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For robust adaptive beamforming (RAB), the variable loading (VL) technique can provide a better trade-o� between robustness
and adaptivity than diagonal loading (DL). Despite its importance, few research e�orts have explored the loading factor for VL to
ensure robustness in various environments. Moreover, the performance of VL is restricted by the sample covariance matrix in
snapshot de�ciency situations. �is paper proposes a modi�ed variable loading (VL) method for robust adaptive beamforming,
considering imprecise steering vector e�ects and �nite sample size impairments. First, a novel subsampling method is used to
construct the calibrated covariance matrix to improve the robustness of the VL in sample-starving scenarios. �en, a parameter-
free method for the VL factor is proposed to further enhance the insensitivity to the steering vector mismatches of the antenna
array. Simulation results verify the e�ectiveness and robustness of the proposed method as compared to the traditional VL and
other widely used robust techniques.

1. Introduction

Adaptive beamforming has been widely applied in radar,
sonar, wireless communications, and other �elds in the past
decades. �e representative adaptive beamformer, e.g., the
Capon beamformer (or MVDR beamformer) [1], can extract
the desired signal and suppress interferences simultaneously
with the theoretical interference-plus-noise covariance
matrix and actual signal steering vector (SV). However, in
practical array antenna systems, model errors such as array
calibration error, antenna shape distortion, the direction of
arrival (DOA) error, and local scattering may cause a
mismatch between the assumed SV and the actual SV.
Moreover, the limited data samples may lead to the per-
turbation of the covariance matrix. �erefore, robust
adaptive beamforming (RAB) techniques against the SV
errors and small sample size problems mentioned above are
needed.

Over the last several decades, numerous RAB techniques
have been proposed. �e most popular algorithms can be
divided into four categories: the diagonal loading algorithms

[2–8], the eigenspace projection (EP) [9–11] algorithms, the
steering vector estimation (SVE) algorithms [12–17], and the
interference covariance matrix reconstruction (INCM) al-
gorithms [18–26]. �e diagonal loading RAB algorithm
achieves performance improvement over the sample matrix
inversion (SMI) algorithm by loading a scaled identity
matrix onto the sample covariance matrix. Nevertheless,
�nding an appropriate loading level in various situations is
not easy. An extended method for diagonal loading SMI
(LSMI) has recently been developed in [27], aiming to
further improve the robustness by using the tridiagonal
loading matrix. �e EP algorithms project the presumed
signal-of-interest (SOI) SV onto the signal-plus-interference
subspace of the sample covariance matrix (SCM) to elimi-
nate the noise perturbation caused by the SV mismatches or
sample data problems. However, the signal subspace may be
corrupted by the noise subspace at low SNR, causing the
projection subspace to be destroyed. �e framework of SVE
algorithms can be boiled down to using imperfect prior
knowledge to estimate the desired signal steering vector in
tandem with the standard SMI beamformer [28]. �eir
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performance relies on the choice of user-defined parameters.
*e series of INCM algorithms aim to eliminate the SOI
components in the SCM, which can provide excellent output
performance via a brand-new interference-plus-noise matrix
in the condition of high SNR. Nevertheless, owing to the loss
of some actual array information during the reconstruction,
most of the INCM-based RAB algorithms are hard to keep
robust with array calibration error.

Among the above RAB algorithms, diagonal loading
(DL) is widely studied and utilized due to its effectiveness
and versatility. However, the DL methods have one inherent
defect, suffering from a loss in adaptivity when achieving
greater robustness. *us, an effective way is to change the
loading matrix for compatibility. *e so-called variable
loading (VL) [29] utilizes the inverse of the covariance
matrix for loading and has the potential to maintain ad-
aptivity when loaded. Subsequently, a more general form of
the VL is presented in [30]. However, the performance
improvement is not apparent compared to [29]. Both of the
above VL methods are not suitable for small snapshot cases,
and they just roughly set the VL factor as twice the DL factor,
which is not a specific way, and the performance is relay on
the DL method they choose. Recently, the VL in [31]
considers the finite sample effects and substitutes the ideal
noise power for the small eigenvalues. *e VL factor is set in
an adhoc manner based on the noise power, which only
focuses on the low SNR environment.

Based on the framework of VL, we propose several
modifications to maintain adaptive antijamming ability and
improve robustness. *e main contributions are as follows:

(i) An enhanced covariance matrix is obtained in the
proposed method via a novel subsampling method.
*at is, the sampling data are divided into two parts
and regularize the noise eigenvalues by utilizing the
two subsamples. *is method is studied in statistics
in [32, 33], which is only developed for the esti-
mation of the random matrix. Unlike it, due to the
determined signal components, the array observa-
tions are not random samples. Fortunately, the
subsampling method can be applied in the array
model since the estimation can estimate the signal
eigenvalues while reducing the spread of noise ei-
genvalues. Consequently, this matrix preprocessing
is suitable for the VL beamformer under low
snapshots.

(ii) *e VL factor is computed automatically in an ei-
genvalue-based way based on the enhanced co-
variance matrix estimated by subsampling.*is way
is effective, despite its simplicity. An attractive
feature of our approach is that it does not require a
dependent parameter or prior knowledge such as
noise power.

(iii) *eoretical analysis and simulation results are
conducted to demonstrate the effectiveness of the
proposed method.

*e remainder of this paper is organized as follows.
Section 2 presents the signal model and background. Section
3 contains the presentation and analysis of the proposed
method. *e simulation results are provided in Section 4,
and the conclusion is drawn in Section 5.

2. Background

Consider an array comprising M sensors. *e minimum
variance distortionless response (MVDR) beamformer is the
solution to the following quadratic problem:

min
w
 wHRi+nw s.t.wHa1 � 1. (1)

After excluding the insignificant scaling factor, the so-
lution of (1) is given by

wMVDR � R−1
i+na1, (2)

where Ri+n denotes the theoretical interference-plus-noise
covariance matrix and a1 represents the actual SOI steering
vector (SV). *e minimum power distortionless response
(MPDR) criterion is closely related to the MVDR, which
substitutes the theoretical array covariance matrix R for Ri+n
in (2),

wMPDR � R− 1a1. (3)

Here, the theoretical array covariance matrix can be
expressed as

R � Rs+i + σ2nI, (4)

where σ2n is the noise power and Rs+i � 􏽐
Q
l�1 σ

2
l alaH

l is the
theoretical signal covariance matrix consisting of the SOI
and interference components. σl and al correspond to the
power and SV of the lth signal with the total number Q.

In practical applications, the above theoretical Ri+n and
R are always unavailable, and it is generally replaced by the
sample covariance matrix 􏽢R, which is estimated by the array
snapshots as follows:

􏽢R �
1
K
XXH

, (5)

where X � (x(1), x(2), . . . , x(K)) denotes the array snap-
shots of sample size K. Obviously, when K⟶∞, 􏽢R⟶ R.
In addition, the actual SOI SV a1 is usually estimated as the
presumed one a1. *en, the sample matrix inversion (SMI)
based Capon adaptive beamformer is formed

wSMI � 􏽢R− 1a1, (6)

which is also the solution to the following optimization
problem (omitting the nonessential scaling factor)

min
w
 wH 􏽢Rw s.t.wHa1 � 1. (7)
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*e above SMI beamformer suffers from performance
degradation when contaminated by small snapshots or
steering vector mismatch. To keep robustness, a popular
technique with diagonal loading is presented, which adds a
regularized constraint to (7) given by

min
w
 wH 􏽢Rw + λ‖w‖

2
2 s.t.wHa1 � 1, (8)

and its solution is wdl � (􏽢R + λI)− 1a1, where λ is the loading
level. It is the well-known diagonal loading SMI (LSMI)
beamformer. However, the adaptive performance of RAB
will be affected after diagonal loading. To maintain adap-
tivity along with the improvement of robustness, a more
general quadratic term is proposed in [29] to replace the
norm term in (8). Hence the optimization problem of
variable loading beamformer can be expressed as

min
w
 wH 􏽢Rw + δwH 􏽢R− 1w s.t.wHa1 � 1. (9)

*e weight vector can be calculated as

wvl � 􏽢R + δ􏽢R− 1
􏼒 􏼓

− 1
a1, (10)

where δ is the VL factor. Suppose the eigenvalue decom-
position (EVD) of the SCM 􏽢R is

􏽢R � 􏽢E􏽢Λ􏽢EH
� 􏽘

M

i�1
􏽢ri􏽢ui􏽢u

H
i , (11)

where the unitary matrix 􏽢E � [􏽢u1, ..., 􏽢uM] contains M or-
thonormal eigenvectors of 􏽢R, and the diagonal elements of
􏽢Λ, 􏽢r1 > 􏽢r2 > ...> 􏽢rM are the corresponding eigenvalues. *us,
the VL beamformer can be rewritten as

wVL � 􏽘
M

i�1

􏽢uH
i a1􏼐 􏼑

􏽢ri + δ/􏽢ri( 􏼁
􏽢ui � 􏽘

Q

i�1

􏽢uH
i a1􏼐 􏼑

􏽢ri + δ/􏽢ri( 􏼁
􏽢ui + 􏽘

M

i�Q+1

􏽢uH
i a1􏼐 􏼑

􏽢ri + δ/􏽢ri( 􏼁
􏽢ui, (12)

where 􏽢u1, ..., 􏽢uQ are the dominant eigenvectors and
􏽢uQ+1, ..., 􏽢uMare the subdominant eigenvectors. In this way,
the loading level is set to δ/􏽢ri instead of λ and is variable.
Accordingly, the large eigenvalues are loaded slightly,
resulting in less loss in adaptivity of antijamming. In con-
trast, the small eigenvalues (i.e., the noise components) are
implemented with extensive loading, yielding better ro-
bustness on noise perturbation. Additionally, the loading
level can be controlled by the VL factor δ to improve the
performance further.

However, for cases with low snapshots, the SCM 􏽢R
would be ill-conditioned. So, the noise eigenvalues may vary
in a wide range, and very small eigenvalues may appear [3].
In particular, when the number of training data is less than
the number of antenna elements, the SCM 􏽢R will be defi-
cient-rank and zero eigenvalues may appear. *is pertur-
bation will limit the performance of VL. To prevent this, in
the work of [31], theminimal eigenvalues in (12) are replaced
with the ideal noise power σ2n, and the VL factor δ is set as
10σ4n. But it needs to estimate the noise power σ2n for a priori
information. In addition, since the VL factor is fixed only by

the noise power, when the signal-to-noise ratio (SNR) is high
enough, the loading level will be too small to overcome the
problem of SOI self-cancellation.

3. The Proposed Method

To better coordinate the robustness and adaptivity and
improve the performance of the traditional VLmethods, two
major modifications are proposed in this letter. First, an
enhanced covariance matrix is constructed to replace the
original SCM, intending to reduce the noise perturbation in
cases with limited snapshots. An analysis of the estimation
method is given. Second, based on the enhanced covariance
matrix, a parameter-free scheme for the VL factor is pro-
posed, aiming to keep the robustness against imprecise
steering vectors under various SNRs.

3.1. Estimating the Covariance Matrix. *e array snapshots
X can be split into two nonoverlapping subsamples in the
time domain, that is X � (X1,X2), where X1 ∈ CM×J and
X2 ∈ CM×(K− J). Usually, the noise component of X1 and X2
are considered independent and identically distributed, and
the following process utilizes this specific property.

*e covariance matrix for Xi can be calculated by
􏽢Ri � XiXH

i /Li, i � 1, 2, where L1 � J and L2 � K − J. Per-
form EVD for the first subsample covariance matrix 􏽢R1 as

􏽢R1 � 􏽢E1
􏽢Λ1

􏽢EH

1 , (13)

where the unitary matrix 􏽢E1 � [􏽢u11, ..., 􏽢u1M] contains the
orthonormal eigenvectors of 􏽢R1, and the diagonal elements
of 􏽢Λ1 are the corresponding eigenvalues. Further, using the
eigenvector matrix 􏽢E1 of 􏽢R1 and the second subsample
covariance matrix 􏽢R2, yields a new diagonal matrix

􏽥Λ � di ag 􏽢EH

1
􏽢R2

􏽢E1􏼒 􏼓. (14)

*en, substitute 􏽥Λ for the SCM eigenvalue matrix 􏽢Λ in
(11), an enhanced covariance matrix 􏽥R can be constructed as
follows:

􏽥R � 􏽢E􏽥Λ􏽢EH
. (15)

3.2. Analyzing the Estimation of the Covariance Matrix.
Here, we discuss the property of the above enhanced co-
variance matrix. Obviously, compared to the original SCM
􏽢R, 􏽥R reconstructs the eigenvalues while keeping its eigen-
vectors unchanged. Hence, we concentrate on the diagonal
elements in the reconstructed eigenvalue matrix 􏽥Λ, which
are

􏽥ri � 􏽢uH
1i

􏽢R2􏽢u1i, i � 1, 2..., M. (16)

Perform EVD for 􏽢R2, 􏽥ri can be further written as

􏽥ri � 􏽢uH
1i

􏽢R2,S + 􏽢R2,N􏼐 􏼑􏽢u1i

� 􏽢uH
1i

􏽢R2,S􏽢u1i + 􏽢uH
1i

􏽢R2,N􏽢u1i, i � 1, 2..., M.
(17)
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where 􏽢R2,S � 􏽐
Q
i�1 􏽢r2i􏽢u2i􏽢u

H
2i is the signal subspace correlation

matrix with the eigenpairs (􏽢r2i, 􏽢u2i), indexed by
i � 1, ..., Q, 􏽢R2,N � 􏽐

M
i�Q+1 􏽢r2i􏽢u2i􏽢u

H
2i is the noise subspace

correlation matrix with the eigenpairs (􏽢r2i, 􏽢u2i), indexed by
� Q+1, . . . , M. When the signal subspace swap occurs at low
SNRs, we assume the dimension of the signal subspace Q is
the number of interferences.

Let us divide the estimated eigenvalues 􏽥ri􏼈 􏼉 into two
parts. *e first part is indexed by i � 1, . . . , Q, i.e., the
dominant estimated eigenvalues; the second part is indexed
by i � Q + 1, . . . , M, i.e., the subdominant estimated ei-
genvalues. From the derivation given in Appendix, we can
obtain

􏽥ri ≈
􏽢uH
1i

􏽢R2,S􏽢u1i, i � 1, . . . , Q,

􏽢uH
1i

􏽢R2,N􏽢u1i, i � Q + 1, . . . , M.

⎧⎨

⎩ (18)

In the above equation, the dominant estimated eigen-
values can be further approximated as

􏽥ri ≈ 􏽢uH
2i

􏽢R2,S􏽢u2i � 􏽢r2i, i � 1, . . . , Q. (19)

*is is because the two estimated eigenvectors 􏽢u1i and 􏽢u2i

(i � 1, . . . , Q) are both highly correlated with the steering
vector of the ith signal. *us, the dominant estimated ei-
genvalues are close to the dominant eigenvalues of the
second subsample covariance matrix 􏽢R2, so they are still an
approximation of the true signal eigenvalues.

For the subdominant estimated eigenvalues corre-
sponding to noise, since 􏽢u1i and 􏽢R2,N are independent, the
operation 􏽢uH

1i
􏽢R2,N􏽢u1i can be treated as the estimation for a

single eigenvalue of the randommatrix in [32, 33], which is a
process of regularization, upgrading the sample covariance
matrix of the random sample to a well-conditioned one.
Hence, the noise spread can be reduced for the subdominant
estimated eigenvalues. It is worth noting that the signal
subspace swap occurs with high probability at low SNRs with
finite snapshots. In this case, 􏽢R2,N may contain the SOI
component. Fortunately, since the SOI is weak, the process
of regularization would be scarcely influenced, and this
would be shown in Simulation 1.

Another important issue is the choice of the subsample
number J. It should satisfy two conditions: (a) reducing the
noise spread as much as possible and (b) making the es-
timated eigenvalues lightly biased with respect to the true
ones. *e experimental data in [32] indicates that when
J ∈ [0.2K, 0.8K], this subsampling estimator can achieve a
stable performance for improving the condition number of
random sample covariance matrix. *is strategy can be
adopted to meet condition (a). Next, to satisfy condition
(b), we must prevent distortion of 􏽢R1,S and 􏽢R2,S. As a result,
both the sampling number J and the sampling number K −

J must be greater than the number of signal sources Q.
Based on the above remarks, J can be roughly chosen in the
set J ∈ N|max (Q, 0.2K)< J<K − max (Q, 0.2K){ }. Further
discussion about the choice of the subsample dimension is
given in Simulation 1.

Overall, if J is chosen appropriately, the diagonal ele-
ments in (16) should be a good approximation to the

eigenvalues of the ideal covariance matrix. In this way, an
enhanced covariance matrix is constructed for variable
loading with less noise spread.

3.3.Determining theVLFactor. *e constructionmethod for
the enhanced covariance matrix 􏽥R in (15) can be rewritten as

􏽥R � 􏽘
M

i�1
􏽥ri􏽢ui􏽢u

H
i . (20)

Equation (20) reveals that (􏽥ri, 􏽢ui), indexed by
i � 1, . . . , M, can be regarded as the eigenpairs of 􏽥R. *e
steering vector of SOI a1 can be projected on each eigen-
vector of 􏽥R to find out the eigenvector with the largest
projection value, and its serial number k can be given by

k � argmax
i

􏽢uH
i a1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,  i � 1, ..., M. (21)

*at is to say, the eigenvalue 􏽥rk, which is most associated
with SOI power can be found out. *en we set a variable
loading factor as the square of 􏽥rk as follows:

􏽥δ � 􏽥r
2
k. (22)

When we choose the loading factor as (22), the loaded
eigenvalue in (12) will be 􏽥ri + 􏽥δ/􏽥ri � 􏽥ri + 􏽥r2k/􏽥ri. At high SNR,
the SOI variance is significantly larger than the noise var-
iance, leading to 􏽥rk≫ σ2n. So, the aforementioned loaded
eigenvalues for noise would be large enough as compared to
those for signals. Accordingly, the contribution of noise
eigenvectors in the beamformer weight vector in (12) is
trivial, and the impact of noise errors can be reduced. At low
SNR, the SOI variance is close to the noise variance, leading
to 􏽥rk ≈ σ2n. *erefore, the loading level is approximately
􏽥δ/􏽥ri ≈ σ2n for the subdominant eigenvalues and 􏽥δ/􏽥ri ≈ 0 for
the dominant eigenvalues. In this case, the adaptive and
robust performance of the proposed method will be similar
to the traditional VL in [31].

With the calibrated covariance matrix 􏽥R and the loading
factor 􏽥δ, the standard form of the corresponding beam-
former can be expressed as

wnew � 􏽥R + 􏽥δ􏽥R− 1
􏼐 􏼑

− 1
a1. (23)

*e direct computation of (23) may be costly. Note that
the eigen-decomposition of the SCM 􏽢R has been performed
in advance, and 􏽥R shares the same eigenvectors with 􏽢R.
Hence, we can draw support from the form in (12) to avoid
extra matrix inversion operations. *e weight vector in (23)
can be ultimately calculated as

wnew � 􏽘
M

i�1

􏽢uH
i a1􏼐 􏼑

􏽥ri + 􏽥δ/􏽥ri􏼐 􏼑
􏽢ui. (24)

To summarize, the procedure for implementing the
proposed modified VL-based RAB method consists of the
following steps:
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Step1: Split the array snapshots X into two nonover-
lapping subsamples X1and X2, and construct the SCM
􏽢R and two subsample covariance matrices 􏽢R1, 􏽢R2;
Step2: Eigen-decompose the SCM 􏽢R and the first
subsample covariance matrix 􏽢R1;
Step3: Estimate the eigenvalues 􏽥ri􏼈 􏼉 of the calibrated
covariance matrix 􏽥R via (16);
Step4: Calculate the loading factor 􏽥δ with an eigen-
value-based way via (21)∼(22);
Step5: Compute our proposed beamformer using (24).

In our approach, the dominant computational demand
comes from Step2, i.e., the eigen-decomposition of the
matrix 􏽢R and 􏽢R1, which requires O(2M3). *e complexity of
the conventional diagonal loading in [3] and the automatic
tridiagonal loading in [27] is O(M3). *erefore, the com-
plexity of our method is higher than that of the other two
loading-based methods, but it can obtain much better
performance.

4. Simulation Results

Assume a uniform linear array of M� 30 omnidirectional
array elements and half-wavelength space. *e noise is
spatially white Gaussian with unit variance. *e desired
signal is nominally located at θ0 � 0°, and three interferences
are incident on the array from θ1 � −20°, θ2 � 10°, and
θ2 � 30°. *e interference-to-noise ratios (INRs) of the in-
terferences are equal to INR1 � 30 dB, INR2 � 40 dB, and
INR3 � 50 dB, respectively. All the sources mentioned above
are assumed to be narrowband and uncorrelated with each
other. *e model uncertainties are caused by DOA mis-
match, sensor location perturbations, along with magnitude
and phase errors of array elements. *e mth element of the
actual SV are modelled as

1 + Δgm( 􏼁e
j(2π/λ) (m− 1)d+Δdm[ ]sin θ0+Δθ( )e

jΔφm . (25)

*e DOA mismatch Δθ is assumed to be random and
uniformly distributed in [−2°, 2°], unless stated otherwise.
*e sensor position perturbations Δdm are uniformly drawn
from [−0.02, 0.02] measured in wavelengths.*e sensor gain
errors Δgm are modelled as independent and identically
distributed zero-mean Gaussian random variables with the
standard derivation 0.05. *e sensor phase errors Δφm are
assumed to be independent and uniformly distributed in
[−5°, 5°]. *e sample number of the first subsample is set as
the integer value rounded to K/2, i.e., J � round(K/2),
except for the explicit discussion of it in Simulation 1.200
Monte-Carlo runs are performed for each simulation case.

4.1. Simulation16ePerformanceof theEnhancedCovariance
Matrix with Subsampling Method. In this subsection, we
examine the performance of the enhanced covariance ma-
trix. *e following two SNR cases are considered:

(i) SNR� 20 dB, i.e., the high SNR case without signal
subspace swaps. *e number of the dominant ei-
genvalues is set as Q � 4;

(ii) SNR� −20 dB, i.e., the low SNR case with signal
subspace swaps in high probability. *e number of
the dominant eigenvalues is set as Q � 3.

We discuss the choice of the subsampling dimension J

and test the estimated performance in comparison to the
sample covariance matrix (SCM). To evaluate the regula-
rization performance for the noise eigenvalues, we apply the
noise eigenvalue spread rQ+1/rM (i.e., the ratio of the largest
noise eigenvalue to the smallest, the units are dB). To test the
deviation between the estimated and theoretical signal ei-
genvalues, we take the root mean square error (RMSE) for
experiment, which can be expressed as

RMSE �

��������������������

1
Q

􏽘

Q

i�1
dB ři( 􏼁 − dB ri( 􏼁( 􏼁

2

􏽶
􏽴

, (26)

where ři denotes the ith signal eigenvalue estimated by our
subsampling method or the SCM. ri is the ith signal ei-
genvalue of the theoretical array covariance matrix R. dB(.)
stands for the decibel operation. Here, we choose the decibel
operation in order to balance the estimation error of signal
eigenvalue in different magnitudes (otherwise, the result will
be dominated by the estimation error of the strongest signal
eigenvalue).

Figures 1 and 2 depict the estimation performance of
different choices of J versus number of snapshots in two
SNR cases. It can be seen from these figures that the en-
hanced covariance reduces the noise eigenvalue spread
substantially for the SCM. Even if the number of snapshots is
rich, like K� 200, there is still at least a 3 dB performance
improvement. For the signal eigenvalue RMSE, if the sub-
sample dimension is higher than the signal number (ex-
cluding the 6 points—J/K takes 0.2, 0.3, 0.7 or 0.8 when
K � 10, and J/K takes 0.2 or 0.8 when K � 20), our esti-
mated performance for the signal eigenvalues is close to the
SCM, which is about a 1.2 dB gap in the worst case.

Here, we discuss the optimal subsample number choice.
From Figures 1(a) and 2(a), we find that if J � 0.5K, the
estimator can obtain the best regularization performance for
the noise eigenvalues. From Figures 1(b) and 2(b), we ob-
serve that if the total number of samples K is larger than 100,
an excellent choice for J would be J/K � 0.2 or J/K � 0.3.
But they suffer from low snapshots especially in the case
K<M. By contrast, the choice J/K � 0.5 can ensure the
good performance for the signal eigenvalue estimation in the
whole range. Overall, the optimal choice of the subsampling
dimension is J � 0.5K and all the following simulations
would take the choice (Considering K may be an odd
number, we take J � round(K/2)).

4.2. Simulation 2 Output SINR of Beamformer with Steering
Vector Mismatch and Sufficient Snapshots. In this subsec-
tion, we examine the performance of proposed beamformers
with SV mismatch under sufficient snapshot conditions (i.e.,
the error is dominated by the single SV mismatch). *e
snapshots are set to be 20 × M � 600. We compare the
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output SINR of the proposed beamformer with that of the
LSMI beamformer [3], the WNC (weight norm constraint)
[8], the USC (uncertainty set constraint) [12], the INCM
[21], the ATL (automatic tridiagonal loading) [27], and the
traditional VL beamformer [31]. For the LSMI beamformer
[3], the loading level is set as λl � 10σ2n. For the USC, the
parameter εU � 0.5Mis used (we found it is the most ap-
propriate parameter in this simulation scenario). For the
INCM, the angular sectors of the SOI and the three inter-
ferences are assumed to be Θ0 � [θ0 − 2.6°, θ0 + 2.6°], Θ1 �

[θ1 − 2.6°, θ1 + 2.6°], Θ2 � [θ2 − 2.6°, θ2 + 2.6°], Θ3 � [θ3 −

2.6°, θ3 + 2.6°].
In Figure 3, the mean output SINR is illustrated versus

the input SNR. Figure 4 plots the output SINR versus the
fixed DOA error when the random sensor position per-
turbations are present; the SNR is fixed at 10 dB. It can be
seen from these figures that our method is the best per-
forming one as compared with others. In Figure 3, the
traditional VL suffers from SINR degradation at high SNR
due to the SOI self-cancellation. *e INCM can keep the
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Figure 1: Estimation performance of different choices of J versus number of snapshots under case (i), (SNR� 20 dB, Q� 4) (a) Noise
eigenvalue spread. (b) Signal eigenvalue RMSE.
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Figure 2: Estimation performance of different choices of J versus number of snapshots under case (ii), (SNR� −20 dB, Q� 3). (a) Noise
eigenvalue spread. (b) Signal eigenvalue RMSE.
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main lobe undistorted at a wide range of SNR, but it is highly
sensitive to the array calibration errors (like sensor position
perturbation, sensor gain, and phase errors), causing a
decline in anti-interference capability. From Figure 4, we can
observe that the performance of the USC and WNC is very
close to our method when the actual DOA is within the 3 dB
main lobe scope Θm � [θ0 − Δθm, θ0 + Δθm] (the angular
interval Θm is approximately [−1.69°, 1.69°] in this simu-
lation scenario). For the DOA mismatch between Δθmand
1.5Δθm, the proposed beamformer is obviously more robust
than other beamformers. A drawback of our algorithm is
that it is sensitive to the extremely large pointing error (the

DOA mismatch exceeds 1.5Δθm). *is is because the factor
􏽥rk in Subsection 3.3 may be chosen as the noise eigenvalue
when the assumed SOI steering vector is biased from the true
one too much. Nevertheless, this scarcely happens in
practical scenarios.

4.3. Simulation 3 Output SINR of Beamformer with Steering
VectorMismatchandFinite Snapshots. In this subsection, we
examine the performance of proposed beamformers with SV
mismatch under finite snapshot condition (i.e., the error is a
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Figure 3: Output SINR versus input SNR in sufficient snapshot.
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Figure 4: Output SINR versus steering direction error in sufficient
snapshot with random sensor position errors.

10 20 30 40 50 60 70 80 90 100
Number of snapshots

10

0

5

15

O
ut

pu
t S

IN
R 

(d
B)

opt
WNC
LSMI
GLC

ATL
traditonal VL
USC
Proposed beamformer

Figure 5: Output SINR versus the number of snapshots.
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Figure 6: Output SINR versus input SNR in finite snapshots.
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mixture of SV mismatch and finite sample impairment). We
replace the INCM [21] with the well-known parameter-free
beamformer GLC (general linear combination) [5] because
the latter performs better in low snapshots. For the USC [12],
when the sample covariance matrix 􏽢R is low rank, the di-
agonal loading with the above fixed loading level λl would be
taken in the USC primarily.

Figure 5 shows the output SINR versus the number of
snapshots at SNR� 0 dB, and Figure 6 plots the output SINR
versus the input SNR with 30 snapshots (K � M). From
Figure 5, we observe that the proposed method exhibits good
performance over other robust adaptive beamforming
methods when the number of snapshots is below 100. In
Figure 6, when the SNR is less than −5 dB, the proposed
beamformer achieves similar performance to that of the
traditional VL and the LSMI, but unlike these two ad-hoc
ways, the proposed automatic VL does not require testing
the noise power for a prior. Another two automatic loading
methods (the ATL and the GLC) perform well at high SNR.
But their loading levels are sensitive to interference power,
causing performance degradation at low SNR along with
strong interference. Overall, our proposed beamformer
catches the performance reduction in this sample-starving
environment compared to Simulation 2, but it still enjoys the
strongest robustness among the methods tested.

5. Conclusion

A modified VL beamformer is proposed for robust adaptive
beamforming. A novel subsampling method is utilized to
estimate the calibrated covariance matrix, which applies the
independent and identically distributed property of noise in
the time domain. *en, the VL level is computed in an
automatic way. *e proposed method can improve the
robustness of the adaptive beamformer contaminated by
finite snapshots or SV mismatches in different SNRs.
Simulations verify the effectiveness of the estimation for the
covariance matrix. As expected, compared with other
loading-based beamformers and several well-known robust
beamformers, the proposed beamformer can achieve su-
perior performance.

Appendix

Derivation of (18)

Suppose 􏽢Ψ1,S� span 􏽢u11, . . . , 􏽢u1Q􏽮 􏽯 and Ψ̂1,N � span 􏽢u1(Q+1),􏽮

. . . , 􏽢u1M} are the signal subspace and noise subspace of the
first subsample covariance matrix 􏽢R1, 􏽢Ψ2,S � span
􏽢u21, . . . , 􏽢u2Q􏽮 􏽯 and 􏽢Ψ2,N � span 􏽢u2(Q+1), . . . , 􏽢u2M􏽮 􏽯 are the
signal subspace and noise subspace of the second subsample
covariance matrix 􏽢R2. As shown in Figure 7, we provide a
three-dimensional geometric interparetation considering
one signal model. *e two sample-estimated signal sub-
spaces 􏽢Ψ1,S and 􏽢Ψ2,S are both the estimation of the ideal
signal subspace. For insufficient snapshots, they are biased
from the true ones with high probability. Even so, the
distance between 􏽢Ψ1,S and 􏽢Ψ2,S is short. Applying the or-
thogonality between 􏽢Ψ1,S and 􏽢Ψ1,N and the orthogonality
between 􏽢Ψ2,S and 􏽢Ψ2,N, we can derive 􏽢Ψ1,S is almost or-
thogonal to 􏽢Ψ2,N, and 􏽢Ψ1,N is almost orthogonal to 􏽢Ψ2,S.
Hence, we have

􏽢uH
1i

􏽢R2,N􏽢u1i � 􏽢uH
1i 􏽘

M

j�Q+1
􏽢r2j􏽢u2j􏽢uH

2j
⎛⎝ ⎞⎠􏽢u1i

≈ 0 i � 1, . . . , Q,

􏽢uH
1i

􏽢R2,S􏽢u1i � 􏽢uH
1i 􏽘

Q

j�1
􏽢r2j􏽢u2j􏽢uH

2j
⎛⎝ ⎞⎠􏽢u1i

≈ 0 i � Q + 1, . . . , M.

(A.1)
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mation of variance matrices,” Journal of Econometrics,
vol. 181, no. 2, pp. 165–180, 2014.

[33] C. Lam, “Nonparametric eigenvalue-regularized precision or
covariance matrix estimator,” Annals of Statistics, vol. 44,
no. 3, pp. 928–953, 2016.

International Journal of Antennas and Propagation 9


