
Research Article
Phaseless Spherical Near-Field to Far-Field Transformation
Algorithm via Sparsity of Spherical Mode Coefficients

Jiaqi Wang , Yinghong Wen, Dan Zhang , and Jinbao Zhang

Electromagnetic Compatibility Laboratory, Beijing Jiaotong University, Beijing, China

Correspondence should be addressed to Dan Zhang; zhang.dan@bjtu.edu.cn

Received 25 October 2021; Accepted 28 December 2021; Published 7 March 2022

Academic Editor: Shah Nawaz Burokur

Copyright © 2022 Jiaqi Wang et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to overcome the difficulty in obtaining accurate phase information in antenna near-field measurement, this study
proposes a phase recovery algorithm that can be applied to phaseless spherical near-field sampling data. Based on the sparsity of
spherical mode coefficients (SMCs), under the condition of unknown sparsity level and low oversampling rate, the proposed
algorithm can accurately recover SMC to obtain high-precision antenna radiation characteristics. To improve the recovery
performance of the algorithm, a spherical sampling strategy matching with the algorithm is also presented. By calculating the
correlation of the measurement matrix and comparing the accuracy of the reconstructed far field, a set of optimal parameter
settings including the number of spheres, the distribution of the measurement points, radius difference, and polarization mode is
determined. On the basis of the obtained measurement data, the performance advantage of the presented algorithm in recovering
SMC is demonstrated.

1. Introduction

Antenna near-field measurements have many advantages,
including being able to be carried out in a relatively small
anechoic chamber and low measurement cost [1]. With
the high-performance transformation algorithm, accurate
antenna far-field data can be obtained [2, 3]. In particular,
the spherical near-field measurement can provide the
complete three-dimensional radiation characteristics of
antenna under test (AUT), and the reconstructed far field
has the highest precision. However, the accurate char-
acterization of phase at high frequencies in spherical near-
field measurement is challenging. Due to the cable
movement, the drift of measuring instruments, and the
deviation of positioning equipment, the phase informa-
tion is extremely unstable or even unavailable, resulting in
large errors in the far-field extrapolation. In addition, in
over-the-air (OTA) tests, the phase reference of the active
device is difficult to extract or accurately transmit to the
vector network analyzer. /erefore, the antenna com-
munity has been committed to phaseless near-field
measurement technology.

/e existing spherical phaseless near-field measurement
techniques can be broadly classified into three categories.
Among them, holography [4] and interference technology
[5] have lower postprocessing difficulty but need to use
specially calibrated measurement equipment. In addition to
the above two schemes, modeling the solution of SMC as a
phase recovery problem provides a new idea for the sub-
sequent near-field–far-field transformation (NFFFT). In
[6–8], an iterative algorithm is proposed to enable two
concentric measuring spheres to continuously exchange
information until convergence. However, a large number of
near-field data need to be acquired to guarantee high
convergence accuracy. In [9], the authors directly solve the
SMC using Gerchberg-Saxton, Wirtinger flow, PhaseLift,
PhaseLamp, and PhaseMax, to perform an approximate
reconstruction of the far field when the oversampling rate is
3. In addition to the improved transform algorithm, different
sampling strategies are used to add extra information and
reduce the solution space so as to overcome the information
loss inherent in phaseless measurement. In [5, 10], the
author restores SMC by inserting the linear combination
amplitude of the probe into PhaseCut andWirtinger flow. In
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the case of 5 times oversampling, the success rate of the far-
field reconstruction is up to 90%. In [11], the author scans
the AUT twice on sphere and plane, respectively. When
combined with Wirtinger flow, the extrapolated far-field
error can be reduced to -35 dB at 3.57 times oversampling. In
[12], multiple types of sampling surfaces are investigated.
/e numerical results indicate that polyhedrons exhibit
more stable reconstruction performance than planes.
Moreover, the combination of sphere and tetrahedron
demonstrates the most robust relationship to the radius
variation.

In order to continue reducing the required near-field
sampling points, in [9], the author utilizes the prior infor-
mation on the sparsity of SMC. /ree sparse phase recovery
algorithms, namely, CPRL, CoPRAM, and SPARTA, are
applied to solve SMC to reconstruct the far field. Numerical
results reveal that the three algorithms have low recovery
success rates and large errors in the extrapolated far field.
Even though the above algorithm has been proved in [13–15]
to have good performance in recovering Gaussian data with
sufficiently low sparsity level, it is intrinsically not suitable
for spherical NFFFT problem. CPRL [13] is based on the
lifting idea, resulting in slow operation and extremely high
memory occupancy when restoring longer SMC vectors.
CoPRAM [15] and SPARTA [14] devote themselves to the
recovery of real signals yet ineffective for complex vectors. In
addition, both require that the quantity of nonzero elements
of the vector to be estimated is known and the sparsity level
is sufficiently low. As a complex vector with an unknown
sparse level, SMC does not conform to the above properties.
Furthermore, in the subsequent iterations, the atoms dis-
carded by CoPRAM and the gradient truncated by SPARTA
contain important information, leading to lower recovery
accuracy of SMC. In summary, the three algorithms are not
applicable to the spherical NFFFT problem.

In conclusion, the problem that SMC cannot be suc-
cessfully derived at low sampling rates remains to be solved.
/erefore, a phase recovery algorithm adapted to phaseless
spherical near-field measurement needs to be investigated,
which can accurately recover SMC under the conditions of
uncertain sparsity level and low oversampling rate.

In this study, a phase recovery algorithm for the
spherical NFFFTproblem is proposed, which can accurately
recover SMC at a low oversampling rate, a sparse complex
vector with an uncertain sparsity level. /e algorithm em-
ploys ℓ1-norm to guarantee the sparsity of the signal. By
reducing the dimension of a complex model to a real
number, the signal sparsity level is decreased, and thus, the
recovery capability is improved as well. Aiming at the
problem that the sparsity level of the vector to be solved is
unidentified, the algorithm sets the sparse regularization
parameter to decrease from a larger value, with priority
given to satisfying the sparsity of the solution in the early
stage of the iteration. As the weight of the sparse regula-
rization term is adjusted downward, the error between the
recovery and the measured amplitude can be continuously
reduced. To be applicable for the recovery of complex sig-
nals, the algorithm calculates the gradient of the objective
function to the real and imaginary parts of the unknown

vector, respectively. In addition, the Barzilai-Borwein step
[16] is adopted to enhance the convergence performance.
Meanwhile, in order to improve the recovery accuracy of the
algorithm, the optimal spherical sampling strategy is
designed by calculating the correlation of the measurement
matrix [17] and comparing the precision of the AUT’s ra-
diation pattern. /e algorithm still exhibits strong perfor-
mance in recovering SMC at a low oversampling rate.

/is study is organized as follows. Section 2 mainly
establishes the mathematical model of the phaseless
spherical NFFFT and outlines the research method of the
study. Section 3 begins with an introduction of the improved
phase recovery algorithm, including the overall framework,
the objective function, and the solution process of the
suboptimization problem. /e recovery performance for
Gaussian data is also demonstrated in this section. Fur-
thermore, Section 3 investigates the settings of parameters
including the number of spheres, the distribution of mea-
surement points, radius difference, and the polarization
mode, so as to determine an effective sampling strategy.
With the measurement data acquired by the above sampling
method, the strong ability of the algorithm in recovering
SMC is demonstrated in Section 4.

2. System Model

As depicted in Figure 1, the spherical near-field measure-
ment can be divided into two steps: sampling and near-field
to far-field transformation. /e core of the transformation
procedure lies in the solution of SMC. When the phase
information is missing, the solution process can be modeled
as the phase recovery problem:

findT,

subject to |w| � |ΨΤ|,
(1)

where |w| ∈ RM represents the measured amplitude vector,
and ψ ∈ CM×N is the measurement matrix containing the
Wigner D function and the probe response constant, both of
which are constructed according to the information of the
near-field sampling points. T ∈ CN represents the SMC to be
calculated. T1 and T2 correspond to TE and TM modes,
respectively./e total number of spherical modes is given by
N � 2B(B + 2) � 2B2 + 4B, where B denotes the band limit
constant of AUT.

However, the radiation characteristics of AUT can be
precisely described by adopting p of the spherical modes,
and p≪N. In particular, the sparsity of SMC is more
significant when the center of the sampling sphere coincides
with the AUT’s phase center and/or AUTexhibits geometric
symmetry [18–20].

As discussed in Section 1, when the oversampling rate is
low, (1) cannot be successfully solved to derive the exact
SMC. To tackle this problem, the algorithm proposed in this
study makes full use of the sparsity of SMC, imposes sparsity
constraints on the vector to be estimated, reduces the so-
lution space, and seeks the sparest SMC at a low over-
sampling rate, so as to obtain the radiation characteristics of
AUTwith high accuracy. In particular, even if the quantity of
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nonzero elements in SMC is uncertain, the proposed al-
gorithm is still efficient in solving the problem without a
priori knowledge of the sparsity level of the signal to be
estimated.

For the algorithm to possess the abovementioned ability of
recovering the complex vector under the condition of unknown
sparsity level, the following strategies are adopted. First, the
sparsity of the signal is guaranteed by ℓ1-norm. Unlike the
ordinary definition of ℓ1-norm for complex vectors, we choose
to decrease the dimension of the complex model to a real
number by separating the real and imaginary parts of the signal
to reduce the sparsity level. Afterward, a composite vector is
rebuilt and its ℓ1-norm is inserted into the objective function as
a sparse constraint. As for the problem with unknown sparsity
level, the sparse regularization parameter is set to decrease from
a larger value, allowing the whole optimization process to be
decomposed into multiple suboptimization problems similar to
LASSO. In the early stage of iteration, the sparsity of the solution
is fulfilled first.With the downward adjustment of the weight of
the sparse regularization term, the error between the recovered
and the measured amplitude is constantly diminished.

Meanwhile, in order to give full play to the performance
advantages of the proposed algorithm, it is essential to
determine an effective near-field sampling method. As il-
lustrated in Figure 1, different sampling strategies will
construct different measurement matrices and amplitude
vectors, which will indirectly affect the recovery accuracy of
the algorithm. Since the utilization of the measurement
matrix with lower correlation can deliver more information,
the success rate of the algorithm in recovering SMC is raised.
/erefore, we determine an optimal spherical near-field
sampling method that matches the algorithm by calculating
the correlation of the measurement matrix and comparing
the accuracy of the obtained AUT’s radiation pattern. /e
parameters to be specified include the number of spheres,
the distribution of the sampling points, radius difference,
and the polarization mode.

3. The Improved Phase Recovery Algorithm

3.1. Algorithm Introduction

3.1.1. Overall Framework of the Algorithm. /e sparse phase
recovery problem [13] can usually be described as

min ‖x‖1,

subject to bi � a
∗
i x


, 1≤ i≤m.

(2)

Inspired by the penalty function method to solve basis
pursuit, identical to [21], we apply penalty functions acting
on the equation constraints in problem (2), which trans-
forms the phase recovery of the sparse signals into solving
multiple optimization problems similar to LASSO:

minf :� λ‖x‖1 +‖|Ax| − b‖
2
2. (3)

Regarding the value of the regularization parameter λ,
we set it to a value that is decreased from a larger one, i.e.,
λk � cλk− 1, c ∈ (0, 1) as a reduction factor.

/e advantage is that at the beginning of the iteration,
the algorithm first optimizes ‖x‖1, thus ensuring the sparsity
of the solution due to the larger value of λ. As the iteration
proceeds, λmonotonically decreases, enabling the algorithm
to pay more attention to reducing the error ‖|Ax| − b‖22.

In conclusion, the general framework of the proposed
algorithm can be described as follows:

3.1.2. Modification of the Objective Function. As with am-
plitude flow, we still use the gradient descent method to solve
suboptimization problems. Meanwhile, in order to make the
algorithm applicable to recover complex sparse signals, we
have to modify the objective function in equation (3).

(1) Sparsity Constraint. We emphasize that the purpose of
adding sparse constraints is not to use the measured data far
less than the signal length for phase recovery but to enable
the algorithm to seek the sparsest solution from the feasible
region at a low oversampling rate.

Since the real and imaginary parts are the two orthogonal
components of the complex signal, they usually behave as
either simultaneously 0 or not 0 [22]. Certainly, SMC also
satisfies the abovementioned properties. Taking a dipole
array with reflector plane as an example, we plot the
magnitude distribution of real and imaginary parts of T1 and
T2 as shown in Figure 2, which confirms the conclusion.
/erefore, we separate the real and imaginary parts of the
signal to be evaluated to lower its sparsity level and enhance
the recovery capability, which is the primary reason why we
reduce the dimension of the complex system to real
numbers.

To facilitate the representation of the problem, we de-
fined (x)R ∈ Rn as the real part of the complex sparse signal
x, (x)I ∈ Rn corresponding to its imaginary part; hence,

x � (x)R + i(x)I. (4)

AUT

Build ψ and |w|

Spherical Near-Filed Sampling

Recover T Rebuild Far Field

Near-Field to Far-Field Transformation

Figure 1: Spherical near-field measurement steps.
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x≜ [(x)T
R (x)T

I ]T ∈ R2n denotes the composite vector of
the real and imaginary parts of x.

/e sparsity constraint is defined as ℓ1-norm of the
composite vector x:

‖x‖1 � 
2n

i�1
xi


. (5)

Since ‖x‖1 cannot derive its gradient at xi � 0, it is
impossible to directly solve the original problem using the
gradient method. /erefore, it is considered to be approx-
imated by the smooth function [23] of the following
equation

ℓδ xi(  �

1
2δ

x
2
i , xi


< δ,

xi


 −

δ
2
, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

We adopt Lδ(x) � 
2n
i�1ℓδ(xi) to replace ‖x‖1 as the

sparse constraint in the objective function.

(2) Loss Function. /e loss function is still specified as the
square of the ℓ2-norm of the difference between the recovery
and the measured amplitude.

L(x) � 
m

i�1
a
∗
i x


 − bi 

2
. (7)

3.1.3. 2e Solution Process of the Suboptimization Problem.
Each suboptimization problem is iteratively solved by the
gradient descent method similar to equation (8). /e
complex vector x is continuously updated until the objective
function is minimized.

xt+1 � xt − μt∇xf, (8)

where μt is the appropriate step-size adjusted with the
number of iterations [24].

/e first half elements of the resulting composite vector
x are the real part of x, and the second half corresponds to its
imaginary part; thus,

x � x|1:n + ix|n+1:2n. (9)

(1) Initial Estimation. In essence, the algorithm is still
dedicated to solving a nonconvex optimization problem. To
ensure that the final solution converges to the global min-
imum, an initial vector close to the real solution needs to be
acquired by means of the eigenvalue method [25].

In this study, the optimized spectral initializer is applied
[26]. First, the measured amplitude is preprocessed
according to the following equation.

Tρ bi(  �
bi − 1

bi +
�
ρ

√
− 1

, (10)

where ρ � m/n.
Second, the constant β associated with the measurement

matrix and the sampling amplitude is calculated.
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Figure 2: /e magnitude distribution of real and imaginary parts of (a) T1 and (b) T2.

(1) Initial estimation x0, final value λ, initial value λ0, reduction factor c ∈ (0, 1), k⟵ 0
(2) while λk ≥ λ do
(3) with xk as the initial value, solve the problem: minf ≔ λk‖x‖1 + ‖|Ax| − b‖22.

(4) if λk � λ then
(5) stop iteration, output xk+1

(6) else
(7) update the penalty factor: λk+1 � max λ, cλk .

(8) k⟵ k + 1
(9) end if
(10) end while

ALGORITHM 1: /e general framework of the proposed algorithm.

4 International Journal of Antennas and Propagation



β2 � n
ibi

i ai

����
����
2. (11)

Let x0 be the eigenvector corresponding to the maxi-
mum eigenvalue of the given matrix:

X �
1
m



m

i�1
Tρ bi( aia

∗
i . (12)

/en ‖x0‖ � β is set to scale the estimation vector so that
its ℓ2-norm is roughly consistent with the true solution.

/e real and imaginary parts of x0 are extracted, thus
reconstructing the composite vector

x0 ≜ x0( 
T
R x0( 

T
I 

T
. (13)

(2) Gradient of the Objective Function. /e gradient calcu-
lation of the objective function will be divided into two parts:
the sparse constraint Lδ(x) and the loss function L(x).

In particular, we will separately compute the gradient of
L(x) to the real and imaginary part of x. /us, a composite
vector of gradients is defined to accomplish the update of x.

First, the gradient of the smoothed ℓ1-norm to the
composite vector x is given by

∇xLδ(x)( i �

1
δ

xi, xi


< δ,

sign xi( , otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

As for the loss function, to facilitate the description of its
gradient calculation procedure, (A)R ∈ Rm×n represents the
real part of the complex measurement matrix and
(A)I ∈ Rm×n corresponds to its imaginary part. In addition,
a
⌢

i denotes the transpose of i-th row of (A)R and the
transpose of the i-th row of (A)I is defined as ai,
i � 1, 2 . . . m. /erefore,

Ax � (A)R + i(A)I  × (x)R + i(x)I  � (A)R(x)R − (A)I(x)I  + i (A)R(x)I +(A)I(x)R . (15)

/en, its real and imaginary parts are defined as follows:

Ax
⌢

� (A)R(x)R − (A)I(x)I,

Ax � (A)R(x)I +(A)I(x)R.
(16)

/erefore, the recovered amplitude can be expressed as
follows:

Axi � |Ax|i �

�����������

|Ax
⌢

|
2

+|Ax|
2



, i � 1, 2 . . . m. (17)

As previously stated, the gradients of the loss function to
(x)R and (x)I are calculated, respectively. /e corre-
sponding results are as follows:

∇(x)R
L(x) ≔ 

m

i�1

2 · a
∗
i x


 − bi 

Axi

· Ax
⌢

i · a
⌢

i + Axi · ai ,

∇(x)I
L(x) ≔ 

m

i�1

2 · a
∗
i x


 − bi 

Axi

· − Ax
⌢

i · ai + Axi · a
⌢

i .

(18)

/e convention ∇(x)R
L(x) and∇(x)I

L(x) � 0 is adopted,
if Axi � 0.

/us, the composite vector of the gradient is defined as
follows:

∇xL(x) � ∇(x)R
L(x) 

T
∇(x)I

L(x) 
T

 
T

∈ R2n
. (19)

In summary, the gradient of the objective function of
each suboptimization problem is as follows:

∇xf(x) � λ∇xLδ(x) + ∇xL(x). (20)

(3) Determination of the Iteration Step-Size. To improve the
convergence properties of the gradient descent method in
equation (8), we adopt the Barzilai-Borwei step [16], which
permits adaptive adjustment of the step size only based on the
information of the two adjacent iteration points and their
gradients.

First,

s
τ− 1 ≜ x

τ
− x
τ− 1

,

y
τ− 1 ≜∇xf x

τ
(  − ∇xf x

τ− 1
 .

(21)
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/e step size of the Barzilai-Borwein form is expressed as
follows:

μτΒΒ1 ≜
s
τ− 1

 
T
y
τ− 1

y
τ− 1

 
T
y
τ− 1

,

μτΒΒ2 ≜
s
τ− 1

 
T
s
τ− 1

s
τ− 1

 
T
y
τ− 1

.

(22)

/erefore, the following two iteration formats for the
Barzilai-Borwein method are obtained as follows:

xt+1 � xt − μτΒΒ1∇xf(x),

xt+1 � xt − μτΒΒ2∇xf(x).
(23)

Overall, the solution steps for each suboptimization
problem can be summarized as follows.

3.2. Numerical Results for Gaussian Data. Before the al-
gorithm is applied to the spherical NFFFT problem,
numerical tests are carried out on Gaussian data to
demonstrate the performance of the improved algorithm.
/e measurement matrix is randomly generated. /e real
and imaginary parts of the observation vector and the
vector to be estimated are independently subject to
Gaussian distribution.

3.2.1. Test 1. Fixing the number of nonzero elements in the
sparse vector x ∈ Cn as p, the recovery performance of the
algorithm is investigated when m measurements are taken.

Since SMC includes more nonzero elements, the sparsity
level s � p/n is relatively higher. As corroborated in [27], less
than 15% of the spherical modes can contain 99.90% of the
antenna’s radiated power. /erefore, we set the sparsity level
s � p/n � 10% and the length of the unknown vector n to 100.

/e relative error is defined as follows:

Relative error �
distance xTrue, xrecovered( 

xTrue
����

����
. (24)

/en, (m/n) increases from 0.1 to 3.5 in the step of 0.1,
and 100 independent trials are carried out, respectively.
Success is claimed for a trial if the returned estimate incurs a
relative error less than 10− 5 [24]. /e numerical results
depicted in Figure 3 reveal that the proposed algorithm
achieves an approximate 100% success rate when the sparsity
level is 0.1 and the oversampling rate (m/n)≥ 2.3.

Furthermore, numerical trials are conducted using Phase-
Pack [28] for amplitude flow, truncated amplitude flow,
reweighted amplitude flow [29], Wirtinger flow, reweighted
Wirtinger flow [30], Fienup [31], and G-S under the same
conditions. /e related results are also presented in Figure 3.

3.2.2. Test 2. /is experiment mainly focuses on the capa-
bility of the proposed algorithm to recover complex signals
with various sparsity levels for a fixed m. Figure 4 depicts the

numerical results, indicating that the proposed algorithm is
able to guarantee the accurate recovery of complex vectors at
a sparsity level less than 0.09. As the number of nonzero
elements of the signal grows, the success rate of the algo-
rithm gradually decreases, and it can support the recovery of
complex vectors at a sparsity level of 0.36 at most.

In conclusion, when Gaussian data are taken for testing,
compared with ordinary phase recovery algorithms, the
proposed algorithm can still deliver accurate estimates at low
oversampling rates. Besides, compared with sparse phase
recovery algorithms such as CoPRAM, SPARTA, and CPRL,
the proposed algorithm behaves well for complex sparse
vectors containing more nonzero elements.

3.3. Determination of the Spherical Near-Field Sampling
Strategy. Since the near-field sampling strategy will directly
dictate the measurement matrix and amplitude vector,
which in turn affect the performance of the algorithm, before
exhibiting the performance advantage of the algorithm in
recovering SMC, it is essential to determine an effective
near-field sampling method.

We take a 4× 2 dipole antenna array with a reflector as
AUT. /e total amount of spherical modes n is 160. In the
below analysis of the various near-field sampling methods,
an oversampling rate of 2.5 is kept invariant.

/e parameters involved in the spherical near-field
sampling process include the number of spheres, the dis-
tribution of measurement points, the radius difference, and
the polarization method, which will be individually inves-
tigated afterward. Similar to [27], in order to evaluate each
sampling scheme, except for comparing the accuracy of the
extrapolated far field, the correlation of the measurement
matrix is additionally considered as an assessment index. In
short, we perceive that employing a measurement matrix
with high correlation will contribute to poor recovery
performance.

Defining the row vector of the measurement matrix ψ as
ψi, and i � 1, 2 . . . m, the correlation coefficient can be
computed by

μi,j �
〈ψi,ψj〉





ψi

����
����2 ψj

�����

�����2

, i≠ j. (25)

3.3.1. 2e Number of Sampling Spheres. Until now, there
have been no strictly practical guidelines on how to acquire
independent near-field sampling data to meet the require-
ments. Intuitively, oversampling just on a single sphere is
likely to add linearly dependent rows to the measurement
matrix, resulting in a marginal improvement in the recovery
of SMC. Hence, we decide to sample half of the data on the
other concentric sphere to compensate for the lack of in-
formation inherent in phaseless measurements. We also
exploit the correlation to illustrate the validity of the two-
sphere sampling strategy. /e corresponding two vectors
with μ greater than 0.4 are claimed to be strongly correlated.

/e correlation of the measurement matrices derived
from the single and double spherical sampling methods is

6 International Journal of Antennas and Propagation



(1) Input: initial estimation x0, maximum iterations τmax, 0≤ ε≤ 1, τ⟵ 1
(2) while τ ≤ τmax do
(3) ∇xf(xτ) � λ∇xLδ(xτ) + ∇xL(xτ)

(4) if ‖∇xf(xτ)‖≤ ε then
(5) stop iteration, output xτ
(6) else
(7) calculate the step size according to (22)
(8) update the composite vector xt+1 � xt − μt∇xf(xτ)

(8) τ⟵ τ + 1
(9) end if
(10) end while

ALGORITHM 2: /e process of solving the suboptimization problem.

New Algorithm
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Flow
Truncated Amplitude
Flow
Amplitude Flow

Wirtinger Flow
Reweighted Wirtinger
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Figure 3: Success rates for algorithms at a fixed sparsity level and the length of an unknown vector.
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Figure 4: Success rates for the proposed algorithm with fixed m and the length of the unknown vector.
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reported in Table 1. It is clear that the two-sphere strategy
can significantly diminish the correlation to provide more
additional information. /e radiation pattern computed by
the proposed algorithm depicted in Figure 5 also demon-
strates the above analysis.

3.3.2. 2e Distribution of Sampling Points. As for the dis-
tribution of sampling points on each sphere [32–34], we
mainly investigate the three forms of spiral, Fibonacci, and
Hammersley as illustrated in Figure 6.

Each sphere can adopt one of the three forms, and thus,
two spheres incur nine sampling methods listed in Table 2.
/e corresponding near field is processed utilizing the
proposed algorithm, and the derived radiation pattern is
given in Figure 7. Considering the correlations of the
measurement matrix comprehensively summarized in Ta-
ble 2, it can be noticed that when both the two spheres are in
the form of spiral or Fibonacci distributions, the obtained
measurement matrix exhibits lower correlations, thereby
yielding the extrapolated far field with higher accuracy.

Particularly, compared with Fibonacci, when the sam-
pling points are distributed as a spiral, the measurement
trajectory of the positioning device achieves a lower com-
plexity, leading to a shortened measurement time. In gen-
eral, the spiral form is more applicable for spherical near-
field sampling.

3.3.3. 2e Radius Difference. /e radius difference between
the two spheres is also a key factor impacting the transfor-
mation accuracy, which is set to 1.5, 2, 2.5, and 3 times the
wavelength, respectively, in this study. /e results shown in
Table 3 demonstrate that the correlation between the row
vectors of the measurement matrix is extremely high due to
the smaller radius difference. With the separation of the two
spheres, the independence between the two scans is gradually
enhanced, enabling the electric field amplitude to experience
sufficient variation and the extrapolation of the far field to
become more precise, which can be observed in Figure 8.

3.3.4. Polarization Mode. So far, we have only considered
the location of the sampling points, whereas the polarization
of the probe is likewise an additional parameter to be de-
termined in near-field measurements. /ree major possi-
bilities will be considered for further analysis:

(1) One fixed polarization for all sampling points
(χ � 0 or χ � π/2).

(2) Two orthogonal polarizations at each sampling point
(χ � 0 and χ � π/2).

(3) Randomly chosen fixed polarization at each sam-
pling point (χ � 0 or χ � π/2).

For case 1, as expected, measurements with only one
fixed polarization cannot afford correct solutions to SMC.
/e polarization mode introduced in case 2 is adopted in the
above research on different sampling strategies. /e results
reveal that it can support stable near-field to far-field
transformations. As for case 3, the total quantity of sampled

data is maintained invariant and the sampling points are
distributed in the form of a spiral. As illustrated in Figure 9, a
fixed polarization is randomly chosen at each sampling
point. Besides, the measured Eθ and Eφ are guaranteed to be
of the same amount.

Twenty random trials are conducted based on the above
settings. Figure 10 only presents the calculated radiation
pattern for 10 of them, which reveals that polarization will
have a slight impact on the transformation precision, but the
accurate reconstruction of the main lope can be realized with
high probability.

Based on the above analysis, an optimized near-field
sampling method is concluded: the measurement points are
distributed on two concentric spheres in the form of a spiral.
Two orthogonal polarizations are acquired at each sampling
point.

4. Numerical Results for SMC

/e above sampling strategy is applied to acquiring the near-
field data. SMC is solved by the proposed algorithm and
other phase recovery algorithms. /e performance advan-
tage of the proposed algorithm is demonstrated by com-
paring the accuracy of the extrapolated far field. /e two
radiation structures, namely, dipole array and horn antenna,
are investigated.

First, AUT as a 3× 3 dipole array with reflector is
specified, and the total number of its spherical mode is 240.
/e oversampling rate is set to 2.5, and the difference be-
tween the two sphere to 6λ. In the beginning, GS, Wirtinger
flow, reweighted Wirtinger flow, amplitude flow, truncated
amplitude flow, reweighted amplitude flow, and PhaseLamp
are utilized to derive SMC. /e reconstructed far-field
strengths Eθ and Eφ are depicted in Figures 11 and 12,
respectively.

In conjunction with the radiation pattern depicted in
Figure 13, it can be concluded that the accuracy of the
extrapolated far field is unsatisfactory at an oversampling
rate of 2.5, if the ordinary phase recovery algorithm is
applied.

/e same near-field data are processed using the pro-
posed algorithm. Figure 14 depicts the magnitude distri-
bution of the recovered SMC, which indicates that the
proposed algorithm is able to provide an accurate recovery,
and thus, the solution is more consistent with the sparse
properties. /e reconstructed far-field intensity along with
the radiation pattern is presented in Figures 15 and 16,
respectively.

/e maximum error of the extrapolated far field with a
runtime of all the recovery algorithms is summarized in Table 4.
All transformations have been performed on a single core of an
Intel Core i7-6500KCPU running at 2.5GHz./e results reveal
that the algorithm proposed in this study can significantly
improve the accuracy of the extrapolated far field.

Furthermore, similar to the proposed algorithm, the
phaseless spherical near-field to far-field transformation
algorithm in [6, 8, 35] also requires the usage of the near field
from two concentric spheres. By retaining the calculated
phase information and replacing the measured amplitude of
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Table 1: /e correlation of the measurement matrices derived from the single and double spherical sampling methods.

Type Amount of vector pairs with correlation greater than 0.4 Amount of vector pairs with correlation greater than 0.3
Single sphere 754 1000
Two spheres 218 242
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Figure 5:/e radiation pattern corresponds to the single and double spherical sampling methods./e left and right figures represent the E-
plane and H-plane, respectively. (a) E-plane. (b) H-plane.
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Figure 6: Schematic diagram of the three distribution forms of spherical sampling points. (a) Spiral. (b) Fibonacci. (c) Hammersley.

Table 2: Correlation of the measurement matrixes corresponding to the nine sampling methods.

Type Amount of vector pairs with correlation greater than
0.4

Amount of vector pairs with correlation greater than
0.3

spiral + spiral 218 242
fibonacci + fibonacci 200 200
hammersley + hammersley 481 589
spiral + fibonacci 384 479
spiral + hammersley 437 608
fibonacci + spiral 382 479
fibonacci + hammersley 422 549
hammesley + spiral 434 611
hammersley + fibonacci 421 552
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Figure 7: Radiation pattern of the dipole array corresponding to the nine sampling methods. (a) Radiation pattern corresponding to two
spheres with the same distribution forms. /e left and right sides of the figure represent E-plane and H-plane, respectively. (b) Radiation
pattern corresponding to two spheres with different distribution form. /e left and right sides of the figure represent E-plane and H-plane,
respectively.

Table 3: Correlation of the measurement matrix corresponding to different radius difference.

Radius difference/ λ Maximum correlation
1.5 0.9470
2 0.9276
2.5 0.9104
3 0.8952
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Figure 8: /e radiation pattern corresponds to radius difference. (a) E-plane. (b) H-plane.
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the electric field, the algorithm allows the two spheres to
continuously exchange information and iteratively converge
it, and finally, the SMC is solved.

However, the algorithm suffers from the problem of
requiring a large quantity of measurement points and slow
convergence. It also needs the near field to be strictly
sampled in the equiangular form, resulting in the sampling
point density low at the equator and high at the poles.

/erefore, the algorithm in this study turns to model the
solution of SMC as a phase recovery problem, which avoids
the tedious iterative process and can be well suited to the
nonequiangular sampling methods.

For the 3× 3 dipole array with reflector, Figure 17 depicts
the extrapolated radiation pattern utilizing the algorithm in
[6, 8, 35]. /e proposed algorithm in this study performs
better in terms of measurement, computation time, and far-
field accuracy compared with it. /e capabilities of the two
algorithms are summarized in Table 5.

Moreover, a horn antenna is considered as AUTwith a total
number of spherical modes of 510. To guarantee that the al-
gorithm can receive a high-quality initial estimate, the over-
sampling rate m/n is set to 4./e radius difference between the
two measurement spheres corresponds to 5.483λ. Compared
with the extrapolated far-field results corresponding to other
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Figure 10: /e radiation pattern corresponding to polarization mode described in case 3. (a) E-plane. (b) H-plane.
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Figure 11: /e reconstructed Eθ of dipole array by adopting other phase recovery algorithms.
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Figure 12: /e reconstructed Eφ of dipole array by adopting other phase recovery algorithms.
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Figure 13: /e obtained radiation pattern of dipole array by adopting other phase recovery algorithms. (a) E-plane. (b) H-plane.
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Figure 15: /e reconstructed Eθ and Eφ of dipole array by adopting the proposed algorithm. (a) Eθ. (b) Eφ.
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Figure 16: /e obtained radiation pattern of dipole array by adopting the proposed algorithm. (a) E-plane. (b) H-plane.

Table 4: /e maximum error of extrapolated far field and runtime of the recovery algorithm.

Algorithm Maximum error of H-plane (dB) Maximum error of E-plane (dB) Runtime (s)
New algorithm − 32.5707 − 38.9251 1070.279
G-S − 4.0723 − 10.7640 815.339
Wirtinger flow − 3.0923 − 14.1287 18.117
Reweighted Wirtinger flow − 3.2298 − 15.7409 78.427
Amplitude flow − 4.3138 − 11.2633 5.963
Truncated amplitude flow − 5.0701 − 12.0441 33.959
Reweighted amplitude flow − 4.5873 − 11.4571 10.795
Phase Lamp − 7.1219 − 11.7437 3609.99
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Figure 17: /e extrapolated radiation pattern utilizing the algorithm proposed in [6, 8, 35]. (a) E-plane. (b) H-plane.
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Table 5: /e required near-field sampling points, runtime, and accuracy of the algorithm proposed in this study along with the method in
[6, 8, 35].

Algorithm Required sampling points Maximum error of H-plane/dB Maximum error of E-plane/dB Runtime (s)
New algorithm 600 − 32.5707 − 38.9251 1070.279
Iteration 7381 − 24.7977 − 28.7271 13074
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Figure 18: /e reconstructed Eθ of horn antenna by adopting other phase recovery algorithms.
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Figure 19: /e reconstructed Eφ of horn antenna by adopting other phase recovery algorithms.
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Figure 20: /e obtained radiation pattern of horn antenna by adopting other phase recovery algorithms. (a) E-plane. (b) H-plane.
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Figure 21: /e reconstructed Eθ and Eφ of horn antenna by adopting the proposed algorithm. (a) Eθ. (b) Eφ.
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Figure 22: /e obtained radiation pattern of horn antenna by adopting the proposed algorithm. (a) E-plane. (b) H-plane.
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phase recovery algorithms displayed in Figures 18–20, the
proposed algorithm exhibits stronger capacity in recovering
SMC./erefore, high precision radiation characteristics of AUT
can be acquired, as demonstrated in Figures 21 and 22.

5. Conclusions

/e proposed algorithm is able to search for the sparsest so-
lution from the feasible domain at a lower oversampling rate
and still behaves well for sparse vectors containing more
nonzero elements. Besides, the algorithm concentrates on re-
covering the complex signals without a priori information about
the sparsity level. When applied to the spherical NFFFT
problem, it can provide a more accurate recovery of SMC,
enabling the acquisition of a high-precision radiation pattern.
However, the proposed algorithm is converted to solve multiple
suboptimization problems, thus running less efficiently, ren-
dering no significant improvement for recovering longer
vectors.

Since the near-field sampling strategy indirectly impacts the
recovery capability of the proposed algorithm, a more effective
samplingmethod is determined./equantity of the spheres, the
distribution of the measurement points, the radius difference,
and polarization are separately investigated by comparing the
transformation accuracy and the correlation of the measure-
ment matrix. Numerical results reveal that the measurement
matrix corresponding to the two-sphere strategy has a lower
correlation, which can compensate for the missing information
inherent in phaseless measurements. In particular, with the
separation of the two spheres, the field amplitude more sig-
nificantly varies, and the maximum correlation of the mea-
surement matrix decreases, which can contribute to a higher
transformation accuracy. When the sampling points are dis-
tributed in the form of a spiral on each sphere, except for the
capability to gain accurate radiation characteristics, the mea-
surement trajectory of the positioning device also presents lower
complexity, making it more preferable for spherical near-field
measurements. Furthermore, the polarization of the probe is
also considered in this study. Acquiring two orthogonal po-
larizations at each sampling point can stably reconstruct the far
field of AUT.
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[9] A. Bangun, C. Culotta-López, A. Behboodi, R. Mathar, and
D. Heberling, “On phaseless spherical near-field antenna
measurements,” in Proceedings of the 2019 13th European
Conference on Antennas and Propagation (EuCAP), pp. 1–5,
Krakow, Poland, April 2019.

[10] A. Paulus, J. Knapp, and T. F. Eibert, “Utilizing partial
knowledge of phase differences in convex optimization for
amplitude-only near-field far-field transformation,” in Pro-
ceedings of the 2017 11th European Conference on Antennas
and Propagation (EUCAP), pp. 3766–3770, Paris, France,
March 2017.

[11] F. R. Varela, B. G. Iraguen, M. S. Castaner, J. F. Alvarez,
M. Mattes, and O. Breinbjerg, “Combination of spherical and
planar scanning for phaseless near-field antenna measure-
ments,” in Proceedings of the 2019 Antenna Measurement
Techniques Association Symposium (AMTA), pp. 1–6, San
Diego, CA, USA, October 2019.
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