method, especially in the case with high observation point.

2.1. &eory of Near-Field Transformation in 2-D Case.
Assume that E and H are respectively the electric and
magnetic fields on the output boundary surface of the FDTD
domain. According to the equivalence principle, the surface
electric and magnetic currents (J, M) and charges (ρs, ρm)

can be obtained by

J � 􏽢n × H, M � − 􏽢n × E, (1a)

􏽢n · μH � ρs, 􏽢n · μE � ρm, (1b)

where 􏽢n denotes the unit normal vector on the output
boundary. For the 2-D problem, the vector and scalar po-
tentials can be expressed with the 2-D time-domain Green’s
function as

A(r, t) �
μ
4π

􏽚
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dl′ 􏽚
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0

J r′, t′( 􏼁
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Here, μ and ε represent the permeability and permit-
tivity, R � |r − r′| is the distance from the observation point
r to source field r′, and c is the speed of the EM wave. In
accordance with the vector and scalar potentials, the 2-D
radiation field exterior to the FDTD region can be written as

E(r, t) � −
1
ε
∇ × F(r, t) − ∇φ −

z

zt
A(r, t), (3a)

H(r, t) �
1
μ
∇ × A(r, t) − ∇φm −

zF(r, t)

zt
. (3b)

Substituting equation (2) into equation (3) and shifting
the time reference backward by R/c, the formals for cal-
culating the 2-D radiation field of the equivalent sources can
be obtained from [21], in which, for the TM case, are
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)e corresponding formulas in the TEmode can be derived
with the principle of duality, which are not described here. It is
obvious that the convolution kernel in equation (4) has a
square-root singularity at t′ � t. An efficient way in addressing
the singularity is to approximately calculate the convolution
integral in the interval [t − Δt, t] using the linear interpolation.
Assuming t − t′ � τ, the time derivative of the equivalent
source, e.g., M(r, t′), in the time-reversed and offset form can
be given by

M(nΔt − τ) ≈M
n

+
M
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τ τ ∈ [0,Δt]. (5)

For instance, substituting (5) into the second term of
(4a), we have
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A similar procedure can be implemented for other terms
in equation (4) to obtain the corresponding approximate
results in the interval [t − Δt, t]. )e convolution integral in
the interval [0, t − Δt] is computed by using the high-effi-
cient SARC approach, as will be elaborated later.

2.2. Prony Approximation of Convolution Kernel.
Although equation (4) is applicable for the computer
execution, the direct integration of it is such cumbersome
as to be impractical, due to the need for storing and
processing all past values of the time derivative of the
equivalent source. )e computational complexity of this

scheme scales as O(N2
max), where Nmax is the total time

step. In this paper, the SARC approach will be applied to
decrease the complexity of the convolution integral. It
can be found from equation (4) that the convolution

kernel mainly consists of two forms: 1/
���������������

(t + R/c)2 − R2/c2
􏽱

and (t + R/c)/
���������������

(t + R/c)2 − R2/c2
􏽱

, which make it difficult
to execute the recursive operation of the convolution.
Based on the idea of the signal estimation in the high-
speed circuit [22], the Prony’s method is used to ap-
proximate the convolution kernel with a sum of the
exponential terms:
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f(N) ≈ 􏽘
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Ciμ

N
i . (7)

Here, f(N) is the discrete sample of the convolution
kernel at t � NΔt, where N denotes the equally spaced time
step, Q represents the total number of poles, and Ai and Ci

represent the coefficient and amplitude of the ith pole. )e
Ai and Ci are evaluated in the Prony’s method by solving two
sets of linear equations with an intermediate nonlinear
equation with Qth degree. Firstly, Nm equally spaced time
samples of the convolution kernel are taken to set up a set of
linear equation as
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where Nm − Q>Q. )e roots α1, α2, . . . , αQ can be deter-
mined by solving this oversampled set of linear equations
with the least-squares approach. By virtue of equation (8),
the μ can be found as the roots of the following Qth degree
equation:
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If the complex conjugate roots arise in the solution to
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with the Q values of the Ci can be established as follows:
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,

(10)

where Nm >Q. )e coefficients C1, C2, . . . , CQ can be ob-
tained by using the least-squares approach to equation (10).

Figure 2 shows the comparison of the fitting results by the
Prony’s approximation with the analytical results, in which the
red short dash denotes the analytical result and blue line denotes
the fitting result with Prony’smethod. For the fitting calculation,
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Figure 1: Comparison of the computational domain for the near-field scattering. (a) Traditional FDTD method. (b) Proposed hybrid
algorithm.
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the space increment is Δ � 0.05m, the time increment is
Δt � Δ/2c, and the observation point and source point are
located at (20Δ, 80Δ) and (30Δ, 10Δ), respectively. )e
sampling of the convolution kernel begins at int(R/cΔt) + 1,
and the interval is 20Δt. In Figures 2(a) and 2(b), the

1/
���������������

(τ + R/c)2 − R2/c2
􏽱

and (τ + R/c)/
���������������

(τ + R/c)2 − R2/c2
􏽱

are
respectively expressed as convolution kernels 1 and 2 for
convenience. )e total numbers of the samples and poles are
selected to be 30 and 10, respectively. It can be observed from
Figure 2 that the nearly identical results are produced with the
two methods, implying the reliability of the Prony’s method.

2.3. Semianalytical Recursive Convolution Approach. )e
RASC approach is a fruitful scheme for the calculation of the
convolution integral, which is based on the idea of the ef-
ficient analysis of the transfer response in the digital signal
processing (DSP) [23]. For a linear time-invariance and
dynamical system, as shown in Figure 3, the system response
y(t) can be expressed as the convolution of the input signal
x(t) with the impulse response h(t). We have

y(t) � h(t)∗ x(t) � 􏽚
t

0
h t − t′( 􏼁x t′( 􏼁dt′. (11)

In general, the impulse response in an asymptotically
stable system is of the form,

h(t) � 􏽘

Q

q�1
Hq exp − βqt􏼐 􏼑U(t), (12)

where q stands for the number of poles, and U(t) is the
switch function:

U(t) �
1 t≥ 0

0 t< 0
􏼨 (13)

Substituting equation (12) into equation (11), the system
response at t � nΔt can be obtained as

y
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Hq exp − βq nΔt − t′( 􏼁􏽨 􏽩x t′( 􏼁dt′. (14)

)e system response for the qth pole is

y
n
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nΔt

0
Hq exp − βq nΔt − t′( 􏼁􏽨 􏽩x t′( 􏼁dt′. (15)

Dividing the integral of equation (15) into two intervals,
[0, (n − 1)Δt] and [(n − 1)Δt, nΔt], we get to the recursive
formula of system response as

y
n
q � exp − βqΔt􏼐 􏼑y

n− 1
q + Hq exp − βqnΔt􏼐 􏼑 􏽚

nΔt

(n− 1)Δt
exp βqt′􏼐 􏼑x t′( 􏼁dt′. (16)
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Figure 2: Comparison of the fitting results by the Prony’s approximation with the analytical results. (a) Convolution kernel 1.
(b) Convolution kernel 2.
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Figure 3: Transfer response for linear time-invariance system.
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In this paper, the near-field radiated by the equivalent
source is analogous to the system response in the DSP. )e
convolution kernel can be regard as the impulse response
after it is approximated with a sum of exponential terms.)e
time derivative of the equivalent source corresponds to the
input signal.)us, the near-field radiation can be updated by
applying the SARC approach. Next, focus on the SARC
approach for evaluating the radiation field in equation (4),
where the representative convolutions are of the forms,

I t +
R

c
􏼒 􏼓 � 􏽚

t− Δt

0

W r′, t′( 􏼁
������������������

t + R/c − t′( 􏼁
2

− R
2/c2

􏽱 dt′, (17a)

K(t + R/c) � 􏽚
t− Δt

0

t + R/c − t′( 􏼁W r′, t′( 􏼁
�������������������

t + R/c − t′( 􏼁
2

− R
2/c2

􏽱 dt′. (17b)

For equation (17a) as example, using the Prony’s method
mentioned above can approximate the convolution kernel as

1
���������������

(t + R/c)
2

− R
2/c2

􏽱 ≈ 􏽘

Q

q�1
Cq exp Aqt􏼐 􏼑. (18)

According to equation (16), the temporal convolution in
the interval [0, (n − 1)Δt] can be expressed as

I
n− 1
q � exp AqΔt􏼐 􏼑I

n− 2
q

+ Cq exp AqnΔt􏼐 􏼑 􏽚
(n− 1)Δt

(n− 2)Δt
exp − Aqt′􏼐 􏼑W t′( 􏼁dt′,

(19)

where W(t) can be approximated in accordance with the
linear interpolation approach as follows:

W t′( 􏼁 ≈W
n− 1

+
W

n− 1
− W

n− 2

Δt
t′ − (n − 2)Δt􏼂 􏼃. (20)

Substituting equation (20) into equation (19) and ana-
lytically solving the integral over the interval
[(n − 2)Δt, (n − 1)Δt], we find the following field-update
equation:

I
n− 1
q � exp AqΔt􏼐 􏼑I

n− 2
q + B0,qW

n− 1
+ B1,qW

n− 2
, (21)

where

B0,q � −
Cq exp AqΔt􏼐 􏼑

Aq

1 +
1 − exp AqΔt􏼐 􏼑

AqΔt
⎡⎣ ⎤⎦,

B1,q �
Cq exp AqΔt􏼐 􏼑

Aq

1 − exp AqΔt􏼐 􏼑

AqΔt
+ exp AqΔt􏼐 􏼑⎡⎣ ⎤⎦.

(22)

From equation (21), it is clear that the SARC approach
has a high efficiency in calculating the near-field radiation.
)is is because this approach avoids the requirement for
storing and processing of the complete history of the
equivalent source on the output boundary of the FDTD
region, and its computational complexity is reduced as only

O(Nmax). Beyond that, the SARC approach has a better
accuracy than the general recursive approach, due to the
analytical calculation of the convolution integral in the
discrete time interval.

3. Results and Discussion

Figure 4 shows the geometry of the near-field scattering
from rough surface. )e observation point P is located
above the rough surface, and θi denotes the incident
angle. Without loss of generality, the one-dimensional
Weierestrass-Mandelbrot function is used here to gen-
erate the rough surface [24]. In the numerical calculation,
the length of the rough surface is taken to be L � 160m
and the spatial increment is taken to be Δ � Δx � Δy �

0.05m to allow for reasonable resolution of the rough
surface model discretized with the staircase approxi-
mation, and the time increment is set to be Δt � Δ/2c in
accordance with Courant stability condition [22]. )e 2-
D FDTD space lattice is terminated by the uniaxial
perfectly matched layer (UPML) [25], and its thickness is
chosen to be 10Δ. Consider the rough surface is exposed
to the Gaussian pulse, whose expression is
Ei � exp[− 4π(t − t0)/τ2]. )e parameters of the incident
wave are adopted as follows: t0 � 60Δt and τ � 0.8t0.

To illustrate the accuracy and efficiency of the proposed
hybrid algorithm, Figures 5 and 6 present the comparison of
the near-field scattering results by the hybrid algorithm with
those by the traditional FDTD method for the TE and TM
polarized conditions, respectively. In Figures 5(a) and 5(b),
the near-zone observation points are respectively located at
(0.5m, 5m) and (0.5m, 16m), the incident angle is selected
to be θi � 200, and the root-mean-square (RMS) height is
δ � 0.1m, the fractal dimension is D � 1.5, and the per-
mittivity of the rough surface is ε � (10.801, 0.384i). In
Figures 6(a) and 6(b), the near-zone observation points are
positioned at (1.5m, 5m) and (1.5m, 16m); the rest of the
parameters are shown as follows: θi � 300, δ � 0.2m,
D � 1.5, and ε � (10.801, 0.384i). It can be observed from
Figures 5 and 6 that the time-domain scattered waveforms
for the two methods are in good agreement for different
conditions. )is result demonstrates the accuracy of the
hybrid algorithm proposed in this paper. Beyond that, hy-
brid algorithm can dramatically lessen the computation cost
compared with the traditional FDTD method. For the TE
polarized wave incidence and 4000 time-steps updating as
example, the computation costs required for two methods
are provided in Table 1. When the height of the near-zone
observation point is h � 5m, the number of FDTD meshes,
the memory usage, and the run time in the hybrid algorithm
are reduced to about 72%, 76%, and 74% of those in the
traditional FDTD method. For h � 16m, the key factors
above using the hybrid algorithm are only 39%, 42%, and
33% of those using the traditional method, respectively. It is
obvious that the hybrid algorithm becomes more efficient
with the increase in the height of the near-zone observation
point.)is is because that the FDTD region in the traditional
method has to be greatly enlarged to enclose the rough
surface and observation point, whereas that in the hybrid
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algorithm remains unchanged when the observation point
rises. In addition, we can find from Table 1 that the proposed
algorithm differs little from the traditional FDTD method in
the run time for h � 2.5m. )is is owing to the fact that, in
this case of very low observation point, the advantage of the

hybrid algorithm in reducing the FDTD meshes is almost
offset by its calculation of the near-field radiation. As the
height of the near-zone observation point increases,
the proposed hybrid algorithm becomes more favorable in
the computation efficiency.

Incident
Wave

x

y

o

P

θi

Figure 4: Geometry of near-field scattering from rough surface.
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Figure 5: Near-field Hz scattered from the rough surface by FDTD and by hybrid algorithms for the TE case. (a) h � 5m; (b) h � 16m.
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Figure 6: Near-field Ez scattered from the rough surface by FDTD and by hybrid algorithms for the TM case. (a) h � 5m; (b) h � 16m.
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4. Conclusions

In this paper, a novel hybrid algorithm has been proposed to
calculate the transient near-field scattering from rough
surface for both TE and TM polarization. )is hybrid al-
gorithm is based on the combination of the FDTD and the
2-D time-domain Huygens’ principle, and it is the devel-
opment of the traditional FDTD method. In the hybrid
algorithm, the FDTD is only performed in the computa-
tional domain containing the rough surface, which makes a
large number of FDTD meshes eliminated in the space
between the rough surface and observation point. )e
proposed hybrid algorithm is validated by comparing the
near-field scattered waveforms of the rough surface for both
the hybrid algorithm and the traditional FDTDmethod.)e
numerical results show that the hybrid algorithm is an
accurate and efficient technique in the calculation of the
transient near-field scattering from the rough surface.
Moreover, the relative efficiency of the hybrid algorithm
becomes higher with the increase in the height of the ob-
servation point. In the future, the hybrid algorithm based on
SARC approach will be developed to study the transient
composite scattering and coupling of the dispersive target
and background.
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