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Amicrowave imaging matrix algorithm based on the contrast source is proposed. It is known that the contrast source and the total
�eld change by shifting the position of the incident �eld. To ensure the constancy of the contrast source, this paper �rst proposes a
novel inversion model based on the contrast source. �e excitation source is located at a single �xed position, and the scattering
data is obtained by measuring points evenly distributed on multiple circular layers. Secondly, a matrix algorithm based on the
contrast source is proposed, which transforms the nonlinear imaging problem into a matrix operation step-by-step without
iteration. �e numerical simulation results show that the matrix algorithm proposed in this paper has high precision and good
performance with complex imaging problems. In addition, the limitation of the proposed algorithm when inversing data with
noise is also analyzed.

1. Introduction

Microwave imaging is one of the classic inverse problems,
which has been extensively utilized in earth exploration,
medical diagnosis, metasurface antenna, and more [1, 2]. �e
core of the microwave imaging problem is to resolve the
parameters of the scatterer, such as its material coe�cient,
position, and shape, through data obtained from the scattering
�eld. At present, many common imaging algorithms are based
on the Lippmann–Schwinger equation. Owing to its non-
linearity and highly ill-condition characteristics, this equation
introduces certain di�culties to the solution process.

Commonly used microwave imaging algorithms mainly
include stochastic optimization algorithms [3], such as par-
ticle swarm optimization (PSO), genetic algorithms (GA), and
di�erential evolution (DE); algorithms based on gradient
theory, such as contrast source inversion (CSI) [4, 5] and the
subspace optimization method (SOM) [6, 7]; and imaging
algorithms based on other methods, such as compressive
sensing (CS) [8] and deep learning [9]. In addition, some
other nonlinear estimation methods have also achieved good
performance in inverse scattering problems. [10].

Many imaging algorithms involve iteration. Although
traditional iterative methods can e�ectively solve the

microwave imaging problem, the time and hardware costs
are high. In addition, the microwave imaging problem is a
strict physical �eld problem, and however, many imaging
algorithms focus solely on the modi�cation of algorithm
parameters and the addition of regular terms, ignoring the
connection with the physical process [9]. �e CSI method is
a classic imaging algorithm. It is known that the contrast
source is closely related to the total �eld [4].

In this paper, a microwave imaging matrix algorithm
based on the contrast source is proposed. �e contrast
source and the total �eld will be a�ected by di�erences in the
incident �eld position. As such, an improved inversion
model is �rst proposed, where the position of the excitation
source is kept �xed, and measurement points are evenly
distributed on circles of di�erent radius, which ensures the
consistency of the contrast source. �en, the matrix algo-
rithm is proposed which converts the nonlinear imaging
problem into a matrix problem of several steps without
iteration, e�ectively reducing the solution cost and in-
creasing its suitability for complex imaging problems. And
the matrix algorithm proposed has a high accuracy and strict
physical signi�cance. In addition, the matrix algorithm has a
higher solution e�ciency than the hybrid algorithm pro-
posed in [11].
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�e sections of this paper are arranged as follows.
Section 2 introduces an improved inversionmodel. Section 3
introduces the microwave imaging matrix algorithm. In
Section 4, di�erent types of scatterers are utilized to assess
the performance of the proposed matrix algorithm. Finally,
the present work is summarized, and the direction of further
research is indicated.

2. Improved Inversion Model

�e traditional microwave imaging measurement model is
shown in Figure 1.

In the traditional model, the scatterer is located in the
imaging domain, and the background is the free space.
Several measurement points for the detection of scattered
�eld signals are evenly distributed on a single circle. �is
model uses several excitation sources arranged on a circle
with a �xed radius for multi-position incidence.

�e physical meaning of the contrast source is the result
of multiplying the total �eld in the imaging domain with
material parameters, just as in the following equation [4].
For nonmagnetic materials, the material parameter is usually
the value of the relative permittivity.

Cs � χ · utot, (1)

where Cs represents the contrast source, χ is the contrast
function, and utot is the total �eld.

In reference [12], a modi�ed inversion model was
proposed to improve the accuracy of inversion. In the
modi�ed model, several measurement points distributed on
the circumference of multilayers were applied. However, this
measurement model did not establish a relationship with the
physical quantity “contrast source”. Meanwhile, this model
did not consider the constancy of the contrast source.

Under the Born approximation, the total �eld utot can be
approximated by the incident �eld uinc, so the contrast
source has an obvious numerical relationship with the data
of the incident �eld. �erefore, an improved inversion
model is proposed which is shown in the following Figure 2.

where R1, R2. . .(n − 1), and Rn represent di�erent radius of
the measurement circumferences, respectively.

In order to facilitate calculation and simulation veri�-
cation conveniently, the number of receiving circles in this
paper is set to 3, that is, n is equal to 3.

In the improved model, there is only one excitation
source, and its position is �xed.�e data of the scattered �eld
can be obtained from measuring points uniformly distrib-
uted on concentric circular arrangements. With the incident
source in a single �xed position, material parameters and the
incident �eld are constant. �erefore, the contrast source is
the same whether it is employed to image the scatterer or
calculate the total �eld inside the scatterer. �is condition of
the consistent contrast source allows for the e�ective sim-
pli�cation of the calculation process. In addition, the con-
sistency of contrast source, which can be applied to solve the
inversion of the relative permittivity, is the basis of the
matrix algorithm.

3. Microwave Imaging Matrix Algorithm

�e vector electromagnetic �eld problem in two-dimen-
sional space can be transformed into a problem of calcu-
lating the components of the electromagnetic �eld, which
can in turn be further simpli�ed to scalar integral equation,
e�ectively reducing the amount of calculation required.
Using the notation of reference [4], the electric �eld integral
equation is as follows:

utot(p→) � uinc(p→) + k2∫
D
G(p→, q→)χ( q→)utot( q→)dv, (2)

where p→ and q→ represent position vectors in two-dimen-
sional space, utot(p→) represents the total �eld, uinc(p→)
represents the incident �eld, D is the imaging domain, χ( q→)
is the contrast function, and other physical quantities satisfy
the following relationships.

k � ω
����
ε0μ0

√
,

G(p→, q→) �
i

4
H(1)

0 (k|p→− q→|),
(3)
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Figure 1: Traditional measurement model of microwave imaging.
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Figure 2: Improved inversion model.
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where k is the wave vector, ω is the angular frequency, μ is
the magnetic permeability, ε is the permittivity, and H(1)

0
represents the �rst-order Hankel function.

Equation (1) can be written in vector form as to conform
to the symbol from reference [4] as follows:

Cs( q→) � χ( q→)utot( q→), (4)

with the vector q→ de�ned as ( r→d
1 · · · r

→d
m)

T, where the r→d

are position coordinates inside the scatterer.
�e above formula can be written in the matrix form.

Cs r→d
1( )

⋮

Cs r→d
m( )




�

χ1 0 0

0 ⋱ 0

0 0 χm




utot r→d
1( )

⋮

utot r→d
m( )




. (5)

�erefore, the scattered �eld signal can be expressed
using the contrast source, as follows:

usca(p→) � k2∫
D
G(p→, q→) · Cs( q→)dv, (6)

where usca(p→) � utot(p→) − uinc, with the vector p→ de�ned
as ( r→s

1 · · · r
→s
n)
T where the r→s are position coordinates of the

scattering area.
�e matrix form of the above formula is as follows:

usca r→s
1( )

usca r→s
2( )
⋮

usca r→s
n− 1( )

usca r→s
n( )





�

Z r→s
1, r
→d

1( ) · · · Z r→s
1, r
→d
m( )
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2, r
→d

1( ) Z r→s
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m( )


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Cs r→d
1( )

⋮

Cs r→d
m( )




.

(7)

Matrix Z represents the coe�cient matrix, which maps
usca(p→) to Cs( q→), and Z( r→p, r

→
q) � k2G( r

→
p, r
→
q)ΔV ,

where ΔV represents the two-dimensional area unit.
�erefore, (2) can be written in matrix form as follows:

utot r→d
1( )

⋮

utot r→d
m( )
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�

uinc r→d
1( )

⋮

uinc r→d
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+
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⋮

Cs r→d
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
.

(8)

Since the scattered �eld data is known, (7) can be used to
calculate the contrast source Cs( r→d) according to the known
scattered �eld data usca( r→s). �en, since the incident �eld
uinc is known, the total �eld of the target area utot( r→d) can be
obtained using (8). Finally, according to (5), the parameter
distribution of the target area can be obtained through known
quantitiesCs( r→d) and utot( r→d) , after which the permittivity
distribution of the target area can be resolved.

4. Numerical Simulation

In order to assess the performance of the proposed algo-
rithm, this section introduces several examples of scatterers
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Figure 3: Comparison results of the relative permittivity distribution of the “U-shaped” groove.
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with di�erent relative permittivity distributions. �e inci-
dent frequency is 2.4GHz, which is commonly applied in the
ISM (Industrial Scienti�c Medical) frequency band. �e
imaging domain size is 0.1m× 0.1m. �ree receiving circles
are utilized, and 90 measuring points are distributed evenly
on each circle. �e excitation source is 0.25m away from the
center of the imaging domain. �e measurement circles are
0.05m, 0.10m, and 0.15m, respectively, from the imaging
center.

4.1. “U-Shaped” Groove. �is example employs a “U-sha-
ped” groove as the scatterer. �e side length of the “U-
shaped” groove is 0.07m, and the relative permittivity is set
to 5. �e original relative permittivity distribution and in-
version result of the matrix algorithm are shown in Figure 3.

In order to compare the numerical values conveniently,
the error curve which is obtained by the modulus of dif-
ference between the preset relative permittivity and the
inversion result is shown in Figure 4. �e abscissa represents
the number of grids.

It can be seen from the two-dimensional inversion result
and error curve that the matrix algorithm can solve the “U-
shaped” groove imaging problemwith a small error, which is
distributed between 15∗10− 4 and − 5∗10− 4. �e �eld coupling
phenomenon between the inner groove of the “U-shaped
groove” did not a�ect the imaging results.

4.2. Scatterer with Bubbles. A scatterer with several bubbles
is employed in this example. Four bubbles are randomly
located in an otherwise uniform scatterer, with each bubble
measuring 0.01m× 0.01m. �e size of the scatterer is
0.07m× 0.07m.�e relative permittivity of the scatterer is 5.
�e original relative permittivity distribution and inversion
result of the matrix algorithm are shown in Figure 5.

�e error curve is shown in Figure 6.
It can be seen from the two-dimensional inversion result

and error curve that the matrix algorithm can solve the
scatterer with bubbles imaging problem with a small error,
which is distributed between 2∗10− 3 and − 2∗10− 3. �e po-
sition and number of bubbles are well reconstructed.

4.3. Scatterer with Random Relative Permittivity. In this
instance, a scatterer with a nonuniform distribution of
relative permittivity is employed. �e relative permittivity is
generated using a random matrix with element values be-
tween 4 and 6. �e relative permittivity value in each grid
generated by the random matrix is relatively independent,
which can e�ectively verify the performance of the proposed
matrix algorithm in solving random problems. �e original
relative permittivity distribution and inversion result of the
matrix algorithm are shown in Figure 7.

�e one-dimensional error curve is shown in the fol-
lowing Figure 8.

It can be seen from the two-dimensional inversion result
and error curve that the matrix algorithm can solve the
scatterer with a random relative permittivity imaging
problem with a small error, which is distributed between
2∗10− 3 and − 2∗10− 3.

4.4. Scatterer with Complex Permittivity. �e relative per-
mittivity in the previous three examples only have a real part,
so in this instance, a complex permittivity is applied to assess
the performance of the proposed algorithm.�e scatterer has
an “E-shaped” con�guration, and the complex permittivity is
set to 5 + 2i. �e original distribution of the real and imag-
inary parts of the relative permittivity is shown in Figure 9.
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Figure 5: Comparison results of relative permittivity distribution of the scatterer with bubbles.
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�e inversion results obtained by the proposed algo-
rithm are shown in Figure 10.

In order to accurately measure the performance of the
matrix algorithm on the inversion of the complex permit-
tivity, the parameter “correlation coe�cient” is calculated. A
correlation coe�cient of 1 between the two sets of data
implies that two sets have a strict linear relationship.
Meanwhile, using the correlation coe�cient for perfor-
mance measurement does not need to compare the real and
imaginary parts of the relative permittivity separately. After
calculation, the correlation coe�cient matrix between the
original relative permittivity and the result of the matrix
algorithm are as follows:

1.0000 + 0.0000i 1.0000 − 0.0002i

1.0000 + 0.0002i 1.0000 + 0.0000i
[ ]. (10)

According to the correlation coe�cient results, the two
sets of permittivity results have a strict linear relationship.
�e error curve graphs are shown in Figure 11.

It can be seen from the two-dimensional inversion result
and error curve that the matrix algorithm can solve the
scatterer with a complex permittivity imaging problem with
a small error.�e error of the real part is distributed between
2∗10− 3 and − 2∗10− 3. �e error of the imaginary part is
distributed between 0 and 3∗10− 3.

4.5. Scatterer in Non-Free Space. Since the microwave im-
aging technology is widely utilized in medical imaging and
earth exploration, the background space where the scatterer
to be measured is located is not free in many cases, such as
organic media and soil.�erefore, it is necessary to verify the
performance of the proposed matrix algorithm on the
scatterer in non-free space.

�is example sets the relative permittivity of the back-
ground to 2 + 0.8i, and the scatterer has two di�erent relative
permittivity, 1.5 + 0.3i and 10, respectively. �e length of the
outer side is 0.07m, and the length of the inner side is 0.03m.
�e relative permittivity distribution in the imaging domain
is shown in Figure 12.

�e inversion results obtained by the proposed algo-
rithm are shown as follows in Figure 13.

�e error curve graphs are shown in Figure 14 below.
It can be seen from the two-dimensional inversion result

and error curve that the matrix algorithm can solve the
imaging problem of the scatterer in non-free space with a
small error. �e error of the real part is distributed between
− 4∗10− 3 and 2∗10− 3. �e error of the imaginary part is
distributed between − 2∗10− 3 and 10∗10− 3.

4.6. “U-Shaped” Groove under Di�erent Measurement Points.
In the above veri�cation examples, the number of mea-
surement points is �xed. �is example veri�es the perfor-
mance of the proposed matrix algorithm by changing the
number of measurement points. �e scatterer and related
preset parameter settings are consistent with the calculation
example A, using the “U-shaped” groove with uniform
relative permittivity distribution. �e number of measure-
ment circles is set to 3, and the number of measurement
points evenly distributed on each measurement circle is set
to 90, 60, 45, 40, and 30 in turn. �e imaging results are
shown in Figure 15.

It can be seen from the imaging results that with the
decrease of the number of measurement points, the imaging
quality shows a downward trend, the imaging results cannot
well re¨ect the shape characteristics of the scatterer, and the
imaging results inside the groove also show a downward
trend.
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Figure 11: �e error curves for the scatterer with complex permittivity. (a) Real part. (b) Imaginary part.
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Figure 12: Relative permittivity distribution of the scatterer in non-free space. (a) Real part. (b) Imaginary part.
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Figure 9: Original relative permittivity distribution. (a) Real part. (b) Imaginary part.
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�e errors of the imaging results are analyzed by using
four parameters: the maximum error value, the minimum
error value, the mean value, and the variance. �e statistical
data are shown in the following Table 1.

It can be seen from error statistics parameters that with
the decrease of the number of measurement points, the
maximum value of the reconstruction error gradually in-
creases and the minimum value gradually decreases.
�erefore, the mean and variance are changed at the same
time, and the parameter performance shows a downward
trend. From the solution analysis of the matrix problem,
relative to the �xed number of unknown relative permit-
tivity, with the reduction of the number of measurement
points, the original matrix equation system becomes an
underdetermined equation system, and the number of
equations is less than the number of unknowns, resulting in
nonunique solutions. �erefore, choosing an appropriate
number of measurement points is helpful for the solution of
the matrix algorithm.

4.7. “U-Shaped” Groove with Noise. It is necessary to test the
robustness of the performance for the proposed algorithm.
�erefore, in this example, noise with a �xed signal-to-noise
ratio is added to the scattered �eld data, and the U-shaped
groove is applied as the scatterer to verify the performance of

the matrix algorithm. Scatterer parameters are the same as
those of example A, and signal-to-noise ratios are set to 200,
150, 100, 80, 60, 40, and 20 in turn. �e imaging results are
shown in Figure 16.

It can be seen from the imaging results under di�erent
signal-to-noise ratios that with the decrease of the signal-to-
noise ratio, the imaging quality shows an obvious.

4.7.1. Downward Trend. �e shape and electromagnetic
parameters of the scatterer cannot be well inverted.
�erefore, it can be concluded that the proposed matrix
algorithm has limitations for the inversion problem of
scattered �eld data with noise.

From the derivation of the matrix algorithm, the pro-
posed matrix algorithm has strict mathematical derivation
and every parameter processes the physical meaning.
However, in the process of matrix derivation, no processing
method of noise removal is adopted.�erefore, although the
matrix algorithm can obtain a high inversion accuracy, a
little ¨uctuation may cause deviation of the solution result
for matrix operation. �erefore, the proposed matrix al-
gorithm does not have a strong robustness to noisy data.

4.8. Comparison with Another Algorithm. A hybrid algo-
rithm based on the modi�ed sine-cosine algorithm and the
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Figure 13: Inversion results of relative permittivity distribution of the scatterer in non-free space. (a) Real part. (b) Imaginary part.
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Figure 14: �e error curves for the scatterer in non-free space. (a) Real part. (b) Imaginary part.
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least square method for solving optimization problems and
microwave imaging problemwas proposed in [11]. Since this
hybrid algorithm adopted the parallel operation of two al-
gorithms and the output result with the smallest error, it had
a high precision. A ring scatterer for performance veri�-
cation is applied in this example. Because the ring scatterer
has an obvious �eld coupling phenomenon in the ring, it is
suitable for performance veri�cation of the imaging algo-
rithm.�e relative permittivity of the scatterer is set to 5 + 2i,
the outer side length is 0.07m. �e relative permittivity
distribution of the real part and the imaginary part is shown
in Figure 17.

�e inversion results of relative permittivity obtained by
the proposed matrix algorithm are shown in Figure 18.

�e inversion results of relative permittivity obtained by
the hybrid algorithm in [11] are shown in Figure 19.

�e error curves of relative permittivity obtained by the
two algorithms are shown in Figure 20.

It can be seen from the imaging results that both al-
gorithms can perform a good inversion of the problem in
this example, and the values of the real and imaginary parts
are well reconstructed. It can be seen from the error curve
that the error obtained by the hybrid algorithm proposed in
[11] is much smaller than that of the proposed matrix al-
gorithm. �en, from the operation time to consider, for the
imaging problem in the example, the time required by the
matrix algorithm is 0.3817s, and the time required by the
hybrid algorithm in [11] is 83.1062s. Since iterative opera-
tion was required in the parallel algorithm in [11], the so-
lution e�ciency is lower than the proposed matrix
algorithm, which requires no iterative operation. From a
physical point of view, the matrix algorithm e�ectively
avoids the black box solution and has a strict physical
meaning. �e hybrid algorithm in [11] was based on a
stochastic optimization algorithm, and the physical meaning
of parameters is weaker than the proposed matrix algorithm.
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Figure 15: Imaging results with di�erent number of measurement points. (a)�e number is 90. (b)�e number is 60. (c)�e number is 45.
(d) �e number is 40. (e) �e number is 30.

Table 1: Error parameters of imaging results under di�erent number of measurement points.

Number of measuring points on each
circumference

Number of measuring
circumference

Maximum
value

Minimum
value Mean Variance

90 3 0.0012 − 0.0005 1.4867∗10− − 5 5.7594∗10− − 8

60 3 1.0000 − 4.1430 − 0.0071 0.2186
45 3 1.1016 − 8.9728 − 0.0780 1.1419
40 3 5 − 27.6275 − 0.26195 8.98421
30 3 5 − 33.7131 − 0.35942 13.3044
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Figure 17: Relative permittivity distribution of ring scatterers. (a) Real part. (b) Imaginary part.
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In summary, the proposed microwave imaging matrix
algorithm can e�ectively solve the complex imaging prob-
lems listed above. �e shape, position, and relative per-
mittivity of scatterers are inversed well. �e order of the
error obtained is relatively low. Because the proposed matrix
algorithm transforms the ill-conditioned imaging problem
into the calculation of the matrix step-by-step, it needs no
iterative calculations. For the current computer, matrix

operation without iteration can obtain a lower time cost and
hardware cost. In addition, the microwave imaging matrix
algorithm is based on Lippmann–Schwinger equation and a
contrast source, which has the strict physical directivity.
�erefore, it can be utilized to a wide range of imaging
problems. However, the proposed matrix algorithm does not
achieve a strong robustness when solving a microwave
imaging problem with noise.
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Figure 18: Inversion results obtained by proposed algorithm. (a) Real part. (b) Imaginary part.
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Figure 19: Inversion results obtained by hybrid algorithm in [11]. (a) Real part. (b) Imaginary part.
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Figure 20: �e error curves of relative permittivity obtained by the two algorithms. (a) Real part. (b) Imaginary part.
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5. Conclusion

(is paper introduces a microwave imaging matrix algo-
rithm based on a contrast source. First, in order to ensure the
constancy of the contrast source, an improved inversion
model is proposed, employing a fixed excitation source and
several measuring points evenly distributed on multiple
circles. Second, a matrix algorithm is proposed based on the
contrast source and an improved inversion model. (e most
significant innovation is that iterative operation is not re-
quired in the proposed algorithm, which is more suitable for
diverse imaging problems. Meanwhile, the algorithm pro-
posed has strict mathematical and physical derivation,
avoiding traditional “black box” methods. Various simula-
tion examples are then explored, where it is shown that the
proposed algorithm can achieve high imaging accuracy.
Meanwhile, the effect of the number of measurement points
on the performance of the proposed algorithm is studied. In
addition, the robustness of the matrix algorithm has been
verified and analyzed.

Our future work will apply this proposed approach to
high-dimensional and broader inverse scattering problems
and study corresponding improvement methods in view of
the limitations of existing algorithms in dealing with noisy
data.
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