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To improve frequency accuracy which is a�ected by two parameters in high-dynamic acquisition, we propose a two-step frequency
estimation method based on the mean frequency (MF) model for high-dynamic parameters estimation. �e �rst step is based on
the discrete chirp-Fourier transform (DCFT) for coarse MF estimation, where the MF accuracy and frequency search step are
derived. In the second step, the maximum likelihood estimation process (MLEP) is adopted for �ne MF estimation. Compared
with state-of-art methods, it is veri�ed that the two-step method can improve the detection probability in coarse MF estimation
and improve the MF accuracy with low computational burdens under conditions with a moderate signal-to-noise ratio (SNR).

1. Introduction

In global navigation satellite system (GNSS) receiver tech-
niques, the acquisition is the most important process for
estimating code phase and carrier frequency [1]. For fast
acquisition with lower computational complexity, the
method [2–4] based on fast Fourier transform (FFT) was
proposed. Since the pull-in range of the tracking loop is only
a few hertz, the number of FFT points should be increased
[5]. Generally, the coarse-to-�ne acquisition methods are
used to reduce the computation costs [6]. �e code phase
and coarse carrier frequency parameters can be obtained
from the coarse acquisition, and the carrier frequency can be
re�ned in a speci�c �ne acquisition process with the code
stripped o�.

For low-dynamic acquisition, the carrier Doppler can be
estimated in the �ne acquisition process. Tang et al. [7]
proposed an accurate estimation method for residual
Doppler. However, this method has a restriction on the
initial Doppler search step, and more computation is re-
quired to obtain an accurate Doppler. To reduce

computational load, a method [8] was proposed based on the
coarse Doppler and sampling frequency in moderate SNR.
However, to improve the Doppler accuracy in low SNR, a
long-time correlation process is typically needed, which
costs a lot of computations. To reduce the computations with
long integration, Mohamed and Aboelmagd [5] proposed
the Schmidt method which utilizes orthogonal searching. To
further reduce the computations, article [9] proposed the
zero-forcing and a double FFT-based method to improve
Doppler frequency accuracy without increasing the com-
putational load. However, because of the trade-o� between
the Doppler frequency resolution and the computational
complexity, the maximum error of carrier frequency esti-
mation depends on the number of FFT points. To improve
the Doppler frequency accuracy, Nguyen et al. [10] proposed
a residual frequency estimation method with di�erential
processing. Due to the di�erential processing, it performs
not well in the low SNR.

Above all, the articles listed only focus on Doppler
frequency accuracy. However, both initial frequency and
chirping rate [11] a�ect the correlation peak in high-
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dynamic applications. Moreover, with a long integration
time, the influence of these two parameters cannot be ig-
nored. Among methods for initial frequency and chirping
rate estimation, the authors in [12, 13] proposed frequency
estimation methods based on Fractional Fourier transform
(FRFT) for high-dynamic applications. In addition, we
proposed a frequency estimation method based on discrete
chirp-Fourier transform (DCFT) [14]. However, in some
high-dynamic applications, more accurate frequency is
usually desired.

To further improve frequency accuracy for high-dy-
namic applications, a two-step frequency parameter esti-
mation method is proposed in this paper. An MF model has
been derived to improve the frequency accuracy. In the first
step for coarse MF estimation, the chirping rate and initial
frequency for MF estimation have been estimated based on
the DCFT. A maximum likelihood estimation process
(MLEP) has been proposed for the fine MF estimation in the
2nd step. With the two-step processing, the computational
burdens can be reduced when the peak value is smaller than
the configured threshold, and high-frequency accuracy can
be obtained when the signal is present. Simulation results
show that for coarse MF estimation, the proposed method
has a higher detection probability compared with conven-
tional methods, and for fine MF estimation, the two-step
method has a higher frequency accuracy and lower com-
putational burdens than the compared methods.

2. Signal Model

After correlating with a one-period local code and a coarse
Doppler bin [11], the postcorrelation signal can be obtained
and depicted as follows:

S(n) � Ab(n)exp j2π f0nTs + μn
2
T
2
s   + W(n), (1)

where f0 represents residual Doppler frequency or initial
frequency, μ represents the chirping rate or Doppler rate, Ts

represents the sampling frequency, b(n) represents bit sign,
A represents signal amplitude, and W(n) denotes a zero-
mean additive white Gaussian noise (AWGN) process.
When the received signal is not aligned with local code or a
wrong Doppler bin is detected, signal amplitude A ≈ 0,
which is called the signal-absent situation in the following
analysis. Or, A≠ 0 is assumed as a constant 11. For GPS L1
CA signal with 1-ms code period, it is typical that f0
� (−250, 250)Hz, and μ � (−500, 500)Hz/s. It is assumed
that b(n) can be obtained by some auxiliary means 13, and
b(n) equals 1 in the following analysis.

3. Proposed Method

In this section, the process based on DCFT has been pro-
posed for coarse MF estimation. &en, MLEP has been
adopted for fine MF estimation. Finally, the two-step
method which combines the two processes has been pro-
posed. In this two-step method, signal detection and MF
accuracy improvement are realized through the first and
second steps respectively.

3.1. Coarse Search of MF Based on DCFT. T transform of the
postcorrelation signal can be written as follows:

ST kT, αT(  � AT 

N−1

n�0
b(n)exp j2π ΔTnTs + δTn

2
T
2
s   + w,

(2)

where kT � 0, ± 1, ± 2, ... represents a searching range, andαT

represents transform factor.w � wi + jwr.wi andwr both obey
normal distribution N(0, σ2w). When T�f, it represents FRFT
[15]. Af � Aexp[−jπsgn(sinαf)/4 + jαT/2]/ |sin αf|0.5

exp[j1/2cotαf(kF)2]. F � 2π/NTscscαf. Δf � (f0− kf/
NTs). δf � (μ + 1/4πcotαf). When T�d, it represents DCFT.
Ad � A. Δd � (f0 − kd/NTs). δd � (μ − αd/N2T2

s ), where αd

represents the chirping rate factor. Based on (2), the correlation
peak of FRFT is an unilinear function with αf, which may
degrade the detection peak. &erefor DCFT is chosen in the
following discussion.

When the bit signs can be obtained by assisted means,
the formula above can be simplified into

Sd kd, αd(  ≈ Ad 

N−1

n�0
exp jωnTs  + w

� AdNsinc
ωNTs

2
 exp jω

N − 1
2

Ts  + w,

(3)

where N represents the integration time and ω � 2πΔT +

2πδT(N − 1)/2Ts represents the MF from 0Ts to (N − 1)Ts.
It is assumed that A0 � AdN. Based on the derivations above
and Taylor expansion, the peak |Ad

N−1
n�0 exp[jωnTs]| can be

approximated as

Ad 

N−1

n�0
exp jωnTs 




� A0 sinc ωN

Ts

2
 





≈ A0 1 −
1
6

ωN
Ts

2
 

2
 ,

(4)

where |Ad
N−1
n�0 exp[jωnTs]| represents the amplitude of the

signal Ad
N−1
n�0 exp[jωnTs]. It is assumed that the unit

(kd0, αd0) is corresponding to the peak, and
|Ad

N−1
n�0 exp[jωnTs]|≥ cA0, where c is set based on the

criterion that one search bin contains mostly useful energy
[16]. &en, we can obtain

ω≤ 2
�������

6(1 − c)



/ NTs( . (5)

Based on the equations above, the search step of MF in
the first step is set to 2

�������
6(1 − c)


/(NTs). Due to the influence

between the initial frequency and chirping rate, the search
step of the initial frequency needs to be configured first.
Based on the influence of residual Doppler frequency on the
correlation peak value of the postcorrelation signal in low-
dynamic applications [4], the search step of initial frequency
is set to 1/(2NTs). Moreover, based on the relationship
between the initial frequency search step and the MF search
step in the first step, the search step of the chirping rate can
be obtained.
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Above all, in the coarse search, the coarse estimations of
both initial frequency and chirping rate can be obtained.
Based on the coarse estimation, the coarse MF estimation
can be obtained.

3.2. MLEP for Fine MF Estimation. In the MLEP, firstly, the
signal amplitude is estimated based on ML; then, due to the
fine MF range, the restricted search criteria for the fine MF
estimation are adopted. Finally, combining the criteria and
ML function, the fineMF is estimated based on the estimated
signal amplitude.

Based on (3), the observed peak can be written as follows:

Sd A0,ω0(  � A0sinc
ω0NTs

2
 exp jω0

N − 1
2

Ts  + w, (6)

where ω0 represents residual MF, which ranges from
−

�������
6(1 − c)


/(NTs) to

�������
6(1 − c)


/(NTs) based on Section 3.1

analysis. &e joint probability density function of (wi, wr) of
(wi, wr) can be written as

f wi, wr(  �
1

2πσ2w
exp −

wi( 
2

+ wr( 
2

2σ2w
 . (7)

&en, based on ML estimation, the optimized objective
function can be obtained as

min J A0,ω0(  � min −ln f wi, wr( ( (  ≈ min
wi( 

2
+ wr( 

2

2σ2w
 , (8)

where min J(A0,ω0) represents the minimum of the ob-
jective function J(A0,ω0). It is assumed that
zJ(A0,ω0)/zA0 � 0. &en, we can obtain

A0c �
Re Sd( cos ω0N − 1/2Ts(  − Im Sd( sin ω0N − 1/2Ts( 

sinc ω0NTs/2( cos ω0(N − 1)Ts( 
,

(9)

where A0c represents the optimized value ofA0 based onML.
&en, substituting (9) into (6), we can obtain

Sd A0c,ω0(  �
Re Sd( cos ω0N − 1/2Ts(  − Im Sd( sin ω0N − 1/2Ts( 

cos ω0(N − 1)Ts( 
· exp jω0

N − 1
2

Ts  + w, (10)

where Sd(A0c,ω0) represents the correlation peak in presence
of noise. However, when cos(ω0(N − 1)Ts) � 0, ω0 � π(2k +

1)/(2(N − 1)Ts) represents singular points of (10),
k � 0, ± 1, ± 2, ... represents segmentation variable, Lk rep-
resents the length of k. Consequently, the segmentation opti-
mization is taken based on the singular points. When
π(2k + 1)/(2(N − 1)Ts)<ω0 < π(2k + 3)/(2(N − 1)Ts), the
segmentation optimization is based on the objective function as
follows:

J A0c,ω0 + Δω(  �
wi ω0 + Δω( ( 

2
+ wr ω0 + Δω( ( 

2

2σ2w

�
wi ω0(  + JiΔω( 

2
+ wr ω0(  + JrΔω( 

2

2σ2w
,

(11)

where J represents the objective function. It is assumed that
zJ(A0c,ω0 + Δω)/zΔω � 0, Δω can be obtained as follows:

Δω �
−J

T
i wi ω0(  − J

T
r wr ω0( 

J
T
i Ji + J

T
r Jr

, (12)

where Ji � [zwi(ω0)/zω0]. Jr � [zwr(ω0)/zω0]. &e several
simulations show that the number of iterations It can be
chosen to be 10. &e local optimal solution ω0,k segmentation

variable k can be obtained based on the range of ω0. &e
restricted search criterion for choosingω0,k is given as follows:

k0 �

min
k

J A0c,ω0,k ,

sinc
ω0,kNTs

2
 > 0.1,

A0c|ω0,k
> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where ω0,k0
is the estimated frequency parameter in the 2nd

step. Above all, MF can be obtained from the fine MF es-
timation of the 2nd step.

3.3. Two-Step Frequency Estimation Method. &e two-step
frequency parameters estimation method is shown in Fig-
ure 1. &e method can be depicted in more detail as follows:

(a) Calculating the search step of the initial frequency
and chirping rate based on (5).

(b) In coarse search, the estimated value (α0, f0) can be
obtained based on the threshold c.

(c) In fine search, an iterative approach based on ML is
adopted:
With frequency error Δω0 initialized, the amplitude
can be obtained after calculating the amplitude
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function (9). Moreover, based on (ΔT, δT), the range
of ω0 can be obtained.

Based on the amplitude and mean frequency error,
the value of the di�erential functions Ji and Jr can be
obtained as follows:

Ji �
Ts ∗ TT1∗ Im Sd( )∗Tc + TT1∗Re Sd( )∗Ts( )( )

T2c
−
TT1∗Tc ∗ Re Sd( )∗Tc − Im Sd( )∗Ts( )( )

T2c

−
2∗TT1∗Ts ∗T2s ∗ Re Sd( )∗Tc − Im Sd( )∗Ts( )( ),

T2
2c

Jr �
Tc ∗ TT1∗ Im Sd( )∗Tc + TT1∗Re Sd( )∗Ts( )( )

T2c
+
TT1∗Ts ∗ Re Sd( )∗Tc − Im Sd( )∗Ts( )( )

T2c

−
2∗TT1∗Tc ∗T2s ∗ Re Sd( )∗Tc − Im Sd( )∗Ts( )( )

T2
2c

,

(14)

where Tc � cos(TT1), Ts � sin(TT1), T2c �
cos(2TT1), T2s � sin(2TT1), and TT1 �

N − 1/2Tsω0. �e peak error functions wi(ω0) and
wr(ω0) can be written as follows:

wi ω0( ) � Im Sd k0, α0( )( ) −
Re Sd( )cos ω0N − 1/2Ts( ) − Im Sd( )sin ω0N − 1/2Ts( )

cos ω0(N − 1)Ts( )
sin ω0

N − 1
2

Ts( ),

wr ω0( ) � Re Sd k0, α0( )( ) −
Re Sd( )cos ω0N − 1/2Ts( ) − Im Sd( )sin ω0N − 1/2Ts( )

cos ω0(N − 1)Ts( )
cos ω0

N − 1
2

Ts( ),




(15)

where the unit (k0, α0) is corresponding to (α̃0, f̃0).
Based on di�erential functions, peak error function
and (11), feedback error Δω can be obtained. �e
feedback function in Figure 1 can be written as
follows:

ω0 � ω0 − Δω. (16)

(d) Based on step (c), ω0,k can be obtained after 10 it-
erations. �en, based on (13), the �nal MF can be
estimated. Above all, the frequency accuracy can be
improved.

S (n)

exp [–j2παi (nTs)2]

FFT
(α0, f0)~ ~

DCFT

Calculating searching
step 

Differential
function

Peak error
function

Feedback
function

Calculating
Amplitude

Initializing mean
frequency error

Obtaining
estimated mean

frequency

Figure 1: �e two-step method’s ¤ow diagram combining DCFT for coarse frequency estimation and MLEP for �ne frequency estimation.
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4. Algorithm Performance

In this section, Cramér–Rao bound of the estimated MF of
the proposed method is derived. &en, computational
burdens and detection probability of the proposed method
are analyzed for performance evaluation.

4.1. Cramér–Rao Bound (CRB) of the Proposed Method.
Based on the theory [17], the CRB of ω0 can be written as
follows:

CRω0
�

1
E z

2
wi( 

2
+ wr( 

2/2σ2w /z2ω0 
�
2σ2w
E

z
2

wi( 
2

+ wr( 
2

 

z
2ω0

⎡⎢⎣ ⎤⎥⎦, (17)

where wi � Im(Sd) − A0sinc(ω0NTs/2)sin(ω0N − 1/2Ts),
and wr � Re(Sd) − A0sinc(ω0NTs/2)cos(ω0N − 1/2Ts).
When sinc(ω0NTs/2) ≈ 1,

CRω0
≈

2σ2w
(N − 1)

2
T
2
s A

2
0 

, (18)

where we can obtain the final CRB of ω0. When A0 ≈ N,
s
T � 0.001 s, N � 200ms, 400ms and 600ms, the CRB of MF
is shown in Figure 2.

In Figure 2, CRB curves are shown with the integration
time being 100, 200, and 300ms, respectively. Under the
same SNR, the longer the integration time is, the higher the
frequency estimation accuracy is. &is is because based on
(19) the integration time is long, and the integration peak
value is large.

4.2. Computations Analysis. Based on (2) and (10), the
computations of the proposed method can be obtained.
Here, the BASIC [11] is chosen as the benchmark for the
coarse MF estimation. &e method estimates the frequency
parameters based on the differential signal as follows:

Sd(n) � S
∗
(n)S n + M0( 

� A
2
b(n)b n + M0( exp

· j2π 2nμM0T
2
s + f0M0Ts + μM

2
0T

2
s  

� A
2
b(n)b n + M0( exp j2π 2nμM0T

2
s + θ0  ,

(19)

where θ0 � f0M0Ts + μM2
0T

2
s . Based on the Fourier trans-

form, the frequency parameters can be estimated.
In Table 1, methods are chosen for coarse or fine MF

estimation. Tα represents the number of chirping rate search
bins and Tf represents the number of initial frequency
search. CP,M and CP,A can be calculated as follows.

Firstly, A is calculated from (9). Calculating (9) involves
12 multiplications and 1 addition. Moreover, the value of cos
() or sin () function can be realized by a look-up table, and
their computations can be ignored. &en, calculating dif-
ferential function costs 18∗ 2 multiplications and 2∗ 2
additions. Calculating the peak error function costs 5∗ 2
multiplications and 1∗ 2 additions. Hereafter, (12) costs 5
multiplications and 2 additions. Calculating the feedback
function costs 1 addition. In addition, calculating (13) costs
19 multiplications and 3 additions.

Above all, one complex multiplication equals two
multiplications [4]. So, CP,M � Lk(51Ii + 19)/2 and
CP,A � Lk(9Ii + 3)/2, where It represents the number of
iterations and Lk represents the number of segmentations.
Besides, Table 1 shows that the frequency accuracy of the
Schmidt method is also dependent on the number of vectors.

Since the computations simulation needs to set lots of
simulation parameters, the simulation will be conducted in
Section 5.

4.3. Detection Performance. Since the signal is detected in
the first step of the proposedmethod, the section is to discuss
the detection probability of the first step in the proposed
method. &e theoretical simulation will be conducted in
Section 5.1.

&e detection variable |Sd(k0, α0)|
2 obeys the chi-square

distribution. When the signal is absent or a wrong frequency
bin is searched, Jd � |Sd(k0, α0)|

2 obeys the central chi-
square distribution with the variance σ2w, and the probability
density function can be written as follows:

p0 Jd(  �
1

2σ2w
exp −

Jd

2σ2w
 , (20)

where p0 represents probability density function when a
wrong bin is searched. When the right frequency unit is
detected, Jd � |Sd(k0, α0)|

2 obeys the noncentral chi-square
distribution with the variance σ2w, and the probability density
function can be written as follows:

p1 Jd(  �
1

2σ2w
exp −

Jd +
2
a

2σ2w
 I0

���

2
aJd

σ4w




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (21)

where p1 represents the probability density function when
the right frequency bin is detected. Under an incorrect
frequency hypothesis H0, the false alarm probability Pfa can
be written as:

Pfa � P y≥ cD|H0  � 1 − 
cD

0
p0(y)dy 

TfTα− 1

≈ 1 − 1 − exp −
cD

2σ2w
  

TfTα− 1

,

(22)
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Figure 2: CRB of ω0 under di�erent integration times.

Table 1: Computational burdens comparison.

Coarse MF estimation Complex multiplications Complex additions

BASIC (Tα) + (Tα)/2log2(Tα)
+(Tf) + Tf/2log2(Tf)

(Tα)log2(Tα)
+(Tf)log2(Tf)

Proposed method (1st step) TαTf/2log2(Tf) TαTflog2(Tf)

Fine MF estimation Complex multiplications Complex additions
Proposed method(2nd step) N + CP,M CP,A

Schmidt method (appendix table 2) [5]

(2N + 1)(M + 1)+
1 + 2(M!)+
(M − 1)!+

(N + 1) ∑
M

m�1
m!




/2 0.5

(N − 1)(M + 2)+
M(N + 1) + (M − 1)!+

(M − 2)! +N ∑
M

m�1
m!




Table 2: Computational burdens for the Schmidt method algorithm [5].

Multiplications Additions
R(1, 1) � P2

1 N N − 1
R(k, 1) � PkP1 k � 1, ...,M 1 +MN M(N − 1)
C(1) � yP1 N + 1 N − 1

fork � 1, . . . ,M
fori � 1, . . . , k
k> iR(k, i) � PkPi −∑

i−1
j�1αjiR(k.j)

k � iR(k, k) � PkPk −∑
k−1
j�1α

2
jkR(j.j)

∑Mm�1m!(N + 1) ∑Mm�1m!N

fork � 1, . . . ,M
C(k) � yPk −∑

k−1
j�1αjkC(j)

MN + (M − 1)! MN + (M − 2)!

gk � C(k)/R(k, k) M 0

θi � gi − ∑
m

k�i+1
R(k, i)/R(i, i)θk

i � 1, . . . ,M
2(M!) (M − 1)! +M

M represents the number of vectors, and N represents the length of the vector. gk represents coe¦cients of Schmidt orthogonalization.
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where cD represents the detection threshold. Under the
correct frequency hypothesis H1, the detection probability
PD can be written as follows:

PD � P x≥ cD|H1{ } � ∫
+∞

cD

p1(x) ∫
x

0
p0(y)dy( )

TfTα− 1
dx,

(23)

where Tf represents the number of initial frequency search
bins in the �rst step of the proposed method and Ta rep-
resents the number of chirping rate search bins. When the
con�gured Pfa is small, (∫Jd0 p0(Jd)dJd)

TfTα−1 ≈ 1, and the
detection probability PD can be simpli�ed into

PD � P Jd ≥ cD/H1{ } ≈ Q
a

σw
,




cD

√

σw
( ), (24)

where a equals to |Sd(k0, α0)| in the absence of noise. Based
on the de�nition of miss detection probability [18], the miss
probability of the proposed method can be written as:

PM � ∫
cD

0
p1(x) ∫

cD

0
p0(y)dy( )

TfTα− 1
dx. (25)

When the set Pfa is small, (∫cD0 p0(Jd)dJd)
TfTα− 1 ≈ 1,

PD + PM � 1. Above all, the detection probability of coarse
MF estimation of the proposed method can be obtained.
When the signal is detected, the second step of the proposed
method for �ne MF estimation can be performed.

5. Simulation Results

In this section, BASIC [11] and FRFT [13] are chosen as the
benchmark for the 1st step of the proposed method, and
Schmidt [5] is chosen as the benchmark for the 2nd step.�e
simulation parameters are listed in Table 3 where ⌈η⌉ rep-
resents the smallest integer that is larger than η.

5.1. Coarse Frequency Detection Performance Comparison.
Although complex multiplications of the proposed method
for coarse MF estimation are larger than that of BASIC in
Figure 3, when the SNR of the postcorrelation signal is larger
than −10 dB, the detection probability of the proposed
method is almost 100%, which is larger than other FRFTand
BAISIC in Figure 4. �is is because FRFT has a search bin α
and BAISIC adopts a di�erential process, which may de-
grade the correlation peak and lead to lower detection
probability.

5.2. Fine MF Accuracy and Complexity Comparison.
Based on the simulation above, the DCFTmethod, two-step
method, and Schmidt method are adopted for the �ne MF
search. In Figure 5, the complex multiplications of Schmidt
vary greatly with the change of MF search step and post-
correlation signal length.

In Figure 6, even though 1 rad/s of MF search step is
adopted for MF estimation, the two-step method based on

Table 3: SImulation parameters.

Parameters Value
Initial frequency range (−250, 250)Hz
Chirping rate range (−500, 500)Hz/s
Initial frequency search step (Δd) 1/(2T0) � 1/(2NTs)
Sampling time (Ts) 0.001 s
Factor (c) 0.5
Number of iterations (It) 10
Number of segmentation (Lk) ⌈( 4(N − 1)Tsωmax)/π⌉
Monte Carlo simulation 5000
Max mean frequency (ωmax) 2πΔd + 2πδd(N − 1)/2Ts
False alarm probability (Pfa) 2 × 10−10
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Figure 3: Complex multiplications comparison for coarse MF
estimation methods.
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MLEP gains higher precision than MF search based on
Schmidt.

6. Conclusion

To improve frequency accuracy in high-dynamic acquisi-
tion, we propose a two-step frequency estimation method.
�e proposed method combines a coarse frequency esti-
mation method based on DCFT and MLEP for �ne fre-
quency estimation. In the 1st step, the search step of initial
frequency and chirping rate is con�gured based on Taylor
expansion, and coarseMF is obtained. In the 2nd step, due to
low-frequency error, �ne MF is estimated by MLEP. Al-
though DCFT costs much more computation in Figure 3
compared with BASIC, it improves the detection probability

in Figure 4. Moreover, the proposed MLEP obtains higher
mean frequency accuracy and lower complexmultiplications
compared with the conventional method Schmidt. Fur-
thermore, in practice, the proposed two-step method can
provide a theoretical basis for open-loop frequency tracking.
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