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Interrupted-sampling repeater jamming (ISRJ) is a new kind of coherent jamming for linear frequency modulation (LFM) signals.
Based on digital radio frequency memory (DRFM), ISRJ can generate multiple false target groups by intercepting, storing, and
retransmitting radar signal fragments, which signi�cantly a�ects the postprocessing results of radar systems. Furthermore, due to
the fragment interception of ISRJ, ISRJ false targets present a regular and discontinuous time-frequency (TF) distribution in
contrast with real targets. Considering this intrinsic property and the coherent nature of ISRJ, this study proposes a new method
based on TF analysis and target sparse reconstruction to address the ISRJ suppression issue. In this method, the echo signal is �rst
sparsely represented to obtain both the real and false target positions. �en, according to the acquired target positions, in-
formation entropy features of targets are extracted in TF data for subsequent target identi�cation. Finally, guided by the
identi�cation result, the real targets can be retained and reconstructed by adaptive �ltering in the sparse domain to realize ISRJ
suppression. Simulations have validated the e�ectiveness of the proposed method under various situations.

1. Introduction

Linear frequency modulation (LFM) signal is widely used
in modern radar systems, and its large time-bandwidth
product enables it to obtain a large coherent processing
gain [1], which greatly mitigates the e�ect of noise
jamming and other noncoherent jammings [2]. �ere-
fore, coherent jamming is receiving increasing attention.
With the widespread use of digital radio frequency
memory (DRFM) in electronic countermeasures (ECM),
many types of active coherent jammings have been de-
veloped. DRFM can coherently duplicate radar signals so
that the transmission power requirement of jammers is
lowered [3]. Meanwhile, DRFM is also characterized by
adjustable jamming parameters and portability on dif-
ferent platforms, posing a severe threat to the radar
system [4, 5].

�ere are two main working modes for DRFM-based
jammers [6]. �e �rst working mode is to intercept and
forward the entire radar signal pulse, thus the generated
jamming signal is able to obtain the coherent processing gain
to the maximum extent and form a highly realistic deceptive
target. Nevertheless, this kind of jamming cannot take e�ect
until the next pulse repetition interval (PRI), so radar sys-
tems can adopt strategies such as interpulse waveform agility
[7, 8], frequency agility [9, 10], and protecting signal [11] to
counter such jamming. Besides, this working mode is re-
stricted by the high isolation of two receive-and-transmit
antennas and the sampling rate of the wideband signal, so it
cannot be £exibly applied to small platforms such as missiles
and unmanned aerial vehicles (UAVs) [12].

In order to solve the inherent defects of the �rst working
mode, the other working mode named the interrupted-
sampling-repeating mode came into being. In this mode,
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interrupted-sampling repeater jamming (ISRJ) is proposed
[13]. It intercepts, stores, and repeatedly forwards radar
signals within a pulse duration and can generate a series of
false targets after pulse compression (PC). *e intrapulse
jamming characteristic of ISRJ solves the application limi-
tation of the first working mode and also invalidates the
abovementioned jamming countermeasures. On this basis,
scholars have further explored the application prospect and
derivative forms of ISRJ [14–22]. In terms of specific ap-
plication, the jamming theory and effect of ISRJ have been
tested on various LFM wideband radars, such as PC radar
[14], dechirping radar [15], and range doppler (RD) imaging
radar [16–18]. In addition, Li et al. [19] quantify the in-
fluence of signal interception ratio on jamming power loss
and evaluate the corresponding jamming effect. In the aspect
of derived jamming types, Liu [20] proposes interrupted-
sampling loop jamming (ISLJ) by changing the forwarding
mode of intercepted radar signal fragments. In [21], ISRJ is
combined with the scatter wave, and the jamming effect of
resulting intermittent sampling scatter-wave jamming on
SAR is verified. In [22], an improved ISRJ is proposed, which
can generate false targets ahead of real targets by means of
frequency shifting. However, the jamming thus formed may
lead to an inevitable energy loss of the generated false targets.

On account of the practicality of ISRJ, the suppression
methods against ISRJ have attracted extensive attention
since ISRJ was proposed. *ese methods can be divided into
waveform design methods and signal filtering methods. *e
waveform design methods divide the transmitted signal into
multiple segments and then perform subpulse compression
separately to destroy the intrapulse coherence of ISRJ as
much as possible. For instance, Zhang et al. use a stepped
LFM signal [23] and an intrapulse LFM-Costas frequency
stepping signal [24] to increase the orthogonality among
subpulses, thus the jammed subpulses can be easily elimi-
nated through the energy threshold after subpulse com-
pression. Similarly, a mixed modulation of frequency-shift
keying (FSK)/phase-shift keying (PSK) signal is employed in
[25] to distinguish the real targets from false ones via the
accumulated target detection results after subpulse com-
pression. In [26], guided by the estimated jamming pa-
rameters, Zhou et al. optimize the transmitted waveform by
adopting protective pulses and genetic algorithms. Overall,
the performance of the waveform design methods mainly
depends on the orthogonality between the transmitted signal
and ISRJ, and the energy loss of the real target increases
when the jamming duty ratio becomes larger.

*e signal filtering methods realize jamming removal
by filtering in a certain transform domain. In these
methods, one option is to extract the jamming-free radar
signal fragments through energy function [27, 28], time-
frequency (TF) function [29], and neural network [30].*is
option, however, relies heavily on the intensity of the
jamming signal and performs relatively poorly under weak
jamming conditions. *e other option is based on TF
analysis. For the dechirping radar, a band-pass filtering
process is carried out in the frequency domain [31, 32] by
finding the TF local minimum value, but there are still some
false targets remaining after processing. For the PC radar,

Zhou et al. estimate the key parameters of ISRJ [33] through
TF analysis and deconvolution for jamming cancellation,
and Meng et al. further adopt the Hilbert transform [34] to
improve the estimation accuracy of ISRJ sampling slice
width. Yet, the performance of these methods is sensitive to
the parameter estimation accuracy [35, 36] and provides
new ideas for jamming suppression. In [35], Lu et al.
initially apply a TFmask to filter out the wideband jamming
signal and then reconstruct the target signal according to
the compressed sensing theory. In [36], the PC result is
transformed into the TF domain, and a TF filter can be
designed to filter out the false targets directly after deter-
mining the range gates of real targets. Nevertheless, this
approach is limited by the contradiction between time
resolution and frequency resolution in the TF transform, so
it cannot accurately determine the extraction locations and
the spectrum widths of the target range gates simulta-
neously. In [37], a new method for ISRJ suppression is
proposed based on real target locating and recovery; the
success rate of this method depends on the real target
locating precision of the neural network. Although the
method is limited to a single real target recovery, for the
time being, it provides a new solution for ISRJ suppression.

In this context, according to the coherence of ISRJ and
the different TF distribution characteristics between ISRJ
false targets and real targets, this study proposes a new ISRJ
suppression method for LFM PC radars based on TF
analysis and target sparse reconstruction. *is method
converts the jamming suppression problem into a target
binary classification problem, and the targets of interest can
be recovered through sparse reconstruction assisted by the
target identification result. Owing to the use of TF infor-
mation entropy (TFIE) features, the proposed method can
achieve an overall high target identification accuracy, and
ISRJ false targets as well as the noise signal can be greatly
suppressed after real target reconstruction. Furthermore, in
the stage of TF feature extraction, the proposed method can
locate the targets precisely by means of sparse represen-
tation and thus is free from the time resolution limit in the
TF transform.

*e structure of this study is as follows. Section 2 first
introduces the ISRJ signal model and then analyzes the PC
result of ISRJ and its corresponding TF distribution. Section
3 proposes the ISRJ suppression method, in which the
procedures of target identification using TFIE and target
sparse reconstruction are introduced in detail. Section 4
conducts lots of simulations to verify the effectiveness of the
proposed method and also studies the factors affecting the
antijamming probability. Finally, the main conclusions are
drawn in Section 5.

2. Principle of ISRJ

2.1. ISRJ SignalModel. ISRJ is mainly used for self-defensive
purposes in defense penetration scenarios [28]. For the
formation process of ISRJ, the jammer first intercepts and
stores a fragment of the radar-transmitting signal and then
forwards it repeatedly many times. *is process is repeated
till the end of the radar signal pulse, as shown in Figure 1.
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We assume that the radar transmits LFM signal sig(t)

with pulse width T and bandwidth B, and the distance
between the radar and the real target is Rtar, then the target
echo signal can be represented as

star(t) � σtarsig t − τtar( 􏼁 � σtarrect
t − τtar

T
􏼒 􏼓e

jπk t− τtar( )
2

,

(1)

where rect(t/T) is a rectangular window function with
window length T and starting point 0, σtar and τtar � 2Rtar/c
represent the intensity and the propagation time delay of the
target echo signal, respectively. k � B/T is the frequency
modulation rate of the LFM signal, and c is the speed of light.

As Figure 1 illustrates, the jammer samples the radar
signal at a certain repeat sampling interval TS within a signal
pulse width, and the sampling slice width is TW. Accord-
ingly, the sampling function p(t) can be defined as

p(t) � rect
t

TW

􏼠 􏼡⊗ 􏽘
N−1

n�0
δ t − nTS( 􏼁

� 􏽘
N−1

n�0
rect

t − nTS

TW

􏼠 􏼡,

(2)

where ⊗ denotes the convolution operator,
N � 􏼆( T − TW)/TS􏼇 is the number of sampled radar signal
fragments [29, 30], and ⌈∙⌉ is the round-up operator. Note
that the relationship between the repeat sampling interval TS

and the sampling slice width TW is TS � (M + 1)TW, in
which M is the forwarding time of a jamming slice.

*erefore, the radar signal fragments sampled and stored
by the jammer can be obtained as

ssam(t) � sig t − τtar( 􏼁p t − τtar( 􏼁

� 􏽘
N−1

n�0
rect

t − nTS − τtar

TW

􏼠 􏼡e
jπk t− τtar( )

2

,

(3)

Finally, the jammer forwards the stored radar signal
fragments for M times to generate the resulting jamming
signal, which can be expressed as

sjam(t) � σjamssam(t)⊗ 􏽘
M

m�1
δ t − mTW( 􏼁

� σjam 􏽘

M

m�1
􏽘

N−1

n�0
rect

t − nTS − mTW − τtar

TW

􏼠 􏼡e
jπk t− mTW− τtar( )

2

,

(4)

where σjam indicates the intensity of the jamming signal.

2.2. PC Result of ISRJ. For LFM radar, the PC process can be
regarded as the time-domain convolution between the echo

signal and LFM radar matched filter sig∗(−t). For the
jamming slice formed by the m th forwarding of the n th
sampled signal fragment, the PC result can be formulated as
follows:
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Figure 1: *e formation process of ISRJ.
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, (5)

where phase(t) � πk(t − mTW)(2nTS + mTW − t). τtar is
omitted for convenience, which does not affect the deri-
vation result. Equation (5) shows that the PC result of a
jamming slice is a “sinc” form function with corresponding

time delay and phase shift. Moreover, for all jamming slices
with the m th forwarding time, their PC results can be
represented as

S
m
PC(t) � S

m,0
PC (t) 􏽘
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e
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e
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(6)

where βm(t) � πk(t − mTW)TS. *erefore, the amplitude
response of the whole ISRJ PC result can be expressed as

SPC(t)
􏼌􏼌􏼌􏼌
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.

(7)

As depicted by equation (7), it can be seen that ISRJ can
generate M false target groups after PC, and different false
target groups are formed by the sampled radar signal
fragments of different forwarding times. For a particular
false target group, when βm(t) � iπ, i.e., t � i/kTS+

mTW, iϵN, a local peak value can be achieved with
sin [Nβm(t)]/sin [βm(t)] � N.

In summary, ISRJ can generate multiple false target
groups whose amplitude responses are codetermined by TW,
σjam, N, and M. Among them, TW, σjam, and N jointly
determine the amplitude peak value. At the same time, TW

also decides the distribution intervals among false target
groups. Finally, M determines the number of false target
groups.

2.3. TFAnalysis of PCResult. As a joint function of time and
frequency, the TF transform can explicitly describe the
variation of signal frequency over time and has become an
essential tool for analyzing nonstationary signals. In general,
linear TF transform is realized by short-time Fourier
transform (STFT), which can be expressed as

stft(s(t), t, f) � 􏽚
∞

−∞
s t′( 􏼁h t′ − t( 􏼁e

− j2πft′
dt′, (8)

where s(t) is the input signal to be analyzed, and h(t) is a
sliding window function.

For the PC results of ISRJ, taking Sm,n
PC (t) as an example,

when a rectangular window is employed, the TF distribution
can be formulated as

TFjam(τ, f) � stft S
m,n
PC (t), τ, f( 􏼁

� σjamTW 􏽚
∞

−∞
sinc kTW t − mTW( 􏼁􏼂 􏼃e

jphase(t)

· rect
t − τ

b
􏼒 􏼓e

− j2πft
dt,

(9)

where τ is the sliding time, and b is the sliding window
length.

Equation (9) is a Fresnel integral, so an exact analytical
solution cannot be derived. An approximation is obtainable
through the principle of stationary phase. According to the
principle of stationary phase, let the derivative of phase
φ(t) � phase(t) − 2πft be zero, and we can get that the
relationship between time and frequency is

t � nTS + mTW − f/k. (10)

By substituting equation (9) into equation (10), the
approximate amplitude response of this integral can be
obtained as
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TFjam(t, f)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � σjamTWsinc kTW t − mTW( 􏼁􏼂 􏼃

· sinc TW f − nkTS( 􏼁􏼂 􏼃.
(11)

It can be seen from (10) that the TF distribution of a
certain ISRJ jamming slice after PC presents the form of
“sinc” in the time domain and frequency domain, respec-
tively, and its corresponding positions in these two signal
domains separately depend on the interception order n and
the forwarding order m of the sampled radar signal frag-
ment. *erefore, the PC result of the whole ISRJ appears as
multiple sinc-shaped fluctuations regularly arranged in the
TF domain.

Besides ISRJ, the echo signal also contains target echo
signals and noise signal n(t), i.e.,

sr(t) � star(t) + sjam(t) + n(t), (12)

where the TF distributions of the noise signal and target
echo signal after PC are easy to learn. *e energy of the
noise signal scatters evenly throughout the TF domain
because the noise signal cannot obtain coherent pro-
cessing gain in the PC process. In contrast, the energy of
the target echo signal after PC concentrates on a specific
range gate and distributes uniformly within the band-
width as a result of linear frequency modulation, pre-
senting a time-unvarying and continuous line in the TF
domain.

*e TF distribution of the echo signal after PC is shown
in Figure 2, which is consistent with the above analysis. In
the TF domain, the target echo signal after PC presents a
continuous strip distribution, while the false targets present
a regular and discontinuous distribution due to the fragment
interception and forwarding of ISRJ. *erefore, real targets
and false target groups can be well distinguished on the basis
of different TF distribution characteristics.

3. The Proposed Method

3.1. Target Identification Based on TF Information Entropy.
Information entropy is an important metric for measuring
the uncertainty of the information source, which solves the
problem of quantitative measurement of information. We
assume that the occurrence probability of each event in an
event set S isP � p1, p2, · · · , pl􏼈 􏼉, where l is the total number
of events in S, and 􏽐

l
e�1 pe � 1. *en, information entropy

can be defined as

H(S) � − 􏽘
l

e�1
pelogαpe, (13)

where α is set at 2 in this study.
When the influence of noise is not considered, the in-

stantaneous spectrums of target range gates are shown in
Figure 3. For the range gate of the real target, the instanta-
neous spectrum has the spectrum characteristic of LFM
signals. By contrast, for the range gate of the ISRJ false target,
in line with the analysis in Section 2.3, the instantaneous
spectrum has a regular distribution of sinc-shaped fluctua-
tions, resulting in a lower TFIE. In practice, due to the signal

edge effect in the TF transform, the instantaneous spectrums
of real targets and ISRJ false targets will affect each other.

In consideration of the different TF distribution char-
acteristics between real targets and ISRJ false targets in the
TF domain, this study proposes a target identification
method based on TFIE. Specifically, the target range gates can
be determined through sparse representation, which has been
an emerging signal-processing approach in recent years.
Signal sparse representation aims to capture the intrinsic
nature of the signal and represent the signal with a few atoms
in a given overcomplete dictionary, so as to obtain a more
concise representation of the signal, which facilitates further
signal processing as well as information acquisition. With the
radar-transmitting signal dictionary, the real targets andmain
false targets can be precisely located due to the energy
matching by range gates. After locating the target range gates,
features of target instantaneous spectrums can be extracted
for target identification. In this study, a support vector ma-
chine (SVM), a generalized linear classifier for multivariate
classification based on supervised learning, is employed in the
target identification process. By learning the data distribution,
SVM can determine the decision boundaries among different
target groups, thus realizing target distinguishment.

*e process of TFIE extraction is as follows:

(1) Transforming the PC result of the echo signal into
the TF domain through STFT.

(2) Extracting the instantaneous spectrum FI of the
target range gates according to the sparse repre-
sentation result 􏽢x.
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Figure 2:*e TF distribution of the echo signal after PC.*e main
graph shows the TF distribution of the PC result, and the corre-
sponding PC result in the time domain and the frequency domain is
shown below and to the left of the main graph, respectively. *ere
are two real targets with self-protection jammers, and the inter-
cepted radar signal is forwarded once.
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(3) Guided by the bandwidth B and the center frequency
fm, performing bandwidth normalization on FI to
exclude the effect of noise outside the bandwidth.

(4) Carrying out amplitude normalization, and calcu-
lating the probability of each amplitude value within
the bandwidth of the normalized instantaneous
spectrum FNI, i.e., Pf � pf1, pf2, · · · , pfL􏽮 􏽯 �

/, / , · · · , /{ }, where afj, jϵN, is the amplitude of each
frequency point, A is the total amplitude value, and L

is the fixed sampling number of the instantaneous
spectrum after bandwidth normalization.

(5) Calculating TFIE values of the corresponding targets
using equation (13).

After the above feature extraction steps are completed,
the extracted TFIE features are input into an SVM for target
identification.

3.2. Sparse Reconstruction of Real Target. Since ISRJ is
generated by fragment interception, storage, and repeated
forwarding of radar-transmitting signals, each generated
jamming slice can be seen as a radar-transmitting signal with
shorter pulse width and different time delay. *erefore,
based on the intrapulse coherence of ISRJ, a dictionary of
radar-transmitting signals Փ ∈ CNr×Rbin can be designed to
match the echo signal under ISRJ, where Nr is the sampling
number in range direction, and Rbin is the number of range
gates. Hence, the echo signal can be rewritten as

sr(t) � star(t) + sjam(t) + n(t) � Փ∗ x + n(t), (14)

where Փ � [ϕi,j]Nr×Rbin
and the specific element in this

dictionary can be represented as

ϕi,j �
sig[(i − j + 1)∆t], j≤ i< j +⌊T/∆t⌋,

0, else,
􏼨 (15)

where ⌊∙⌋ is the round-off operator, and ∆t is the sampling
interval. It can be seen from equation (15) that each column
in Փ is a delayed form of the radar-transmitting signal, and
the time interval between two adjacent columns is ∆t. *us,
the range resolution of the dictionary can be calculated as
ρr � ∆t∙c.

Sparse representation of the echo signal in nature can be
viewed as the coherent matching of targets from different range
gates, and x ∈ RRbin×1 represents the matching energy at each
range gate. If there are a relatively limited number of significant
targets compared with Rbin in the imaging scene, the targets can
be regarded as sparsely distributed in the range domain.
Consequently, x contains only several nonzero values, and the
indexes of these nonzero values correspond to the target po-
sitions. It is worth noting that the noise signal n(t) cannot obtain
the radar processing gain due to its incoherence, resulting in
corresponding negligible energy in the sparse domain.

*e sparse representation of the echo signal can be realized
through the following convex optimization equation:

min
x

sr(t) − Փ∙x
����

����
2
2 + ]‖x‖1, (16)

where p is the p− norm, and ] is a trade-off coefficient to
balance the optimization proportion between the sparsity
‖􏽢x‖1 and the residual component 􏽢r � sr(t) − Փ∗ 􏽢x. In (15),
the larger the ] is, the more the ‖􏽢x‖1 is taken into account in
the optimization process, and the resulting optimization
result 􏽢x is relatively sparser. However, the residual com-
ponent is larger in this case. On the contrary, there is less
residual component left when ] is smaller, but the sparsity of
the sparse representation result will accordingly decrease. A
typical sparse representation result is shown in Figure 4.

As shown in Figure 4, there are many peaks (nonzero
values) at the corresponding positions of the real targets and
ISRJ false targets because of their matching characteristics
with the dictionary Փ, and the peak values of the false targets
within the same false target group conform to the modu-
lation of sin [Nβm(t)]/sin [βm(t)] envelope, which is in
consistency with the derivation result of equation (7). Based
on the sparse representation result, the obtained target
positions can be expressed as

rt �
i, 􏽢x(i)> c,

NaN, else,
􏼨

i � 1, 2, 3, . . . , Rbin,

(17)

where c is a threshold to distinguish between the range gates
with and without targets, and NaN denotes not a number
value.
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Figure 3: *e instantaneous spectrums of target range gates. (a) Real target instantaneous spectrum. (b) ISRJ false target instantaneous
spectrum.
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With the acquired target positions, TFIE features can be
extracted from the instantaneous spectrums for target
identification. Assuming that the positions of the identified
false targets are rj in the target identification result it, then an
adaptive filter can be accordingly constructed in the sparse
domain to retain the peaks of real targets and filter out the
peaks caused by ISRJ, which can be expressed as

F(r) �
0, r ∈ rj,

1, else.
􏼨 (18)

Finally, after amplitude compensation, the reconstructed
target echo signals can be obtained as

􏽢st � λՓσopt � λՓ􏽢xF, (19)

where λ is the amplitude compensation factor, which is the
amplitude ratio of the real targets before ISRJ suppression to
the corresponding reconstructed targets.

3.3. Main Steps of the Proposed Method. As analyzed in
Section 2.3, real targets and ISRJ false targets have different
distribution characteristics in the TF domain. *erefore, in
view of this inherent difference and to make full use of the
coherence of ISRJ, this study proposes a method for ISRJ
suppression, which can be mainly divided into three steps:
sparse representation, target identification, and real target
sparse reconstruction. Firstly, considering the coherence of
ISRJ, a dictionary of radar-transmitting signals is designed to
represent the echo signal sparsely. Due to the matching with
the dictionary, there will be peaks at the corresponding
positions of the real targets and the ISRJ false targets in the
sparse representation domain. *en, the echo signal is pulse
compressed and transformed into the TF domain.

According to the obtained target positions, the TFIE features
of the corresponding targets are extracted for target iden-
tification. Consequently, only the identified real targets can
be retained in the sparse domain to complete target re-
construction. *e detailed steps of the proposed method are
listed in Algorithm 1.

4. Simulations

4.1. Target Identification Result. In order to verify the ef-
fectiveness of TFIE in distinguishing real targets from ISRJ
false targets, we set the jamming slice width TW at 5 μs, the
forwarding time M � 3, and the jamming-to-signal ratio
(JSR) at 15 dB, respectively. Radar transmits LFM signals
with bandwidth B � 9MHz and pulse width T � 60μs.
Under these settings, the mean TFIE values of real targets
and ISRJ false targets are calculated on different signal-to-
noise ratio (SNR) conditions, as shown in Figure 5. Each
value is the average result of 500 Monte Carlo simulations.

It can be seen from Figure 5 that the mean TFIE value of
real targets is hardly affected by the change of SNR and
remains stable at around 8.94, while that of ISRJ false targets
decreases slowly as SNR increases, and at length levels off
when SNR is greater than 0 dB. From an overall perspective,
the mean TFIE value of ISRJ false targets is lower than that of
real targets because of the regular TF distribution of ISRJ
false targets. In addition, there is no overlap between the
curves of real targets and ISRJ false targets, presenting an
obvious distinction.

In [32], Yang et al. use the variance feature to detect ISRJ
according to the fluctuation of spectrum energy. However,
on account of the difference in data dimension and mean
value between the variance feature and the TFIE feature, we
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Figure 4: Sparse representation of the echo signal. *e pink part shows the PC result of the echo signal and the purple line demonstrates the
corresponding sparse representation result. In this case, the first real target carries the ISRJ jammer, and there are four false target groups,
which means the forwarding time M � 4.
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cannot compare the dispersion degree of these two features
directly through standard deviation. *erefore, the coeffi-
cient of variation (C.V) is introduced in this study, which is a
normalized metric to measure the dispersion degree and can
be defined as the ratio of standard deviation σ to mean value
μ, i.e.,

C.V �
σ
μ

. (20)

As a dimensionless quantity, C.V is a better metric to
compare the stability among data groups with different
dimensions or mean values, as it eliminates the effect
brought by various data values. Specifically, the C.V values of
these two features are separately calculated by 500 Monte
Carlo simulations under each SNR scenario. As demon-
strated in Figure 6, both features of targets tend to be more
stable with the increase of SNR. But on the whole, the C.V of
the TFIE feature is remarkably smaller than that of the

variance feature, indicating that the TFIE feature is less
discrete and possesses better stability.

*e proposed method in this study transforms the
jamming suppression problem into a binary classification
problem for targets. ISRJ suppression can be achieved by
adaptive filtering based on the identification result. *ere-
fore, the performance of the proposed method depends
directly on the target identification accuracy, which can be
expressed as

PA �
Tc

Tt

, (21)

where Tt is the total target number, and Tc represents the
number of targets correctly identified.

In the supervised learning process, 4000 sets of TFIE
features, including 2000 real target features and 2000 ISRJ
false target features (with different orders), are generated
under different parameter settings, and they are further

Input: *e echo signal sr (t), the sliding window h (t), the trained SVM, the dictionary Φ, and the target locating threshold c.
Output: Target positions rt, target identification result it, the reconstructed target echo signal 􏽢st.
Begin

(1) Carry out sparse representation 􏽢x for sr (t);
(2) Obtain the target positions rt according to the preset threshold c;
(3) Perform pulse compression to sr (t);
(4) Implement STFT to transform the PC result SPC (t) into TF domain;
(5) Extract TFIE features according to the acquired target positions rt;
(6) Input the TFIE features into the trained SVM and obtain the target identification result it;
(7) Construct an adaptive filter F based on it;
(8) Perform adaptive filtering in the sparse representation result 􏽢x to retain the corresponding peaks of real targets and filter out the

corresponding peaks of the false targets;
(9) Reconstruct the target echo signal 􏽢st through Φ and amplitude compensation to obtain the jamming-free result;

End

ALGORITHM 1: *e proposed method.
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Figure 5: Mean TFIE value of targets. False targets are further divided into primary targets which are located in the middle of the false target
group and other secondary targets.
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divided into the training set and test set by the ratio of 4 :1.
*e parameter ranges of training samples are listed in Ta-
ble 1. After several rounds of data generation and training in
accordance with the above settings, the average PA based on
TFIE can reach 99.46%.

*e hypothesis test is usually applied to test the ro-
bustness of certain conclusions [38]. To further prove the
superiority of TFIE in the task of target identification, a one-
tailed t-test is carried out in this study, in which PA serves as
the evaluationmetric. For the generated datasets, the average
test PA value using TFIE is μ0 � (1/m1) 􏽐

m1
s�1 􏽢εs � 0.9217, and

the variance is σ20 � [1/(m1 − 1)] 􏽐
m1
s�1 (􏽢εs − μ0)

2 � 1.9167 ×

10− 5(m1 � 6). Subsequently, the critical value τt can be
obtained by τt �

���
m1

√
|μ0 − ε0|/σ20 �4.347 (where ε0 � 0.99 is

the assumedminimum PA value) and is larger than the 4.032
given by the one-tailed t-test table.*is result means that the
PA using the TFIE feature is greater than the assumed test PA

value (0.99) at a confidence level of (1 − α � 0.995).
In contrast, we also perform a hypothesis t-test on the

variance feature with the same datasets, and the intermediate
results of the statistical calculation process are listed in
Table 2. *e TFIE feature can contribute to a higher PA with
stronger robustness compared with the variance feature.

4.2. Factors Affecting Target Identification Accuracy. As
previously mentioned in Section 3.1, TF features may be
affected by the interactions among targets resulting from the
signal edge effect in the TF transform. *erefore, some key
parameters such as TW, σjam (JSR), SNR, N, and M may
have an impact on the target identification result. In this
section, extensive experiments are done to explore the effect
of these key parameters on PA.

As can be learned from equation (7), the forwarding time
M decides the number of false target groups. In other words,

M merely decides how far the false targets are distributed in
the range domain and is unrelated to target intensity, so it
can hardly affect PA. To substantiate this claim, we fix the
experimental parameters for the purpose of controlling
variables, as shown in Table 3 (for convenience, if not
specifically specified, the basic experimental parameters
remain unchanged as those in Table 3 in the following
simulations). Also, we set the sampling slice width TW

uniformly distributed within the range of (T/13, T/11) so
that N remains at 3. *en, two datasets with 10000 features
are generated when the forwarding time M is 4 and 5, re-
spectively.*e result demonstrates that the PA values of both
datasets are 0.9903, thus indicating that M basically has no
direct effect on PA.

Table 2: Hypothesis test of the proposed TFIE feature and the
variance feature on the generated dataset.

Statistical parameter TFIE Variance
μ0 0.9946 0.9860
ε0 0.99 0.9788
σ20 6.667 × 10− 6 2.589 × 10− 5

τt 4.347 3.509
1 − α 0.995 0.99
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Figure 6: C.V of TFIE and variance. (a) TFIE. (b) Variance.

Table 1: Parameter ranges of training samples.

Parameter Value
Sampling frequency fs/MHz 20
Pulse width T/μs 50 – 70
Bandwidth B/MHz 6 –10
Sampling slice width TW/μs (1/15 − 1/10) T
Forwarding time M {1, 2, 3, 4}
Signal-to-noise ratio SNR/dB −10 –10
Jamming-to-signal ratio JSR/dB 5 – 20
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In order to study the effect of JSR, SNR, and sampled
fragment numberN on the target identification accuracy PA,
a series of Monte Carlo experiments are carried out in this
study. As for the parameter settings, under the condition
that the sampling slice width TW � T/14, test datasets under
four modes are generated, as shown in Table 4. In each
mode, the test datasets are generated from −10 dB to 10 dB
with a 2.5 dB SNR interval and from 5 dB to 20 dB with a
1.5 dB JSR interval, respectively. *is results in a total of 99
test datasets per mode and 100Monte Carlo experiments are
conducted in each dataset.

*e variation trends of PA versus SNR and JSR in dif-
ferent jamming modes are illustrated in Figure 7. Simul-
taneously, the misidentified real targets and false targets are
separately counted, and the number distribution versus JSR
is shown in Figure 8.

Some key conclusions can be drawn from Figures 7 and
8, which are summarized in the following:

(1) When the signal fragment is forwarded immediately
after being intercepted, i.e., M � 1, the jamming
signal at this time is called interrupted-sampling
direct jamming (ISDJ), which differs from ISRJ only
in the forwarding time.*eMonte Carlo experiment
results shown in Figure 7 demonstrate that the
proposed method can maintain high levels of PA in
these four modes, which means that the proposed
method can effectively counter both kinds of jam-
ming signals.

(2) According to equation (7), the peak amplitudes of
the generated false targets become larger with larger
N, which is unfavorable for the correct identifica-
tion of real targets as they are more likely to be
covered by ISRJ false target groups. On the other
hand, as analyzed in Section 2.2, false targets are
generated at the interval of 1/kTS within a false
target group, so a broader jamming area is yielded
when N becomes larger (TS is smaller accordingly),
exacerbating the overlapping between real targets
and false targets. *e above two factors lead to an
overall lower PA.

(3) When JSR is fixed, PA generally rises with the growth
of SNR.

(4) In the case of low JSR, false targets are relatively
weak, and their TF features are more affected than
the real target features by the mutual effect among
targets. In consequence, the primary cause of
identification error in this circumstance is ISRJ false
targets, and the error rate drops gradually with the
increase of JSR.

(5) *e same rule applies to real targets in the case of
high JSR. Compared with false target features, the TF
features of real targets suffer considerably more from
the mutual effect among targets. As a result, the
misidentified samples mainly come from real targets,
and the target identification accuracy PA falls as JSR
increases.

According to equation (6), TW not only determines the
intensity of the ISRJ false target group but also decides the
distribution intervals among targets. In order to learn the
specific influence of TW on PA, two test datasets, including
2000 target features (1000 real target features and 1000 ISRJ
false target features), are generated under the conditions of
M � 2 and M � 5, respectively. Correspondingly, TW is
uniformly distributed in the interval of TW ∈ (1/15, 1/13)T

andTW ∈ (1/15, 1/11)T for controlling variables (N remains
constant). *e misidentified data is statistically analyzed,
and the statistical TW distributions are shown in Figure 9.

*rough statistical histograms, the error probability of
target identification is seen to fall steadily with the increase
of TW after a sharp rise at first. In terms of the upward trend,
the target distribution interval is relatively small, and the
mutual effect among targets cannot be ignored. At this time,
the intensity of the false target group becomes stronger as
TW increases, so the TF features of the real targets are prone
to be affected, bringing about moremisidentified real targets.
However, when TW grows to a certain degree, the target
distribution interval is large enough to significantly weaken
the interactions among targets. Consequently, the error rate
starts to decline in general.

4.3. 9e Jamming Suppression Performance of the Proposed
Method. On the ground of an overall high target identifi-
cation accuracy, the jamming suppression performance of
the proposed method is tested. We set three real targets at
1.5 km, 3 km, and 5 km, respectively. *e sampling slice
width TW is fixed at 5 μs, and the intercepted radar signal
fragments are forwarded three times. *e ISRJ jammer is
implemented on the real target at 1.5 km to cover all these
three targets.

As shown in Figure 10, under the influence of ISRJ, the
real targets are mixed with multiple false target groups in the
range direction after PC, leading to the inability of radar
systems to acquire effective information on real targets. By
sparse representation, the positions of targets are obtained so
that the TFIE features of targets can be extracted for the
subsequent target identification procedure.

With the target identification result, an adaptive filter
can be constructed in the sparse domain by equation (18) to

Table 3: Basic parameter settings.

Parameter Value
Sampling frequency fs/MHz 20
Pulse width T/μs 60
Bandwidth B/MHz 8
Signal-to-noise ratio SNR/dB −10
Jamming-to-signal ratio JSR/dB 20

Table 4: *e settings of four generated modes.

Mode
no.

Forwarding time
M

Sampled fragment
number N

Duty ratio
(%)

1 1 7 50
2 2 5 33
3 3 4 25
4 4 3 20
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Figure 7: PA versus SNR and JSR. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
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Figure 8: Continued.
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remove the corresponding peaks of ISRJ false targets. After
amplitude compensation, the final jamming suppression
result is obtained, as shown in Figure 11. It can be seen that
based on the correct target identification result, all the ISRJ
false targets are filtered out, and only the real targets are
reconstructed. Moreover, the noise signal in the original
echo signal is also suppressed to a significant extent since its
energy cannot match with the dictionary in the process of
sparse representation.

Furthermore, when the real targets and the generated
false targets are aliasing in the range direction, which is also a
typical scene in common practice, the jamming suppression
performance of the proposed method still needs to be tested.
Concerning this issue, we set the real target at 3.5 km from
the reference point, and the intercepted radar signal is
forwarded once to form ISRJ. 4000 sets of target TFIE
features are generated with TW ranging uniformly from
1–30 μs to ensure the real target is aliasing in the different
positions (from the middle to the edge) of the false target

group, and the training range of SNR and JSR is in line with
Table 1.

Although the mutual effect among targets brought by the
signal edge effect in the TF transform cannot be ignored at
this time, the overall target identification accuracy PA still
reaches 90.0% in this case, which proves the validity of the
proposed method in the target aliasing situation. When the
sampling slice width TW � 2.5 μs, the corresponding sparse
representation and ISRJ suppression results are shown in
Figures 12 and 13, respectively.

In practice, another frequently encountered scenario is
that the generated ISRJ false target is located ahead of the real
target, which can be achieved by frequency shifting [22].
Similarly, 4000 sets of target TFIE features are generated
with the sampling slice width TW set as 4 μs and frequency
shift fd ranging from 0.54MHz to 1.92MHz to produce
false targets preceding the real target. *is range also keeps
the real target aliasing in the different positions (from the
middle to the edge) of the false target group (if not aliasing,
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there is no difference from the regular case). Other training
parameters remain unchanged. Under this circumstance, the
overall PA is 86.0%, demonstrating the effectiveness of the
proposed method in the frequency-shifting situation. *e
decline in PA is caused by frequency shifting, which lowers
the regularity of the false target instantaneous spectrums and
reduces the feature difference between the real targets and
ISRJ false targets. When the frequency shift fd is 1.2MHz,
the corresponding sparse representation and ISRJ sup-
pression results are shown in Figures 14 and 15, respectively.

In order to evaluate the jamming suppression per-
formance quantitatively, the signal-to-jamming ratio
improvement factor (SJRIF) is introduced in this study,
which is defined as the difference between the signal-to-
jamming ratio (SJR) after and before ISRJ suppression,
i.e.,

SJRIF � SJRafter − SJRbefore. (22)

In (21), SJR can be formulated as
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SJR �
1
I

􏽘

I

i�1
20 log10 ai/aj􏼐 􏼑, (23)

where I denotes the total number of real targets, ai is the
peak amplitude of the ith real target, and aj is the maximum
amplitude besides the real targets.

Monte Carlo simulations are conducted in this study to
compare the jamming suppression performance of the pro-
posed method with two typical competing methods proposed
in [33, 36]. *e simulations are carried out from −10 dB to
10 dB at 5 dB SNR intervals in the low JSR and high JSR
scenarios, respectively. Each result is the averaged result of
500Monte Carlo simulations, which is displayed in Figure 16.
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Figure 12: Spare representation of the echo signal in the target aliasing situation.
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It can be seen from Figure 16 that the method in [36] is
prone to be affected by low SNR situations, while the
proposed method outperforms the other two methods for
PC radars both in high and low JSR situations, demon-
strating its superiority against ISRJ.

5. Conclusions

ISRJ is a promising intrapulse coherent jamming that
regularly intercepts and retransmits radar-transmitting
signals by fragments, resulting in noticeable TF distribu-
tion differences between ISRJ false targets and real targets.
Given these characteristics, this study proposes a new ISRJ
suppression method based on TF analysis and real target
sparse reconstruction. *e proposed method innovatively
converts jamming suppression into a target binary clas-
sification problem. Firstly, the echo signal is sparsely
represented to obtain the target positions. *en, guided by
the previously acquired positions, the target features are
extracted in the TF domain for subsequent target identi-
fication. In the end, the real targets are reconstructed
according to the target identification result, thus realizing
ISRJ suppression.

Simulation experiments are conducted to validate the
effectiveness of the proposed method under various sit-
uations, and the factors that may affect the target iden-
tification accuracy are also studied in detail. In the scheme
of target identification, hypothesis tests reveal that the
adopted TFIE feature can achieve improved performance
than the variance feature, with an overall target identi-
fication accuracy of 99.46%. As for the final ISRJ sup-
pression result, only the real targets are retained and
reconstructed, while the false ISRJ targets and the noise
signal are suppressed considerably. *rough quantitative
evaluation, the proposed method shows better perfor-
mance than competing methods for pulse compression
radar.
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study are available from the corresponding author upon
reasonable request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by the National Natural Science
Foundation of China (61971026).

References

[1] S. Baher Safa Hanbali, “Technique to counter improved active
echo cancellation based on ISRJ with frequency shifting,”
IEEE Sensors Journal, vol. 19, no. 20, pp. 9194–9199, 2019.

[2] D. C. Schleher, Electronic Warfare in the Information Age,
Artech House, Boston, MA, USA, 1999.

[3] S. D. Berger, “Digital radio frequency memory linear range
gate stealer spectrum,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 39, no. 2, pp. 725–735, 2003.

[4] G. Liu, K. Zheng, andM. Gao, “Design and implementation of
deception jamming signal generator against SAR,” Transac-
tions of Beijing Institute of Technology, vol. 32, no. 2,
pp. 184–188, 2012.

[5] A. Almslmany, C. Wang, and Q. Cao, “Advanced deceptive
jamming model based on DRFM Sub-Nyquist sampling,” in
Proceedings of the 201613th International Bhurban Conference
on Applied Sciences and Technology (IBCAST), pp. 727–730,
Islamabad, Pakistan, January 2016.

[6] M. Greco, F. Gini, and A. Farina, “Radar detection and
classification of jamming signals belonging to a cone class,”
IEEE Transactions on Signal Processing, vol. 56, no. 5,
pp. 1984–1993, 2008.

10

5

0

-5

-10

-15

-20

-25
1050-5-10

SJ
RI

F/
dB

SNR/dB

The proposed method
The method in [36]
The method in [33]

(a)

20

10

0

-10

1050-5-10
-20

SJ
RI

F/
dB

SNR/dB

The proposed method
The method in [36]
The method in [33]

(b)

Figure 16: JSRIF variation versus SNR. (a) JSR� 5 dB. (b) JSR� 20 dB.

16 International Journal of Antennas and Propagation



[7] J. Akhtar, “Orthogonal block coded ECCM schemes against
repeat radar jammers,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 45, no. 3, pp. 1218–1226, 2009.

[8] J. Zhang, Y. Li, and X. Zhu, “Approach of radar against
deception jamming based on waveform diversity,” Journal of
Data Acquisition & Processing, vol. 25, no. 2, pp. 138–142,
2010.

[9] Y. Li, X. Jia, Y. Chen, and C. Yin, “Frequency agility MIMO-
SAR imaging and anti-deception jamming performance,” in
Proceedings of the 2014 XXXIth URSI General Assembly and
Scientific Symposium (URSI GASS), pp. 1–4, Beijing, China,
August 2014.

[10] N. Levanon, “Stepped-frequency pulse-train radar signal,”
IEE Proceedings - Radar, Sonar and Navigation, vol. 149, no. 6,
pp. 297–309, 2002.

[11] S. Jin, C. Wang, C. Qiu, and X. Li, “Design of RF protecting
signal for transponder jamming suppression,” Journal of
China Academy of Electronics and Information Technology,
vol. 9, no. 4, pp. 377–381, 2014.

[12] Z. Sun,M. Dong, and B. Chen, “Interrupted sampling repeater
jamming suppression based on time-frequency analysis and
band-pass filtering,” Journal of Xidian University, vol. 48,
no. 2, pp. 139–146+180, 2021.

[13] X. Wang, J. Liu, W. Zhang, Q. Fu, Z. Liu, and X. Xie,
“Mathematic principles of interrupted-sampling repeater
jamming (ISRJ),” Science in China - Series F: Information
Sciences, vol. 50, no. 1, pp. 113–123, 2007.

[14] D. Feng, L. Xu, X. Pan, and X. Wang, “Jamming wideband
radar using interrupted-sampling repeater,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 53, no. 3,
pp. 1341–1354, 2017.

[15] D. Feng, H. Tao, Y. Yang, and Z. Liu, “Jamming de-chirping
radar using interrupted-sampling repeater,” Science China
Information Sciences, vol. 54, no. 10, pp. 2138–2146, 2011.

[16] X. Pan, W. Wang, D. Feng, Y. Liu, Q. Fu, and G. Wang, “On
deception jamming for countering bistatic ISAR based on
sub-Nyquist sampling,” IET Radar, Sonar & Navigation,
vol. 8, no. 3, pp. 173–179, 2014.

[17] X. Pan, W. Wang, Q. Fu, D. Feng, and G. Wang, “Simulation
of two-dimensional ISAR decoys on a moving platform,”
Journal of Systems Engineering and Electronics, vol. 26, no. 2,
pp. 250–257, 2015.

[18] Q. Wu, F. Zhao, X. Ai, X. Liu, and S. Xiao, “Two-dimensional
blanket jamming against ISAR using nonperiodic ISRJ,” IEEE
Sensors Journal, vol. 19, no. 11, pp. 4031–4038, 2019.

[19] H. Li, G. Zheng, Y. Yang, and H. Guo, “*e performance
analysis of multi-false targets jamming of part copying radar
pulse,” Electronic Information Warfare Technology, vol. 25,
no. 3, pp. 39–44, 2010.

[20] Z. Liu, “Jamming technique for countering LFM pulse
compression radar based on digital radio frequency memory,”
Doctoral 9esis, National University of Defense Technology,
China, 2006.

[21] W. Yang, J. Lin, and T. Wang, “Intermittent sampling scatter-
wave jamming against SAR,” Journal of Astronautics, vol. 3,
no. 33, pp. 367–373, 2012.

[22] C. Li, W. Su, G. Hong, C. Ma, and J. Chen, “Improved
interrupted sampling repeater jamming based on DRFM,” in
Proceedings of the 2014 IEEE International Conference on
Signal Processing, Communications and Computing (ICSPCC),
pp. 254–257, Guilin, China, August 2014.

[23] J. Zhang, H. Mu, S. Wen, and Y. Li, “Anti interrupted-
sampling repeater jamming method based on stepped LFM

waveform,” Systems Engineering and Electronics, vol. 41, no. 5,
pp. 1013–1020, 2019.

[24] J. Zhang, H. Mu, S. Wen, S. Liao, and M. Sha, “Anti-inter-
mittent sampling jamming method based on intra-pulse
LFM-Costas frequency stepping,” Systems Engineering and
Electronics, vol. 41, no. 10, pp. 2170–2177, 2019.

[25] J. Zhang and C. Zhou, “Interrupted sampling repeater jam-
ming suppression method based on hybrid modulated radar
signal,” in Proceedings of the 2019 IEEE International Con-
ference on Signal, Information and Data Processing (ICSIDP),
pp. 1–4, Chongqing, China, December 2019.

[26] C. Zhou, F. Liu, and Q. Liu, “An adaptive transmitting scheme
for interrupted sampling repeater jamming suppression,”
Sensors, vol. 17, no. 11, p. 2480, 2017.

[27] H. Yuan, C. y. Wang, X. Li, and L. An, “A method against
interrupted-sampling repeater jamming based on energy
function detection and band-pass filtering,” International
Journal of Antennas and Propagation, vol. 2017, no. 1, pp. 1–9,
2017.

[28] H. Yuan, C. Wang, X. Li, and L. An, “ECCM scheme against
interrupted-sampling repeater jamming based on compressed
sensing signal reconstruction,” Systems Engineering and
Electronics, vol. 40, no. 4, pp. 717–725, 2018.

[29] J. Chen, W. Wu, S. Xu, Z. Chen, and J. Zou, “Band pass filter
design against interrupted-sampling repeater jamming based
on time-frequency analysis,” IET Radar, Sonar & Navigation,
vol. 13, no. 10, pp. 1646–1654, 2019.

[30] J. Chen, S. Xu, J. Zou, and Z. Chen, “Interrupted-sampling
repeater jamming suppression based on stacked bidirectional
gated recurrent unit network and infinite training,” IEEE
Access, vol. 7, pp. 107428–107437, 2019.

[31] S. Gong, X. Wei, and X. Li, “ECCM scheme against inter-
rupted sampling repeater jammer based on time-frequency
analysis,” Journal of Systems Engineering and Electronics,
vol. 25, no. 6, pp. 996–1003, 2014.

[32] S. Yang, B. Tian, and R. Zhou, “ECCM against interrupted
sampling repeater jamming based on time-frequency analy-
sis,” Journal of Signal Processing, vol. 32, no. 10, pp. 1244–1251,
2016.

[33] C. Zhou, Q. Liu, and X. Chen, “Parameter estimation and
suppression for DRFM based interrupted sampling repeater
jammer,” IET Radar, Sonar & Navigation, vol. 12, no. 1,
pp. 56–63, 2018.

[34] Y. Meng, L. Yu, Y. Wei, and P. Tong, “A novel parameter
estimation method of interrupted sampling repeater jam-
ming,” in Proceedings of the 2019 IEEE International Con-
ference on Signal, Information and Data Processing (ICSIDP),
pp. 1–5, Chongqing, China, December 2019.

[35] X. Lu, J. Yang, C. Ma, H. Gu, and W. Su, “Wide-band in-
terference mitigation algorithm for SAR based on time-
varying filtering and sparse recovery,” Electronics Letters,
vol. 54, no. 3, pp. 165–167, 2018.

[36] C. Zhou, Q. Liu, and C. Hu, “Time-frequency analysis
techniques for recognition and suppression of interrupted
sampling repeater jamming,” Journal of Radars, vol. 8, no. 1,
pp. 100–106, 2019.

[37] Z. Wang, W. Yu, Z. Yu, Y. Luo, and J. Li, “Neural network-
guided sparse recovery for interrupted-sampling repeater
jamming suppression,” International Journal of Antennas and
Propagation, vol. 2021, pp. 1–13, Article ID 5368600, 2021.

[38] J. Hu and W. Zheng, “A deep learning model to effectively
capture mutation information in multivariate time series
prediction,” Knowledge-Based Systems, vol. 203, Article ID
106139, 2020.

International Journal of Antennas and Propagation 17


