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)e massive multiple-input multiple-output (MIMO) technology is one of the core technologies of 5G, which can significantly
improve spectral efficiency. Because of the large number of massive MIMO antennas, the computational complexity of detection
has increased significantly, which poses a significant challenge to traditional detection algorithms. However, the use of deep
learning for massive MIMO detection can achieve a high degree of computational parallelism, and deep learning constitutes an
important technical approach for solving the signal detection problem. )is paper proposes a deep neural network for massive
MIMO detection, named Multisegment Mapping Network (MsNet). MsNet is obtained by optimizing the prior detection
networks that are termed as DetNet and ScNet. MsNet further simplifies the sparse connection structure and reduces network
complexity, which also changes the coefficients of the residual structure in the network into trainable variables. In addition, this
paper designs an activation function to improve the performance of massive MIMO detection in high-order modulation
scenarios. )e simulation results show that MsNet has better symbol error rate (SER) performance and both computational
complexity and the number of training parameters are significantly reduced.

1. Introduction

In recent years, as the number of mobile terminals has
exploded, traditional small-scale MIMO systems cannot
meet the requirements of various mobile services for
communication rates. )erefore, the MIMO technology is
gradually developing in the direction of large scale; com-
pared with the traditional MIMO system, the massive
MIMO system expands the number of device antennas to
dozens or even hundreds, which further improves the
performance of the communication system.

)e communication system has obvious advantages
using massive MIMO, but as the number of antennas in-
creases, it will also bring detection problems, such as the
more antennas, the higher the complexity of the detection
algorithm [1].

Because of its powerful ability to solve complex tasks,
deep learning has attracted worldwide attention, especially
with the improvement of big data and hardware computing
capabilities, which has been applied in various industries.
Recently, some methods in deep learning have also been
introduced into the communication field [2–5]. Samuel et al.

proposed a deep neural network, named Detection Network
(DetNet) [6, 7]. )e DetNet is a network structure that is
specifically designed for massive MIMO detection; due to its
low complexity and high detection performance, it has been
widely studied. Furthermore, a related paper proposed
Sparsely Connected Neural Network (ScNet) [8], which is an
improvement of DetNet, because of its simpler network
structure. However, the detection performance of these two
networks is limited in high-order modulation scenarios. In
addition, multilevel MIMO detection [9] is proposed to
detect multilevel modulation symbols, but this is not suitable
for massive MIMO scheme, and the complexity of multilevel
MIMO detection is higher than DetNet. In [10], a new
model-driven deep learning-based (DL-based) massive
MIMO detector is proposed, which is designed by unfolding
an iterative algorithm [11]. However, the complexity of this
method is high in 16-QAM modulation.

In this paper, we designed a deep learning network for
massive MIMO systems and named it MsNet, which is an
improvement over DetNet and ScNet. Compared with
DetNet and ScNet, MsNet reduces the complexity of the
network and greatly improves the detection performance in
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high-order modulation scheme. )e main contributions of
this paper are as follows: first, we simplify the sparse con-
nection structure of ScNet and add two trainable variables to
adjust the step size. Second, we design a special activation
function for symbol detection to perform multisegment
mapping of the input signal, which is suitable for high-order
modulation communication scenarios. )is activation
function is more flexible than the activation function of
DetNet and multilevel MIMO detection, which can further
improve the detection performance of the network. Finally,
in order to obtain appropriate residual coefficient values, we
set the residual coefficients in the network as trainable
variables.

)e rest of the paper is organized as follows: Section 2
presents the system model. We come up with the MsNet
architecture in Section 3. In Section 4, we verify the supe-
riority of MsNet through simulation and discuss the com-
plexity of the network. Finally, the conclusions are presented
in Section 5.

2. System Model

We consider the multiuser MIMO system with M transmit
antennas, and the total number of receiver antennas is N.
)e system model can be abbreviated as follows:

y � Hx + n, (1)

where y ∈ RN is the received signal vector and x ∈ RM is the
transmitted signal vector. In addition, H ∈ RN×M is a time-
varying and Rayleigh flat-fading channel, the elements of
which are independent and identically distributed with
complex Gaussian variables of zero mean and unit variance
[12]. n ∈ RN is the additive white Gaussian noise (AWGN),
which follows the distribution CN(0, σ2).

We can equivalently replace a complex expression with a
real one, which is as follows:
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where Re(•) and Im(•) are the real and imaginary parts of
(•), respectively. Equation (2) can be further abbreviated as
follows:

y � Hx + n, (3)

where y ∈ R2N, x ∈ R2M, channel matrix H ∈ R2N×2M, and
noise n ∈ R2N.

3. Massive MIMO Detection

Massive MIMO detection is an important part in com-
munication; low-complexity and high-performance detec-
tion algorithms are still being explored. Many typical
detection algorithms will bring many inspirations to new
algorithms.

In this paper, we design a deep learning network for
massive MIMO systems, which is named MsNet. MsNet is a
further improvement of DetNet and ScNet, and we have
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where xk
in and xk

out are the input and the output of the es-
timate in the kth unit, respectively, k � 1, · · · , K, where K is
the total number of layers in the network.

)e structure of each unit in MsNet is shown in Figure 1.
As shown in Figure 1, we first linearly weight the known

information HTHxk
in and HTy and the training variables

αk and βk are added to MsNet for adjusting the step size. All
the input vectors can be connected and transformed into a
one-dimensional vector by Concat. In addition, sigS is an
activation function, which can carry out multisegment
mapping of input information. Since the activation function
design of the DetNet network has poor performance for
high-order modulation scene, it is extremely important to
design a more flexible activation function to improve signal
detection performance under different modulationmethods.
)e design method of sigS is to construct a staircase function
by the sum of multiple sigmoid functions, which performs
multisegment mapping for the constellation point set of
different modulation methods.

First of all, sigmoid is a well-known activation function
in the field of deep learning, defined as

sigmoid(x) �
1

1 + e
− x. (5)

On the basis of the sigmoid function, we added pa-
rameter f.

Figure 2 shows the curves of sigmoid(fx) with different
values of f, where f can be interpreted as a slope. Second, to
satisfy the multisegment mapping of the function curve, the
activation function is designed as the sum of several sigmoid
functions and a step function is constructed by combining
the constellation point information of the different modu-
lation modes.

)e specific formula is as follows:

sigSum(x) � L + E 
2l−1

t�1
sigmoid fx + Bt( , (6)

Bt � 5 +(−1)
t
(10t − 5). (7)

In (6), L is the minimum value of the symbol set under
different modulation modes and E is the minimum Eu-
clidean distance between adjacent symbols. In addition, the
total number of the constellation point sets is 2l.

Figure 3 shows the curve of sigSum in different mod-
ulation methods, and the parameters of sigSum for different
modulations are given in Table 1.

As shown in Table 1, sigSum can be written as −0.707 +

1.414 × sigmoid(10x) for QPSK and −3 + 2×

[sigmoid(10x) + sigmoid(10x + 20) + sigmoid(10x − 20)]

for 16-QAM. Moreover, we can extend sigSum to 64-QAM,
256-QAM, etc.

Finally, in order to make the activation function
learnable, we add a set of trainable variables gt, ht 

2l−1
t�1 to

(6), which is given by
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sigS(x) � L + E 
2l−1

t�1
sigmoid gtfx + htBt( . (8)

Equation (8) is the final activation function, and g1 �

h1 � 1 to ensure that the initial structure of the activation
function is not changed. gt adjusts each stair corresponding
to the mapping curve up and down, and each block of step
size can be adjusted horizontally by ht.

)e overall structure of MsNet is illustrated in Figure 4.
In ScNet, the residual coefficient is a fixed value of 0.9.

However, compared with a constant, the learnable residual
coefficient can be adjusted adaptively to an appropriate
number, thus improving the performance of detection. It
can be expressed as

xk
in � μkx

k−1
out + 1 − μk( xk−1

in , (9)

where μk is the residual coefficient of the network at layer k

and μ1 � 1. Furthermore, in order to improve the detection
accuracy with the increasing number of network layers, our
loss function is given as [8]

l x; xk(  � 
K

k�1
log(k) x − xk

����
����
2
. (10)

4. Numerical Results

)e networks are implemented by using Python with the
TensorFlow library [13]. We train the network for 50000
iterations, and batch sizes of 2000 samples are used. Fur-
thermore, the Adam optimizer [14] is used with a decay
learning rate of 0.97 and starting learning rates of 0.0001 are
used.
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Figure 1: )e structure of each unit in MsNet.
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Figure 3: sigSum function mapping curve under different mod-
ulation modes.

Table 1: sigSum parameters for different modulations.

Modulation: constellation point
sets f L E Bt

BPSK:{−1, 1} 10 −1 2 {0}
QPSK:{−0.707, 0.707} 10 −0.707 1.414 {0}
16-QAM:{−3, −1, 1, 3} 10 −3 2 {0, 20, −20}
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4.1. Comparison of Different Activation Functions. We
compare the SER performance of different activation
functions under QPSK, such as sigS(•), sigSum(•), ψt(•)

[15], and σc(•) [9]. As shown in Figure 5, the SER per-
formance of MsNet − sigSum(•) is better than
MsNet − σc(•) and MsNet − ψt(•), and the performance
gain of MsNet − sigS(•) over MsNet − sigSum(•) is about
0.5 dB at 5 × 10− 5.)is is mainly due to the training variables
in the sigS function, which make the network more flexible
and allow it to achieve better SER performance.

4.2. SER Comparison for Various Modulations. We investi-
gate the detection performance with multiple detection
methods under different modulation modes. Specifically, we
compare the SER performance of the proposed MsNet with
various existing MIMO detectors, such as multilevel MIMO
detection [9], DL-based detector [10], ScNet, and DetNet.

In Figure 6, we show the SER performance under BPSK,
where M� 32 and N� 64. It can be seen that multilevel
MIMO detection has poor detection performance in massive
MIMO schemes and that the SER performance of DL-based
method is limited under this antenna configuration. How-
ever, the DL-based method is still better than multilevel
MIMO detection. Furthermore, DetNet, ScNet, and MsNet
schemes outperform multilevel MIMO detection and DL-
based detector, and it is clear that the proposed MsNet
achieves the best performance. )e reason for the perfor-
mance improvement of MsNet is that a set of trainable
variables (αk, βk, gt, ht 

2l−1
t�1 , μk) were added to each layer,

which makes the network more flexible by improving the
stability and speed of convergence in the training process.

As shown in Figure 7, M� 32 and N� 64 for QPSK. )e
detection performance of DL-based and DetNet methods is
similar. However, our MsNet still achieves the best per-
formance among all of the detection methods. Specifically,
when SER� 5 × 10− 4, MsNet improves by about 1.3 dB and
3 dB as compared with ScNet and DetNet.

Finally, we compare the number of antennas associated
with M� 32 and N� 64 and M� 32 and N� 128 for 16-
QAM. From Figure 8, we can see that when the number of
receiving antennas is increased to 128, the performance of
the DL-based method is better than DetNet and ScNet
because the detection performance of the DL-based method
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Figure 4: )e overall structure of MsNet.
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with a great number of receiving antennas is improved. In
addition, MsNet outperforms all the other detectors because
its activation function is more suitable for high-order
modulation scenarios. Because of the advantages of the
channel-hardening phenomenon [16], SER of all of the
considered detectors decreases as the number of receiving
antennas increases.

4.3. Complexity Comparison. Table 2 shows the complexity
of matrix multiplication operation for different networks.

In Table 2, in comparison with BPSK and QPSK, the
complexity of DL-based detection is increased in 16-

QAM because the DL-based detection added two neural
network layers to modify the residual error vector. In
addition, the complexity of multilevel MIMO detection is
higher than DetNet because its initial solution uses
a twin-network neural structure. )e MsNet requires
4LM2 fewer operations than the DetNet for BPSK, and
that number for QPSK and 16-QAM is 16LM2.
Compared to the ScNet, the complexity reduction of the
MsNet is LM2 operations for BPSK, and it is 4LM2 for
QPSK and 16-QAM. )e numerical results show
that MsNet achieves a significant performance gain
with lower complexity as compared to other reported
works.
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Figure 7: SER comparison of various detectors: M� 32, N� 64, and QPSK.
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Finally, we compare the number of training parameters
for different networks in Table 3. )e chosen number of
network layers is K � 10 for all detection methods.

In Table 3, we can see that multilevel MIMO detection
has the highest number of trainable parameters for the
same number of layers. In addition, for BPSK and QPSK
modulations, trainable parameters of DL-based detection
depend only on the number of layers. However, upon
adding two neural network layers to the residual error
vector in 16-QAM, the trainable parameters increased
significantly. Furthermore, the simplification of the ar-
chitecture can reduce the training parameters and com-
plexity. Specifically, the trainable parameters of MsNet are
reduced by 1.1 × 104 as compared with ScNet for BPSK and
by 4.2 × 104 as compared with DetNet. In QPSK, the
trainable parameters of MsNet are only 8.196 × 104, which
is much lower than the parameters of the other three
networks. )erefore, MsNet has reduced the training time
of the network.

5. Conclusion

In this paper, we propose an MsNet network structure for
massive MIMO detection. Our simulation results show
that, in comparison with other detection methods, MsNet
can provide a low-complexity and high-performance
solution for massive MIMO detection, especially in high-
order modulation scenarios. In addition, the network
structure of MsNet is more flexible than DetNet and
ScNet.
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