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To efficiently solve the electromagnetic scattering problems over a wide incident angle, a novel scheme by introducing the two-
dimensional compressive sensing theory into the wavelet method of moments is proposed. In this scheme, a linear system of
equations with multiple right-hand sides in wavelet domain is formed firstly, and one side of the bilateral sparse transform to the
induced current matrix is simultaneously accomplished and then the bilateral measurement of the induced current matrix is
operated by the linear superposition of the right-hand side vectors a few times and the extraction of rows from the impedance
matrix. Finally, after completing the other side of the bilateral sparse transform, the wide-angle problems can be solved rapidly by
two times of recovery algorithm with prior knowledge. ,e basic principle is elaborated in detail, and the effectiveness is
demonstrated by numerical experiments.

1. Introduction

Method of moments (MoM) [1] is an accurate and efficient
method for solving electromagnetic scattering problems.
Many fast methods based on MoM have been proposed,
such as fast multipole method (FFM) [2], adaptive integral
method (AIM) [3], adaptive cross approximation (ACA) [4],
and wavelet MoM [5]. However, unless the approximated
technique (e.g., asymptotic waveform evaluation [6]) is
applied, the traditional MoM needs to be implemented
repeatedly at every incident angle increment for solving the
wide-angle electromagnetic scattering problems, which leads
to a huge computing amount.

Recently, a theory known as compressive sensing (CS)
[7] is put forward in the field of signal processing, by which

the limitation from the Nyquist sampling theorem can be
broken and has been successfully applied to the computation
electromagnetic [8–11]. By combining the CS theory and the
traditional MoM, a scheme for the rapid analysis of wide-
angle problems has been formed [12]. In this scheme, a new
source including much information from different incident
angles is constructed, and the measurement of induced
currents is obtained by multiple calculations of the tradi-
tional MoM under the new source, and then the original
induced currents over the wide angle can be approximated
by means of the sparse transform and recovery algorithm.

In this paper, the two-dimensional (2-D) CS theory [13]
is employed in the wavelet MoM to build a more efficient
scheme for wide-angle problems, in which the bilateral
measurement and the bilateral sparse transform are used to
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the induced currents and the reconstruction of induced
currents is operated by the twice recovery algorithm. ,e
specific formulas are deduced in detail, and numerical ex-
amples of differently shaped objects are presented.

2. Formulations

2.1. Conventional CS Scheme. ,e matrix equation of tra-
ditional MoM for solving the wide-angle electromagnetic
scattering problems can be written as

Z I1 I2, · · · , In  � V1 V2, · · · ,Vn , (1)

where Z is the impedance matrix, I1 to In and V1 to Vn
represent the n induced current vectors and the n corre-
sponding excitation vectors at n different incident angles,
respectively.

,e conventional CS scheme in [12] mainly consists of
the following three steps:

Step 1. M new incident sources based on CS theory are
formed as

VCS
i � ci1V1 + ci2V2+, · · · , +cinVn, (i � 1, 2, · · · , M),

(2)

in which cij is the random coefficient.
Step 2. By using the new sources, M corresponding
current vectors based on CS theory can be obtained by

Z ICS1 ICS2 , · · · , ICSM  � VCS
1 VCS

2 , · · · ,VCS
M . (3)

Considering the linear identity of the problem, the
current vectors can be represented as

ICSi � ci1I1 + ci2I2+, · · · , +cinIn, (i � 1, 2, · · · , M).

(4)

In the view of CS theory, ICS1 to ICSM can be regarded as
the results of M measurements of [I1 I2,· · ·,In].
Step 3. With the help of the sparse transform (e.g., fast
Fourier transform (FFT)), one can obtain

c11 c12 · · · c1n

⋮ ⋮ · · · ⋮

cM1 cM2 · · · cMn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ I1 I2, · · · , In 
T

� ΦΨ α1 α2, · · · , αN  � ICS1 ICS2 , · · · , ICSM 
T
, (5)

in which [cij] is the measurement matrix denoted as V,
α1 to αN are the sparse projections of each column of [I1
I2,· · ·,In]T in the sparse transform Ψ, and N is the
number of basis functions.

Step 4. With the utilization of the recovery algorithm
(e.g., orthogonal matching pursuit (OMP) [14]), the
projections can be approximated by

α1 α2, · · · , αN  � argmin α1 α2, · · · , αN 
����

����L
s.t.(ΦΨ) α1 α2, · · · , αN  � ICS1 ICS2 , · · · , ICSM 

T
, (6)

and the original induced currents are reconstructed by

ICSi � ci1I1 + ci2I2+, · · · , +cinIn, (I � 1, 2, · · · , M). (7)

2.2. 2-D CS Scheme Based on Wavelet MoM. First, by the
wavelet transform, (1) is transformed into

Z I1 I2, · · · ,In  � V1
V2, · · · , Vn , (8)

where Z � WZWT, [I1 I2, · · · ,In] � W [I1 I2, · · · , In], [V1
V2, · · · , Vn] � W [V1 V2, · · · ,Vn], and W is an orthogonal
matrix constructed by standard fast wavelet transform
(FWT) with Symlets wavelet [15, 16]. In the wavelet domain,
the sparse impedance matrix and the sparse excitation
matrix are obtained after thresholding, and one side of the
bilateral sparse transform to the induced currents is
accomplished.

Second, since the impedance matrix is indirectly coin-
cident with the restricted isometry property [17], an

underdetermined system of equations can be established
[18] as

Zp
I1 I2, · · · ,In  � V1p

V2p, · · · , Vnp , (9)

in which [V1p
V2p, · · · , Vnp] is composed of all p nonzero

rows of [V1
V2, · · · , Vn] and Zp is constructed by extracting

the corresponding p rows from Z. In the CS theory, Zp is
considered as the measurement matrix to each column of
[I1 I2, · · · ,In] and V1p to Vnp are the measurement results.

,ird, M′ new excitation vectors with the length of p
based on CS theory are formed in the wavelet domain as

VCS
ip � ci1

V1p + ci2
V2p+, · · · , +cin

Vnp i � 1, 2, · · · M′( , (10)

andM′measurement results of [I1 I2, · · · ,In] are acquired by

Zp
ICS1 ICS2 , · · · ,ICSM′  � VCS

1p
VCS
2p , · · · , VCS

M′p . (11)
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Similarly to (4), we can rewrite (11) as

Zp
I1 I2, · · · ,In ΦT

� VCS
1p

VCS
2p , · · · , VCS

M′p , (12)

in which VT is the measurement matrix to the rows of
[I1 I2, · · · ,In].

Afterwards, the other side of the bilateral sparse trans-
form is applied as

I1 I2, · · · ,In  � ΓΨ, (13)

where Ψ is the sparse transform matrix to the rows of
[I1 I2, · · · ,In] and Γ represents the sparse projection.
Substituting it into (12), one will get

ZpΓΨΦT
� VCS

1p
VCS
2p , · · · , VCS

M′p . (14)

Finally, the projection Γ can be approximated by using
the recovery algorithm to solve the following two optimi-
zation problems:

s � argmin ΓΨΦT����
����L

s.t. Zp ΓΨΦT
  − VCS

1p
VCS
2p, · · · , VCS

M′p 

������

������
L
< ε,

(15)

Γ � argmin ‖Γ‖L s.t. Γ ΨΦT
  − s

�����

�����L
< ε, (16)

and the original induced currents can be reconstructed by

I1 I2, · · · ,In  � WTΓΨ. (17)

Considering the prior knowledge that [I1 I2, · · · ,In]

contains some zero rows, there are necessarily zero rows of the
same amount and the same index in s, that is, the mea-
surement result of the rows of [I1 I2, · · · ,In], and therefore,
only the nonzero rows in the projection Γ, which are cor-
responding to the nonzero rows in s, need to be recovered in
(16). ,us, considerable computing time can be saved.

In the proposed scheme, the solution of two optimiza-
tion problems is dominating in the computing cost.,e total
computational complexity of solving (15) and (16) is
O(pNS1M′+ nQS2M′) (take OMP as the recovery algo-
rithm), where S1 and S2 are the iteration steps in the two
times of OMP, respectively, n is the number of different
incident angles, N is the number of basis functions, p is the
number of rows extracted from the impedancematrix, andQ
is the number of nonzero rows in Γ. ,e computational
complexity of traditional MoM with iteration method for
analyzing wide-angle problems is O(ndN2), where d is the
iteration counter.

,erefore, the effectiveness improved by the 2-D CS
scheme can be evaluated by

ζ �
pNS1M′ + nQS2M′

ndN
2 �

pS1M′
ndN

+
QS2M′

dN
2 , (18)

in which p<<N, Q<<N, and M′ << n, and in general,
S1<< d, S2<< d, and M′ <<N.

Furthermore, the computational complexity of the
conventional CS scheme provided in [12] is
O(dMN2 + nMKN), where K is the iteration steps of OMP.

Compared with the conventional scheme, the proposed
scheme also has the following two improvements: first, the
calculation amount of matrix operation involving the im-
pedance matrix is reduced since the impedance matrix in the
wavelet domain is sparse; then, the number of measurements
is decreased (M′ <M) because the sparsity of the projection
Γ is better with the help of the bilateral sparse transform.
Obviously, pNS1M′ < dMN2 and nQS2M′ < nMKN.

3. Numerical Results

In this section, four examples of differently shaped objects are
presented to validate the effectiveness of the proposed scheme,
in which the electric field integral equation (EFIE) is established
to solve the problems; Gaussianmatrix, FFT basis, andOMP are
taken as the measurement matrix V, the sparse transform
matrixΨ and recovery algorithm, respectively, and the incident
waves are the transvers magnetic waves of 3GHz. ,e wide
incident angle is divided into 1°, 2°, ..., 360° in the first three
examples and 0.1°, 0.2°, ..., 360° in the last one. For the con-
venience of comparison, we define the recovery error as

Δ �
I1 I2, · · · ,In  − I1 I2, · · · , In 

�����

�����2

I1 I2, · · · , In 
����

����2
. (19)

3.1. Example 1. An infinite perfectly electrical conducting
(PEC) circular cylinder with a radius of 0.1m is considered, and
its generator is divided into 512 equally spaced segments. ,e
impedance matrix and the excitation matrix are sparse in the
wavelet domain after thresholding with the threshold of 10−4, as
shown in Figures 1(a) and 1(b) (there are 128 nonzero rows in
the excitationmatrix). Figure 1(c) shows thematrix constructed
by extracting 128 rows from the impedancematrix according to
the indexes of nonzero rows in the excitation matrix.

,e relationships between the number of measurements
(i.e., the number of new sources M′) and the recovery error
are provided in Figure 2. It is clear that a lower number of
measurements is required in the proposed scheme to achieve
a similar precision as the conventional CS scheme.

,e number of measurements is set to 35, and only 64 rows
in the projection Γ need to be recovered since there are 64
nonzero rows in the measurement results of the rows of the
current matrix [I1 I2, · · · ,In] (i.e., the solution s of (15)), as
shown in Figure 3(a). ,e distribution of nonzero rows in the
current matrix is shown in Figure 3(b). One can see clearly that
the indexes of nonzero rows in themeasurement results and the
current matrix are the same. Hence, the prior knowledge
provided by the measurement results is reliable. As shown in
Figure 4, the numerical result of the original induced currents at
the 77th segment under different incident angles is calculated by
the proposed scheme, which also agrees very well with the result
of traditional MoM.

3.2. Example 2. An infinite PEC square cylinder with a side
length of 0.2m, whose perimeter is divided into 512 equally
spaced segments, is taken as the object. ,e comparison of
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measurement times between the conventional CS scheme
and the proposed scheme is presented in Figure 5. It can be
seen that only 39 measurements are needed to obtain the
satisfactory accuracy by using the bilateral sparse transform
in the proposed scheme, while the conventional CS scheme
needs 78 calculations.

With the threshold of 10−3, 184 rows are extracted from the
impedance matrix according to the indexes of nonzero rows in
the excitation matrix. ,e number of rows that needs to be
recovered in Γ is only 128 with the help of the prior knowledge,
which is shown in Figure 6(a) (the number of measurements is
selected as 45). Figure 6(b) illustrates the distribution of nonzero
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Figure 1: Matrices in wavelet domain. (a) Impedance matrix. (b) Excitation matrix. (c) Constructed matrix by extracting rows from the
impedance matrix.
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Figure 2: ,e recovery errors vary with the number of measurements for the circular cylinder.
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rows in the current matrix, and we can see that the indexes of
nonzero rows in Figures 6(a) and 6(b) are identical. In Figure 7,
the original induced current distribution at different segments
with the incident angle at 70° is presented, and the solution of
traditional MoM is also provided for comparison. We can see
that the proposed scheme has a high precision.

3.3. Example 3. As the third example, an infinite PEC
concave cylinder (as shown in Figure 8) with 1024 basis
functions is calculated. As shown in Figure 9, the com-
parison of the number of measurements proves the

superiority of the bilateral sparse transform again. Setting
the threshold and the measurement times to 10−3 and 65,
respectively, there are 360 nonzero rows in the excitation
matrix, and thus, we need to extract the corresponding 360
rows from the impedance matrix. ,e distributions of
nonzero rows in the measurement result matrix and the
current matrix are shown in Figure 10. As can be seen, the
distributions are still the same when the object is irregular.
,erefore, only 250 rows in the projection need to be re-
covered. To verify the accuracy of the proposed scheme, the
radar cross section (RCS) of the object illuminated by a
random incident angle (e.g., 128°) is presented in Figure 11.
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Figure 3: Distributions of nonzero rows in (a) measurement result matrix and (b) current matrix for the circular cylinder.
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3.4. Example 4. To prove the effectiveness of the proposed
scheme for analyzing the electrically large targets, an infinite
PEC circular cylinder with a radius of 10m that contains 16384
basis functions is considered. We choose the threshold and the
measurement times as 10−3 and 950, respectively, and 6121 rows
are extracted from the impedance matrix to construct the

measurement matrix to the columns in the current matrix. At
last, 2353 nonzero rows in the current matrix need to be solved
from (16). ,e RCS of the electrically large cylinder illuminated
by a random incident angle (e.g., 77.7°) is shown in Figure 12,
and the comparisons of CPU time and measurement times are
provided in Table 1.
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Figure 5: ,e recovery errors vary with the number of measurements for the square cylinder.
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Figure 6: Distributions of nonzero rows in (a) measurement result matrix and (b) current matrix for the square cylinder.
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Figure 10: Distributions of nonzero rows in (a) measurement result matrix and (b) current matrix for the concave cylinder.
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4. Conclusions

In this paper, a 2-D CS scheme based on wavelet MoM is
formed, by which the wide-angle scattering problems can be
analyzed more efficiently. Numerical results demonstrate
that only part of the rows in the projection matrix needs to
be recovered with the help of the prior knowledge; mean-
while, compared with the conventional CS scheme, a lower
number of measurements is required to obtain high accuracy
in the proposed scheme.
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