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Compared with uniform arrays, a generalized sparse array (GSA) can obtain larger array aperture because of its larger element
spacing, which improves the accuracy of DOA estimation. At present, most DOA estimation algorithms are only suitable for the
uniform arrays, while a few DOA estimate algorithms that can be applied to the GSA are unsatisfactory in terms of computational
speed and accuracy. To compensate this deficiency, an improved DOA estimation algorithm which can be applied to the GSA is
proposed in this paper. First, the received signal model of the GSA is established. ,en, a fast DOA estimation method is derived
by combining the weighted noise subspace algorithm (WNSF) with the concept of “transform domain” (TD).,eoretical analysis
and simulation results show that compared with the traditional multiple signal classification (MUSIC) algorithm and the
traditional WNSF algorithm, the proposed algorithm has higher accuracy and lower computational complexity.

1. Introduction

With the rapid development of information technology,
wireless transmission systems, such as mobile communi-
cations, radar, and unmanned aerial vehicles (UAV), have
become widely used. As such, antenna technology has be-
comemore important [1–5], as it has array antenna direction
finding, which is an important branch of antenna tech-
nology. Most of the existing arrays are uniform arrays,
whose element spacing is less than half wavelength of the
incident signal, so as to avoid the ambiguity of angle esti-
mation [6–9]. However, when the number of array elements
is limited, the aperture of the uniform array will also be
affected, which will lead to lower accuracy of DOA esti-
mation [10, 11]. To solve this problem, scholars have pro-
posed the GSA—a nonequidistant array system—in which
the distance between adjacent array elements is more than
half of the wavelength of the incident signal [12–15].
Compared with the uniform arrays, the GSA can obtain
larger array aperture.,erefore, the estimation accuracy and
resolution of the algorithm are effectively improved. ,e
GSA is derived from a uniform array, and it can be obtained
by redeploying the array elements of uniform array

according to some optimization algorithms (such as sim-
ulated annealing algorithm [16, 17] and genetic algorithm
[18, 19]). For instance, Chen et al. [20] has proposed an
effective method to construct GSA based on the improved
genetic algorithm.

,e most significant feature of GSA is that the spacing
between adjacent array elements is unequal. In this case,
most conventional DOA estimation algorithms which have
strict requirements on array structure, such as ESPRIT al-
gorithm [21–23], will lose their effect. On the other hand, a
few algorithms that are less dependent on the array struc-
ture, such as the MUSIC algorithm [24–26], do not perform
well in the condition of low SNR. At present, researchers
generally use the WNSF algorithm for DOA estimation [27].
,eWNSF algorithm has no requirement on array structure
and can accurately estimate signal DOA under bad condi-
tions such as low SNR or small number of snapshots
[28–30]. However, the WNSF algorithm needs spectral peak
search. In accurate search or two-dimensional DOA esti-
mation, the total number of points of the spatial spectrum is
very huge, which incurs vast amount of computation and
hinders the application of the algorithm in practical engi-
neering [31, 32].
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To reduce the computation, a reduced-dimension search
algorithm was proposed in [33, 34], which could reduce the
dimensionality of the spectral function and then performed
multiple low-dimensional searches. However, this algorithm
not only reduced the amount of computation but also re-
duced the accuracy of parameter estimation. To solve this
problem, a concept of transform domain (TD) was proposed
[35, 36]. ,e authors in [35] transformed the received signal
into the coarray domain and then iteratively corrected the
phase offset between the coarray data and presumed model
caused by angle biases according to a closed-form formula.
On the other hand, Zhang et al. [36] used spherical Fourier
domain to construct the array signal model. However, these
methods are only applicable to uniform liner arrays, which
means that the method is not universal. Nevertheless, it is a
concept worth learning and developing.

Motivated by the above facts, in this paper, we combine
the concept of “transform domain” with the WNSF algo-
rithm to obtain a fast DOA estimation method which is
suitable for the GSA.,e procedure of the proposed method
is as follows. Firstly, we establish the received data model of
the GSA. Secondly, the model is transformed into the TD.
,en, the intersection of the noise subspace and its conjugate
space in the TD is used to replace the noise subspace in the
spectral search function. In this manner, the calculation
range of the search function can be reduced by half, and the
“rapidity” of the algorithm can be achieved. ,e theoretical
analysis and computer simulation results show that the
proposed algorithm has higher accuracy and lower com-
putational complexity than the MUSIC algorithm and tra-
ditional WNSF algorithm.

2. Signal Model of GSA

Consider a GSA composed of M elements, as shown in
Figure 1. ,e array elements are arbitrarily distributed in
space, and the position coordinates of the array elements are
given by (xm, ym, zm), m � 1, 2, . . . , M.

,e black dots in Figure 1 represent the array elements.
,e elevation angle θ is defined as the intersection angle
between the signal and the positive direction of Z-axis, while
the azimuth angle φ is defined as the angle between the
projection of the signal onto the XOY plane and the positive
direction of the X-axis. Here, the value ranges of θ and φ are
both (− π/2, π/2). Assume that K narrow-band waves im-
pinge upon the GSA from the elevation angle θk and the
azimuth angle φk, the data received by a snapshot of the
array can be expressed as

x(t) � A(θ, φ)s(t) + n(t), (1)

where x(t)≜ [x1(t), x2(t), · · · , xM(t)]T is the M × 1 di-
mensional array receiving data; s(t)≜ [s1(t), s2(t), · · · ,

sK(t)]T is the signal sampling data; and n(t) is the additive
white Gaussian noise matrix with the same dimension as
x(t). ,e array steering matrix A(θ, φ)≜ [a(θ1,φ1),

a(θ2,φ2), . . . , a(θK,φK)] and the steering vector a(θk,φk)

can be expressed as

a θk,φk( 􏼁≜ e
jβk,1 , e

jβk,2 , . . . , e
jβk,M􏽨 􏽩, (2)

where j �
���
− 1

√
is the plural unit. Define λ as the signal

wavelength. ,en, βk,m is given by

βk,m �
2π
λ

xm sin θk cos φk + ym sin θk sin φk + zm cos θk( 􏼁.

(3)

,e process of estimating the 2D spatial angle of the K
signals based on the signal model constructed by (1) is called
spatial spectral estimation.

3. DOA Estimation Algorithm Based on TD-
WNSF

3.1. Principle of theTraditionalWNSFAlgorithm. In practical
application, according to the received data from P snapshots,
the spatial correlation is estimated using a time average, and
the covariance matrix of the array output is obtained by

􏽢RXX �
1
P
XXH

, (4)

where X is the received data matrix of P snapshots. After
performing an eigenvalue decomposition, we can derive the
following result:

􏽢RXX � USDSU
H
S + UNDNU

H
N, (5)

where US is the signal subspace composed of eigenvectors
corresponding to K larger eigenvalues and UN is the noise
subspace composed of eigenvectors corresponding to M − K

smaller eigenvalues. Accordingly, we can deduce that the
signal subspace and the space formed by the steering vector
of the array are the same, and the steering vector space of the
array and the noise subspace are orthogonal to each other
[37]. ,is orthogonal relation can be expressed as

a
H

(θ, φ)UN � OM×1, (6)
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Figure 1: Generalized sparse array.
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where the symbol ‘H’ represents the conjugate transpose
operation, a(θ, φ) is the M × 1 steering vector, and O is the
1 × M − K zero vector.

Considering that the length of the actual received data
matrix is limited and noise is mixed in the actual received
data matrix, a(θ, φ) and UN are not completely orthogonal.
In other words, equation (6) is not completely valid.
,erefore, the following formula of noise subspace fitting
(NSF) is considered [38]:

(θ,φ) � min U
H
NA(θ, φ)

����
����
2
F

� min tr U
H
NA(θ, φ)A

H
(θ,φ)UN􏽮 􏽯.

(7)

Equation (7) can be further extended to a weighted form.
,e relationship between the noise subspace and the steering
vector space of the array is given by

U
H
NA(θ, φ)W

(1/2)
� 0, (8)

where W is the weight. ,en, the fitting formula given by
equation (7) can be transformed into

(θ, φ) � min U
H
NA(θ, φ)W

1/2����
����
2
F

� min tr U
H
NA(θ, φ)WA

H
(θ,φ)UN􏽮 􏽯 � min tr WA

H
(θ, φ)UNU

H
NA(θ, φ)􏽮 􏽯. (9)

,eoretically, the DOA estimation in equation (9) can be
estimated by bringing a 2D search to bear on the ranges of all
parameters; however, this is computationally exhaustive.

3.2. TD-WNSF Algorithm. When running the traditional
WNSF algorithm, an extreme value test should be conducted
for each point in the spatial spectrum. With the improve-
ment in search accuracy, the number of spectral points is
increased further, leading to a sharp increase in the running
time of the algorithm. If we can find a way to compress the
extremum search range, then the speed of DOA estimation

can also be improved. From this analysis, the following
transformation is considered:

u � sin θ cos φ,

v � sin θ sin φ,
���������
1 − u

2
− v

2
􏽰

� cos θ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

Combining equations (3) and (10) leads to

βk,m �
2π
λ

xmuk + ymvk + zm

���������

1 − u
2
k − v

2
k

􏽱

􏼒 􏼓. (11)

Moreover, combining equations (2) and (11) leads to

a(u, v) �

e
j2π x1u+y1v+z1

������
1− u2− v2

√
( )

e
j2π x2u+y2v+z2

������
1− u2− v2

√
( )

⋮

e
j2π xMu+yMv+zM

������
1− u2− v2

√
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

ej2π x1(− u)+y1(− v)+z1

����������
1− (− u)2− (− v)2

√
( 􏼁

ej2π x2(− u)+y2(− v)+z2

����������
1− (− u)2− (− v)2

√
( 􏼁

⋮

ej2π xM(− u)+yM(− v)+zM

����������
1− (− u)2− (− v)2

√
( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

� a
∗
(− u, − v), (12)

where ∗ represents the conjugate operation. ,e steering
vector a(θ, ϕ) and the transformation domain steering
vector a(u, v) are clearly equivalent in a physical sense.,en,
(− u, − v) in equation (12) can be depicted as a virtual mirror
signal source symmetry to (u, v). Assume that the weight is
given by W � I, where I represents the identity matrix.
Moreover, combining equations (6) and (12) leads to

a
H

(u, v)UN � O,

a
∗
(u, v)􏼂 􏼃

H
U
∗
N � a

H
(− u, − v)U

∗
N � O.

⎧⎨

⎩ (13)

In equation (13), the steering vector corresponding to the
real signal source (u, v) is orthogonal to the noise subspace
UN, whereas the steering vector corresponding to the virtual
mirror signal source (− u, − v) is orthogonal to the conjugate
noise subspace U∗N. If we replace the noise space in the
WNSF algorithm with the intersection space of UN and U∗N,

as the intersection space is orthogonal to the real steering
vector and the virtual steering vector, then the WNSF al-
gorithm can generate an extremum at the real signal source
and virtual signal source simultaneously. ,is characteristic
means that the DOA estimation only needs to search half of
the (u, v) domain. ,erefore, the purpose of “rapidity” can
be achieved. ,is algorithm of constructing the WNSF
spectral function in the TD is called the TD-WNSF
algorithm.

Solving the intersection space of UN and U∗N is essential
to constructing the TD-WNSF algorithm. ,e steps dis-
cussed briefly describe the method to find the intersection
space of the two subspaces.

First, we define a concept called “adjoint solution.”
Suppose that [α1, α2, . . . , αs] and [β1, β2, . . . , βt] are two
groups of vectors of the linear space V and
(a1, a2, . . . , as, b1, b2, . . . , bt) is a solution of the equation
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x1α1 + x2α2 + . . . + xsαs � y1β1 + y2β2 + . . . + ytβt. ,en,
(a1, a2, · · · , as) is called the adjoint solution of
(a1, a2, . . . , as, b1, b2, . . . , bt).

Suppose that the noise subspace UN is represented by
[α1, α2, . . . , αM− K] and the conjugate noise subspace U∗N is
represented by [β1, β2, . . . , βM− K]. ,en, the intersection
space Uinter of UN and U∗N can be determined by the adjoint
solution of

x1α1 + x2α2 + . . . + xsαs � y1β1 + y2β2 + . . . + ytβt,

(14)

which is specifically expressed by Definition 1 in this study.

Definition 1. Uinter � UN ∩U∗N � k1α1 + k2α2 + . . . + ksαs|􏼈

(k1, k2, . . . , ks)} is the adjoint solution of the solution of
equation (14).

,e definition can be proven as follows. Suppose
ζ � Uinter. From ζ ∈ UN, we can obtain

ζ � k1α1 + k2α2 + . . . + ksαs, (15)

and from ζ ∈ U∗N, we can derive

ζ � l1β1 + l2β2 + . . . + lsβs. (16)

,us, we have

k1α1 + k2α2 + . . . + ksαs � l1β1 + l2β2 + . . . + lsβs. (17)

Consequently, (k1, k2, . . . , ks) is an adjoint solution of
equation (14).

By contrast, if (k1, k2, . . . , ks) is the adjoint solution of a
solution to that of equation (14), then (k1, k2, . . . ,

ks, l1, l2, . . . , ls) is the solution of equation (14), which is also
the expression of equation (17). Given that the left side of
equation (17) belongs to UN, whereas the right side of
equation (17) belongs to U∗N, we have

ζ � k1α1 + k2α2 + . . . + ksαs ∈ Uinter. (18)

In summary, Uinter � UN ∩U∗N � k1α1 + k2α2 + · · · +􏼈

ksαs|(k1, k2, · · · , ks)} is the adjoint solution of the solution of
equation (14). At this stage, the proof has been completed.

On the basis of on the above algorithm, the TD-WNSF
spectrum can be defined as

fTD− WNSF(u, v) �
1

tr WA
H

(u, v)UinterU
H
interA(u, v)􏽮 􏽯

.

(19)

As mentioned, this TD-WNSF spectral function gen-
erates extreme values at the real and mirror positions of the
signal at the same time. ,us, only a half-domain search in
the (u, v) domain is needed to estimate the signal direction.
,en, an accurate search is performed at the vicinity of the
spectral peak position and its mirror image position to
obtain the precise arrival angle. On the basis of the previous
analysis, the proposed algorithm does not entail any array
structure requirement and can be applied to the GSA.

3.3.Description ofAlgorithmStep. ,e implementation steps
of the proposed method are summarized as follows:

(i) Step 1: perform eigenvalue decomposition of the
array-received data in order to obtain the noise
subspace.

(ii) Step 2: calculate the intersection space based on the
algorithm of Definition 1 and then construct the
TD-WNSF spectrum based on equation (19).

(iii) Step 3: search the positive half-spectrum of equation
(18) to obtain the estimated value (􏽢ui, 􏽢vi) of the
DOA parameter in the (u, v) domain, where
i � 1, 2, . . . , K.

(iv) Step 4: replace a(θ, φ) in equation (6) with a(􏽢ui, 􏽢vi)

and for the extreme value test. Among the two
elements, the one that satisfies aH(u, v)UN � 0 is
the real TD-DOA.

(v) Step 5: substitute the TD-DOA, which was obtained
in step 4, into equation (10) to calculate the spatial
DOA (􏽢θi, 􏽢φi).

(vi) Step 6: perform an accurate searching in a small area
near (􏽢θi, 􏽢φi). ,e element that satisfies
aH(θ,φ)UN � 0 is the real spatial domain DOA.

As shown in these steps, the algorithm first implements a
rough search process to obtain the TD-DOA (􏽢ui, 􏽢vi). ,en,
the inverse trigonometric function is transformed to cal-
culate the rough estimation of the angle (􏽢θi, 􏽢φi). Finally, an
accurate search is conducted in the small neighborhood of
(􏽢θi, 􏽢φi) to obtain the fine estimate (θ

⌢

i,φ
⌢

i). As such, no angle
measurement blurring will occur.

3.4. Algorithm Complexity Analysis. ,e traditional MUSIC
algorithm, the traditional WNSF algorithm, and the TD-
WNSF algorithm are compared in this study. ,e array
structure used by the three algorithms is shown in Figure 1.
Consider that K uncorrelated signals impinge upon an GSA
of M elements, the number of snapshots is given by L, and
the number of search points is given by q. Assume that all the
three algorithms perform a rough search, which means that
the step size is 1°.

For the traditional MUSIC algorithm, the modulus
‖aH(θ, φ)UN‖2 needs to be calculated for each spectral point,
and the dimension of UN is M × (M − K). ,erefore, the
computation of the spectral search of the traditional MUSIC
algorithm is q(M − K)(M + 1). ,e computation of the
eigenvalue decomposition in the M × M dimensional
autocovariance matrix is M(K + 2)2. ,erefore, the total
computation of the traditional MUSIC algorithm is
q(M − K)(M + 1) + M(K + 2)2.

For the traditional WNSF algorithm, the weight W is
usually taken as a unit matrix I in the calculation. ,e
operation used to find the trace tr(‖aH(θ, φ)UN‖2) is needed
to calculate each spectral point. ,e dimension of UN is
M × (M − K), and the computation involved in finding the
trace is q(M − K)(M + M).,e computation of thematrix’s
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eigenvalue decomposition is the same as that of the tradi-
tional MUSIC algorithm, which isM(K + 2)2.,erefore, the
total computation of the traditional MUSIC algorithm is
q(M − K)(M + M) + M(K + 2)2.

For the TD-WNSF algorithm proposed in this study, the
operation used to find the trace tr(‖aH(θ, φ)Uinter‖

2) is
needed to calculate each spectral value point. ,e inter-
section space Uinter has a lower dimension denoted by M ×

(M − 2K) compared with UN, and the search range of the
TD-WNSF algorithm is reduced by half. ,us, the com-
putation of the peak search is q(M − 2K)(M + 1)/2, while
the computation of the eigenvalue decomposition for the
autocovariance matrix in the TD-MUSIC is
2(M − 1) × (K − 1)2. ,erefore, the total computation of
the TD-MUSIC algorithm is q(M − 2K)(M + 1)/
2 + 2(M − 1)(K − 1)2.

Table 1 shows a comparison of the computations of the
three algorithms with the number of array elements.

We can easily see that, with the increase of the number of
array elements, the computational complexity of our algo-
rithm is far lower than the other two algorithms, which
reflects the rapidity of our algorithm.

4. Simulation and Analysis

Consider a generalized sparse array with 16 array elements,
the position distribution of its array elements is shown in
Table 2.

4.1. Simulation 1: Signal DOA Parameter Estimation. ,is
simulation was implemented to evaluate the effectiveness of
the proposed TD-WNSF algorithm. Considering a signal
with the following values, θ � 60o and φ � 20o, impinging
upon the GSA. SNR is taken to be 0 dB.,e running result of
our algorithm is shown in Figure 2. From Figure 2, we can
see that the estimation of TD-DOA is (0.17, 0.865).
According to equation (10), the spatial angle (60°, 20°) and
the TD angle (0.17, 0.865) are equivalent, which illustrates
that our algorithm can accurately measure the DOA of the
signal.

4.2. Simulation 2: Relationship between Algorithm Perfor-
manceandSNR. ,is simulation is implemented to compare
the DOA estimation performances of the MUSIC, WNSF,
and TD-WNSF algorithms. ,e Monte Carlo number is
L � 500, and the SNR shifts from − 10 to 20 dB. ,e root-
mean-squared error (RMSE) is defined as

RMSEθ �
1
K

􏽘

K

k�1

�������������

1
L

􏽘

L

l�1

􏽢θk,l − θk􏼐 􏼑
2

􏽶
􏽴

,

RMSEφ �
1
K

􏽘

K

k�1

��������������

1
L

􏽘

L

l�1
􏽢φk,l − φk􏼐 􏼑

2

􏽶
􏽴

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where 􏽢θk,l and 􏽢φk,l represent the estimated values of the Kth
signal in the Lth Monte Carlo simulation, respectively.
Figure 3 shows the relationship between the RMSE of the
azimuth angle and SNR, while Figure 4 shows the rela-
tionship between the RMSE of the elevation angle and SNR.

From Figures 3 and 4, we can see that the RMSE curves
of three methods decrease as SNR increases. However, the
RMSE curve of our TD-WNSF algorithm locates below that
of MUSIC andWNSF all along, which indicates that the TD-
WNSF is superior to MUSIC and RD-MUSIC in a different
SNR. ,is is because our method performs many fine-
grained searches in the neighborhood of the TD estimation.

Table 1: Computations of the three algorithms.

Array number 5 6 7 8 9 10
MUSIC 3320 5136 6952 9848 12744 16000
WNSF 5480 8640 12712 17408 22824 28960
TD-WNSF 548 1270 2172 3254 4516 5958

Table 2: ,e position coordinates of the array.

Coordinate
Number X (m) Y (m) Z (m)
1 0 0 0
2 − 0.04487 0.12177 0.12131
3 − 0.08974 − 0.24355 0.24264
4 − 0.13461 − 0.36533 0.36395
5 0.07681 − 0.04924 0.10906
6 0.03194 − 0.17101 0.23038
7 − 0.01293 − 0.29279 0.35170
8 − 0.05780 − 0.41456 0.47302
9 0.19849 0.23309 0.09681
10 0.15362 − 0.98460 0.21812
11 0.10875 − 0.22024 0.33945
12 0.63880 − 0.34202 0.46076
13 0.27529 − 0.25930 0.20587
14 0.23043 − 0.14769 0.32719
15 0.18556 − 0.26948 0.44851
16 0.14069 − 0.39125 − 0.39125
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Figure 2: TD-WNSF spectrum.
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4.3. Simulation 3: Relationship between Algorithm Perfor-
mance and the Angle of Incident Signal. To observe the
performance of the new approach more clearly, we com-
pared the algorithm performance with the angle of incident
signal. ,e simulation consists of two parts. ,e first part
entails fixing the elevation angles to 15°, 30°, 45°, 60°, and 75°.
,e change in azimuth angle is conducted to explore the
relationship between RMSE and azimuth angle. ,e second
part involves fixing the azimuth angles to 15°, 30°, 45°, 60°,
and 75°. ,e change in elevation angle is performed to
explore the relationship between RMSE and elevation angle.

,e simulation result of the first part is shown in
Figure 5.

Figure 5 shows the relationship between the perfor-
mance of algorithms and the azimuth angle of the incident
signal under five typical elevation angles. ,e comparison of
the five subgraphs indicates that the array has high sensi-
tivity to the signals with azimuth angle between 0° and 40°.

,e simulation result of the second part is shown in
Figure 6.

Figure 6 shows the relationship between the perfor-
mance of algorithms and the incident elevation angle of the
incident signal under five typical azimuth angles. ,e
comparison of the five subgraphs indicates that the array has
high sensitivity to the signals with an elevation angle be-
tween 10° and 35°.
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Figure 3: RMSE of the azimuth angle.
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Figure 5: Relationship between RMSE and azimuth angle at different elevation angles. (a) Fixed elevation angle of 15°. (b) Fixed elevation
angle of 30°. (c) Fixed elevation angle of 45°. (d) Fixed elevation angle of 60°. (e) Fixed elevation angle of 75°.
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5. Conclusions

In this paper, a novel and efficient TD-WNSF algorithm for
estimating the DOA was proposed, which can be applied to
the GSA. We first established the received data model of the
GSA. And then, we exploited the symmetry of the fitting
estimator in the TD to reduce the spectral searching range.
Compared with the traditional MUSIC and WNSF algo-
rithms, the computational complexity of the proposed al-
gorithm is significantly reduced. ,e simulation results
indicate that the TD-WNSF algorithm has high accuracy and
efficiency.
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