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Scene text recognition (STR) is designed to automatically recognize the text content in natural scenes. Di�erent from regular
document text, text in natural scenes has the characteristics of irregular shapes, complex background, and distorted and blurred
contents, which makes STR challenging. To solve the problems of STR for distorted, blurred, and low-resolution texts in natural
scenes, this paper proposes a HRNet encoder and dual-branch decoder framework-based STR model. �e model mainly consists
of an encoder module and a dual-branch decoder module composed of a super-resolution branch and a recognition branch in
parallel. In the encoder module, the HRNet is adopted to realize the cross-parallel aggregation representation with multiple
resolutions during feature extraction and then outputs four kinds of feature maps with di�erent resolutions. Moreover, the
supervised attention module is used to strengthen the learning of the important feature information. In the decoder module, the
dual-branch structure is adopted, in which the super-resolution branch takes the feature maps with the highest resolution
obtained in the encoder module as input and restores images by upsampling through transposed convolution. �e four kinds of
feature maps with di�erent resolutions are fused through independent transposed convolution layers for multiscale fusion in the
recognition branch and then inputted into the attention-based decoder for text recognition. To improve the accuracy of text
recognition, the feature extraction e�ect of the encoder module is together supervised by the super-resolution branch loss and the
recognition branch loss. In addition, the super-resolution branch is only used for training and is abandoned during testing to
reduce the complexity of the model. �e proposed model is trained on Synth90K and SynthText datasets and tested on seven
natural scene datasets. Compared with classical models such as ASTER, TextSR, and SCGAN, the recognition accuracy of the
proposed model is improved and better recognition results can be achieved on irregular and blurred datasets such as IC15, SVTP,
and CUTE80.

1. Introduction

Natural scene text refers to the text content in natural sit-
uations, such as billboards and road signs. Due to the high
diversity of text in orientation, shape, and blurring, scene
text recognition (STR), which is designed to automatically
recognize the text content in natural scene images, is
challenging [1]. With the development of deep learning, the
deep learning-based STR can obtain good text recognition
results and has become a research highlight in the �eld of
document analysis and recognition [2]. Moreover, the deep
learning-based STR is an essential research technology,
which can be employed in many computer vision

applications, such as image retrieval, autonomous driving,
and handwriting recognition [3–6].

Early STR models are usually based on temporal feature
classi�cation, such as the convolutional recurrent neural
network (CRNN) [7]. CRNN uses convolutional neural
networks to extract visual features and uses recurrent neural
networks to learn the bidirectional dependence of feature
sequences and predict the probability of character se-
quences. �en, the predicted probabilities of character se-
quences are transcribed into text character sequences
according to the prede�ned transformation mode in the
transcription layer. However, the setting of the transcription
layer in the CRNN requires that the feature sequences of
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image and text are aligned with each other, which is not
beneficial to predict the text sequences with spatial de-
pendence. (e model based on the encoder-decoder
framework [8] can avoid the alignment problem by training
to predict the corresponding relationship between any two
sequences. Generally, the visual features of an image are
extracted using an encoder and then are converted into a
fixed-length intermediate semantic feature sequence by
means of a recurrent neural network.(en, the intermediate
semantic feature sequence is decoded into a text character
sequence through a decoder. (e models based on the en-
coder-decoder framework have achieved higher perfor-
mance than the earlier models based on temporal feature
classification and provide an effective baseline model for
further research [9].

However, scene text images are often disturbed by
complex background and text distortion, which often cause
the information loss of the visual features extracted by the
encoder and then lead to the decoder’s inaccurate recog-
nition of the target sequences in the noisy decoding time
steps. To alleviate the above problems, the ASTER model
[10] based on the encoder-decoder framework is proposed
and the thin-plate-spline (TPS) [11] is introduced to im-
prove the text distortion, so that the encoder can extract
more sufficient visual features from the rectified images.
Based on the sequence model, the visual features are con-
verted into the textual features and finally the attention
mechanism is introduced to decode the textual features.
When confronted with blurred images and low resolution,
the models based on the encoder-decoder framework also
suffer from low-recognition accuracy, which prompts re-
searchers to introduce auxiliary networks to improve the
resolution of scene text images and learn more accurate text
information. Inspired by the success of multitask learning,
the super-resolution network SRGAN [12] is used as a
preprocessing method in text super-resolution (TextSR) [13]
to restore the low-resolution image with the corresponding
super-resolution image and then input it into the STRmodel
to improve the recognition effect. (e super-resolution
network RCAN [14] is used as an auxiliary network in
PlugNet [15] to update the parameters of the encoder, to
achieve better recognition results. Similarly, in the text
super-resolution network (TSRN) [16], a sequential-residual
block is proposed to extract the sequential information of the
scene text images and accomplish the super-resolution task.
However, the super-resolution networks adopted by the
above three models have complex structure and a large
number of parameters, which increases the complexity of the
model.

Recently, a parallel high-resolution network (HRNet) is
proposed [17]. Instead of restoring high-resolution repre-
sentations from low-resolution representations, HRNet
maintains high-resolution representations at any time and
performs multiscale fusion across parallel convolutions to
enhance high-resolution representations, therefore greatly
improving the detection and segmentation difficulties
caused by image blurring and low resolution. Due to its
advantages, HRNet is introduced into the STR task to

effectively alleviate the text recognition difficulties caused by
the scene text images with blurry and low resolution.

In this paper, a HRNet encoder and dual-branch decoder
framework-based STR model is proposed to recognize the
distorted and blurred text with low resolution. (is model
innovatively introduces a HRNet encoder to extract visual
features and adopts dual-branch decoder structure com-
posed of a super-resolution branch and a recognition branch
following the encoder. (e feature maps with highest res-
olution are inputted into the super-resolution branch for
upsampling and image recovery. (e feature maps with
multiple resolutions are fused at multiscale in the recog-
nition branch to accomplish the transformation of feature
sequences and obtain the recognized text. (e loss of the
super-resolution branch and the loss of the recognition
branch are together propagated back to enhance the feature
extraction effect of the encoder module, therefore improving
the performance of text recognition.(e main contributions
of this paper are as follows:

(1) (e HRNet is innovatively used for feature extrac-
tion in STR and also performs as a super-resolution
network. Moreover, the HRNet encoder provides
effective feature maps for the super-resolution
branch, therefore decreasing the model complexity
caused by the introduction of an auxiliary super-
resolution network, such as TextSR. Experiments on
several natural scene datasets verify the effectiveness
of the proposed model.

(2) In the encoder module, four kinds of feature maps
with different resolutions are generated at the end of
the HRNet. By using the supervised attention
module (SAM) on the feature maps with the highest
resolution, the important features are enhanced and
the features with a small amount of information are
suppressed. In the decoder module, the feature maps
enhanced by SAM are upsampled through trans-
posed convolution (Trans Conv2D) in the super-
resolution branch to restore the super-resolution
images. (e other three feature maps with lower
resolution are upsampled through independent
transposed convolution layers (Independent Trans
Conv2D Layers) in the recognition branch. (e
feature maps with the same size as the feature maps
with the highest resolution are generated, and
multiscale fusion is implemented to enhance the
representation of the feature maps with multiple
resolutions.

(3) (e parallel dual-branch structure is adopted. In the
training stage, the super-resolution branch and the
recognition branch are adopted together to
strengthen the feature extraction effect of the en-
coder module and constantly update the effective
parameters in the model, so that the recognition
branch can recognize the text on the more-effective
feature maps. In the testing stage, the model is
simplified, the super-resolution branch is aban-
doned, and only the recognition branch is used to
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obtain the recognition results, which is helpful to
reduce the model complexity.

2. Related Work

(e ASTER model [10] based on the encoder-decoder
framework introduces a rectification network TPS to alle-
viate the recognition difficulties caused by arbitrary ar-
rangement and text distortion. (e residual network
(ResNet) is used in the encoder to encode the rectified
images and obtain the visual feature sequences. Based on
bidirectional long-short-term memory (Bi-LSTM), the vi-
sual feature sequences are converted into textual feature
sequences and the text content is obtained by the decoder
with attention mechanism. However, when the scene text
images are severely distorted and the rectification is insuf-
ficient, the visual features extracted from the encoder are not
sufficient. Based on the ASTER model, the ESIR model via
iterative rectifications is proposed [18], which iteratively
removes text distortion as driven by better recognition
performance. However, for the images with few distortions,
the rectified images obtained through the rectification
network will be over rectified, the resolution of images will
be reduced, and the rectified images will even lose some edge
information. Meanwhile, to reduce the recognition errors
caused by insufficient rectification, the SAR model is pro-
posed [19], which abandons the rectification network and
adopts a two-dimensional attention module to process the
two-dimensional visual feature maps from the encoder.
(en, the text characters are located and recognized by
considering the regional information of each position in the
feature maps.

In the encoder-decoder framework, the attention
mechanisms are usually used in the decoder of the models.
Most of the attention-based methods usually suffer from
serious alignment problems due to its recurrent alignment
operation, where the alignment relies on historical
decoding results. Cheng et al. [20] put forward the concept
of attention drift. (e attention mechanism is easily af-
fected by some problems, such as image blurring and
complex background, and cannot get accurate alignment
between feature maps and the targets of input images. (e
DAN model is proposed to alleviate the problem of at-
tention drift [21]. (e attention maps are obtained
through the convolution alignment module based on
visual features from the encoder. Moreover, a decoupled
decoder is used to make the final prediction by jointly
using the visual feature maps and attention maps. In
addition, the RobustScanner model is proposed to alle-
viate the problem by introducing two branches [22].
Specifically, the position enhancement branch is specially
designed to improve the ability of position encoding in the
decoder. (e hybrid branch is the traditional decoder with
attention mechanism. (e outputs of the two branches are
combined through the dynamic fusion module and
connected to an elementwise gate mechanism in the
channel dimension. By the selection of features, the
RobustScanner can adaptively adjust the importance of
contextual information and positional information to

obtain better performance of text recognition. However,
the above models are complex in terms of the model
structure.

Since the transformer [23] has achieved remarkable
achievements in the tasks of natural language processing,
researchers are beginning to explore its application in the
field of STR.(e 2DOCRmodel is proposed [24], which uses
the transformer to decode twice at the end of the encoder.
(e second decoder is fine-tuned and optimized on the basis
of the result of the first decoding, which can effectively
improve the recognition performance. Moreover, the Bi-
STET model is proposed [25] to solve the problem of in-
formation loss in the process of converting visual features to
textual features. After extracting visual features from the
ResNet, the encoder of the transformer is used to enhance
the visual features, to better integrate visual information and
text information. Besides, text recognition on the decoder of
the transformer also has better recognition effect.

However, integrating the transformer into the STR
models greatly increases the number of model parameters
and training time. (erefore, researchers try to introduce
auxiliary network modules with a relatively low number of
parameters to improve the recognition accuracy when
facing the problems of image blurring and low resolution.
Wang proposes the TextSR model [13], which introduces a
content-aware text super-resolution network SRGAN to
restore low-resolution images with super-resolution im-
ages under the guidance of adversarial loss and then uses
the ASTER model to identify the text content of super-
resolution images. To solve the problems of low brightness
in images and text occlusion, the SPIN model [26] pro-
poses the structure preserving network (SPN) and the
auxiliary inner-offset network (AIN), respectively. Spe-
cifically, SPN adjusts the intensity value between pixel
points based on the structure-preserving transformation
to alleviate the problem of low brightness in images. Based
on the theory of offset from geometric transformation, the
AIN introduces colour offsets to distinguish the colour
intensity, to alleviate the problems of text occlusion and
shadow. To solve the problem of complex background, the
SCGAN model is put forward [27], which outputs binary
images through the generator and inputs into the atten-
tion-based decoder to generate the attention feature maps.
After the fusion of binary images and attention feature
maps, the recognized texts are outputted to the dis-
criminator and compared with the ground truth texts. (e
loss is propagated back to optimize the network param-
eters of the generator and to improve the recognition
performance. (e SEED model is proposed [28] to alle-
viate the problems of uneven illumination and incomplete
characters. Based on the ASTER model, the SEED model
innovatively introduces the pretrained language model
FastText in the stage of visual features conversion to
textual features. Moreover, the cosine embedding loss is
calculated with semantic information and word embed-
ding of target texts from the FastText, to supervise the
effect of feature extraction in the encoder, to obtain more
comprehensive text information and better recognition
results.
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3. HRNet Encoder and Dual-Branch Decoder
Framework-Based Scene Text
Recognition Model

(is paper proposes a STR model based on HRNet encoder
and dual-branch decoder framework, as shown in Figure 1.
A single scene text image is taken as the input, and after the
process of TPS network and Gaussian blur, the encoder
module and dual-branch decoder module are adopted, in
which the super-resolution image and recognized text are
outputted by the super-resolution branch and recognition
branch, respectively. Specifically, HRNet is adopted as the
feature extraction network in the encoder module to output
the feature maps with multiple resolutions.(e SAM is acted
on the featuremaps with the highest resolution to strengthen
the learning of important feature information. (e input of
the super-resolution branch is the feature maps with the
highest resolution enhanced by the SAM, and the super-
resolution image is generated by upsampling through Trans
Conv2D. (e input of the recognition branch is the feature
maps with multiple resolutions. (rough the Independent
Trans Conv2D Layers, the lower resolution feature maps are
expanded, so that the final multiscale feature maps can be
fused in the channel dimension. (e attention-based de-
coder is used to decode the fused feature maps to obtain text
recognition results. In the parallel dual-branch decoder
module, the super-resolution branch and the recognition
branch together enhance the feature extraction effect of the
encoder module and then improve the effect of STR. In the
testing stage, the super-resolution branch is abandoned to
simplify the model and reduce the complexity of the model.

3.1. Encoder Module. (e encoder module of the model is
shown in Figure 2, which innovatively adopts HRNet as the
feature extraction network and maintains a high-resolution
representation throughout the whole process. A high-res-
olution subnet is taken as the first stage, and multiresolution
subnets from high to low are added one by one to formmore
stages.(emultiresolution subnets are connected in parallel,
and the information is repeatedly exchanged during the
whole process to perform the multifeature fusion. At the end
of the encoder module, the SAM is used to strengthen the
learning of important feature information of the feature
maps with the highest resolution outputted by the HRNet
encoder. (e feature with less information is suppressed by
using the attention mask, so that the encoder module can
transfer the most effective learned features to the super-
resolution branch and the recognition branch. Finally,
different connection operations are adopted according to the
different purposes of the super-resolution branch and the
recognition branch. (e feature maps with the highest
resolution enhanced by the SAM are inputted to the super-
resolution branch, and four kinds of feature maps with
different resolutions are inputted to the recognition branch.

(e SAM is constituted by a series of convolution op-
eration and sigmoid activation function, as shown in Fig-
ure 3.(e feature maps with the highest resolution are added
to the input image after the 1× 1 convolution operation; that

is, the feature maps are supervised by the input image. (en,
the attention maps are obtained by the activation function
and then are acted on the feature maps by weighted sum-
mation. In this way, important features can be enhanced and
features with less information can be suppressed.

3.2. Super-Resolution Branch. (e super-resolution branch
of the model employs the Trans Conv2D for upsampling on
feature maps with the highest resolution enhanced by the
SAM, to restore the super-resolution images. No extra su-
per-resolution network is introduced, the super-resolution
branch is directly connected to the encoder module, and a
simple upsampling recovery operation is adopted, so the
super-resolution branch of the proposed model is more
dependent on the feature maps outputted from the encoder
module. (e effect of feature extraction of the HRNet en-
coder is strengthened through the supervision of the super-
resolution branch. Meanwhile, the super-resolution branch
is only used in the training stage and is abandoned in the
testing stage, which helps to reduce the model complexity.
(e Trans Conv2D is composed of 3× 3 transposed con-
volution operation, BatchNorm layer, and ReLu layer. (e
average absolute error loss Lsr of the restored super-reso-
lution image and the original image is calculated, as shown
in

Lsr �
1

W × L


W

i�1

L

j�1
O

i,j
− I

i,j
����

����, (1)

whereW and L represent the width and length of the image,
respectively, O represents the super-resolution image re-
stored by the super-resolution branch, and I represents the
original scene text image.

3.3. Recognition Branch. (e recognition branch of this
proposed model consists of a multiscale fusion structure and
an attention-based decoder structure. Specifically, in the
multiscale fusion structure, in contrast to expanding the size
of the feature maps by bilinear interpolation, the Inde-
pendent Trans Conv2D Layer is used on all low-resolution
feature maps, to obtain the feature maps with the same size
as the feature maps with the highest resolution. (e reso-
lutions of feature maps decrease from the top to bottom, and
the number of input channels and output channels of a
single Independent Trans Conv2D Layer is determined
according to the size of corresponding feature maps. Fur-
thermore, the multiscale fusion is carried out in the channel
dimension through the splicing operation, as shown in
Figure 4. (en, by employing the channel attention
mechanism [29], the weights on different channels of the
multiscale feature maps are calculated and important
channels of the feature maps are adaptively selected to help
the network obtain more effective information.

After obtaining the structure of multiscale fusion, the
attention-based decoder is connected to achieve complete
text recognition. To realize effective sequence conversion
from visual features to textual features, the multiscale feature
maps are processed by a 3× 3 basic convolution module in
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the HRNet, to adjust the channel numbers without changing
the size of the feature maps and then rearrange the di-
mension of the feature maps. In other words, the channel
dimension and the width dimension of feature maps are
converted, to transform the two-dimensional visual feature
maps into one-dimensional textual feature vectors.(en, the
semantic information of one-dimensional feature vectors is
strengthened through the Bi-LSTM network. Finally, the
textual feature vectors are decoded by the GRU based on the
attention mechanism to recognize the characters, as de-
scribed in the ASTER [10]. (e structure of the attention-
based decoder is shown in Figure 5, and <EOS> represents
the last character of the text sequence.

(e sequence cross entropy loss LSCE is calculated be-
tween the recognized text and the ground truth text, as
shown in equation (2), to improve the decoding effect of the
decoder module and the feature extraction effect of the
encoder module and then improve the accuracy of STR.

LSCE � −
1

MN


M

i�1

N

j�1
yi,jlog si,j , (2)

where M represents the number of samples in a batch, N
represents the number of text characters, y represents the
ground truth text, and s represents the recognized text of the
proposed model.

(e loss function of the proposed model is shown in (3),
where λ1 is the corresponding weight parameter of the
super-resolution branch loss and λ2 is the corresponding
weight parameter of the recognition branch loss.

L � λ1Lsr + λ2LSCE. (3)

4. Experiments and Results

(e experimental environment of the proposed model is
based on Pycharm integrated development environment, the
PyTorch deep learning framework is adopted, and hardware
is based on 1 NVIDIA GeForce GTX 2080Ti 11GB GPU.
According to the unified experimental data and effective
comparison models advocated by Baek et al. [9], the training
data are the public synthetic datasets Synth90K [30] and
SynthText [31] and the testing data are the testing set of
seven natural scene datasets. (e verification data are the
training set of seven natural scene datasets.(e seven natural
scene datasets are as follows: IIIT5K-Words (IIIT5k) [32]
refers to the regular scene text images such as billboards and
posters in Google image search. Street View Text (SVT) [33]
refers to the regular outdoor images in Google street view.
ICDAR 2003 (IC03) [34] is a competition-based regular
dataset published by the ICDAR conference, excluding scene
text images of less than three characters or non-
alphanumeric. ICDAR 2013 (IC13) [35] is a regular dataset,
which is mostly taken from the IC03 dataset and expands
some clear scene text images such as road signs and book
covers. ICDAR 2015 (IC15) [36] is an irregular dataset,
which mostly consists of some random images of blurred
and occluded in streets or shopping malls. SVT-Perspective
(SVTP) [37] refers to the irregular scene text images with

perspective interference in Google street view. CUTE80 [38]
mainly contains distorted and irregular scene text images.

(e scene text images as input of the network are three-
channel RGB images with a unified size of 64× 256, and the
size of the images is unified to 32×100 after TPS. (e four
kinds of feature maps with different resolutions outputted by
the encoder module are 8× 25, 4×13, 2× 7, and 1× 4, from
the feature maps with the highest resolution to the feature
maps with the lowest resolution, respectively. Due to the
setting of super-resolution branch, pairs of low-resolution
images and high-resolution images are required. (erefore,
to simulate the recovery process of super-resolution net-
work, the original image after random Gaussian blur is used
as a low-resolution image and the original image is used as a
high-resolution image. (e Adadelta optimizer is used to
update the network parameters, the weight attenuation
factor is set as 0.1, the initial training learning rate is 1, and
the fine-tuned training learning rate is 0.1. To ensure that the
values of Lsr and LSCE are in the same magnitude, λ1 and λ2 is
set as 0.1 and 1 and the word accuracy is used as the
evaluation metric.

4.1. Experiments ofModel Comparison. To evaluate the effect
of the proposed model, an experiment is performed to
compare with other recent models, as shown in Table 1. For
the fairness of comparison, the models using additional
datasets for training are not compared. Synth90K and
SynthText are used as training sets in all comparative ex-
periments, and no lexicon is provided in the experiments.
Word accuracy is taken as the evaluation metric. Meanwhile,
the speed of the proposed model is 4.3ms and 54ms per
image in the training stage and in the testing stage, re-
spectively. Specifically, the proposed model innovatively
introduces the HRNet, which combines with some methods
such as the super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers. Compared with the
ASTER and TextSR, the accuracy of the proposed model is
improved in most datasets, especially in IC15, SVTP, and
CUTE80, which are irregular and blurry, and the accuracy is
improved by more than 3%. Compared with the Bi-STET,
which uses the transformer to enhance and decode

Attention Based Decoder

Attention

<EOS>

GRUGRUGRUGRU

Text Feature

‘S’ ‘e’ ‘r’

Figure 5: Structure of the attention-based decoder in the recog-
nition branch.
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information, the accuracy of the proposed model is also
improved in three kinds of irregular datasets. Compared
with the SCGAN, which introduces GAN to alleviate the
background interference, the recognition accuracy of the
proposed model is more balanced for different datasets. In
addition, compared with other recent models, the proposed
model can achieve better performance in average accuracy
for irregular datasets as well as good performance for regular
datasets.

4.2. Validity Experiments of the Proposed Methods. To verify
the effectiveness of the proposed methods, such as the super-
resolution branch, the SAM, and the Independent Trans
Conv2D Layers, several comparative experiments are set up.
(e HRNet is used as the feature extraction network in the
baseline model, and the proposed methods are gradually
added to fine-tune in ablation models. (e baseline model is
trained for up to 3 epochs, and the fine-tuned models are
trained for up to 4 epochs based on the baseline model. On

the whole, the proposedmodel is trained for up to 13 epochs.
(e setting of hyperparameters is consistent all time.

Quantitative comparison is made based on the testing
sets, and the results are shown in Table 2. Compared with the
classical ASTER model in Table 1, which uses ResNet as the
feature extraction network, the recognition accuracy of
IC15, SVTP, and CUTE80 is improved by 2.5%, 1.7%, and
1.4%, respectively, by using the HRNet in the baseline
model. (e recognition accuracy is also improved in natural
scenes by adding the super-resolution branch composed of
bilinear interpolation to the baseline, which verifies that
HRNet can be used as both a feature extraction network and
a super-resolution network to provide effective high-reso-
lution feature maps. In addition, the recognition accuracy
can be further improved by the addition of the SAM, and
instead of bilinear interpolation, we use Trans Conv2D as the
upsampling method to recover super-resolution images in
the super-resolution branch.

As shown in Figure 6, the qualitative comparison is given
based on the irregular testing sets, such as IC15, SVTP, and

Table 1: (e accuracy comparison between the proposed model and recent models (%).

Model
Benchmark Average

IIIT5k SVT IC03 IC13 IC15 SVTP CUTE80 Regular Irregular
ASTER 93.4 89.5 94.5 91.8 76.1 78.5 79.5 92.3 78.0
TextSR 92.5 87.2 93.2 91.3 75.6 77.4 78.9 91.0 77.3
ESIR 93.3 90.2 — 91.7 76.9 79.6 83.3 91.7 79.9
2DOCR 94 90.1 94.3 92.7 76.3 82.3 86.8 92.7 81.8
Bi-STET 94.7 89 96 93.4 75.7 80.6 82.5 93.2 79.6
SEED 93.8 89.6 — 92.8 80 81.4 83.6 92.0 81.6
DAN 94.3 89.2 95 93.9 74.5 80 84.4 93.1 79.6
SPIN 94.7 87.6 93.4 91.5 79.1 79.7 85.1 91.8 81.3
RobustScanner 95.3 88.1 — 94.8 77.1 79.5 90.3 92.7 82.3
SCGAN 94 90 95.6 93.3 81.6 85.1 78.1 93.2 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0 93.1 82.9
Note: bold font is the optimal value in each column, and the underline font is the suboptimal value in each column.

Table 2: Comparison of accuracy of ablation models (%).

Model IIIT5k SVT IC03 IC13 IC15 SVTP CUTE80
Baseline (HRNet) 91.7 88.4 93.4 92.2 78.6 80.2 80.9
Baseline + SR (Bilinear Interpolation) 93.0 89.5 92.7 92.7 81.1 81.1 78.1
Baseline + SR (Bilinear Interpolation) + SAM 93.0 92.1 91.9 93.2 81.7 83.3 81.2
Baseline + SR (Trans Conv2D) + SAM 93.4 91.8 93.3 93.6 81.8 82.6 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0
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Figure 6: Qualitative comparison of recognition results.
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CUTE80. (e text content below each picture is in lower
case. (e first line is the ground truth text, the recognition
results of Baseline and Baseline + SR (Bilinear Interpolation),
respectively. (e second line is the recognition results of the
Baseline + SR (Bilinear Interpolation) +SAM, Baseline + SR
(Trans Conv2D) + SAM, and the proposed model (Base-
line + SR (Trans Conv2D) + SAM+ Independent Trans
Conv2D Layers), respectively. It can be seen that the baseline
model has some problems of misrecognition for individual
characters. However, the proposed methods, such as the
super-resolution branch, the SAM, and the Independent
Trans Conv2D Layers, can be used gradually to effectively

recognize the characters, which are relatively difficult to
recognize, and then the proposed model can obtain better
recognition results.

4.3. Validity Experiments of the Dual-Branch Structure. In
the super-resolution branch of the proposed model, the
methods of Trans Conv2D and bilinear interpolation are
used to compare the effect of image recovery, respectively.
(e values of PSNR metric of the restored images are cal-
culated, as shown in Table 3. Compared with the bilinear
interpolation, the Trans Conv2D could increase the PSNR by
more than 3 dB, which verifies the effectiveness of adopting
Trans Conv2D in the super-resolution branch. Moreover,
qualitative comparison is carried out with regard to the
adoption of Trans Conv2D in the super-resolution branch,
as shown in Figure 7. Experimental results on seven natural
scene datasets verify that super-resolution branch can better
accomplish the super-resolution task and assist the feature
extraction network to effectively encode the scene text
images; therefore, the accuracy of STR can be improved.

In the recognition branch of the proposed model, the
Independent Trans Conv2D Layers are used for size ex-
pansion. (e comparison between the feature maps gen-
erated by the Independent Trans Conv2D Layers and
bilinear interpolation is shown in Figure 8, and the gen-
erated feature maps of five channels are randomly selected.
(e brighter regions in the feature maps represent the higher
feature values of the regions and the more information
contained. Four kinds of feature maps with different reso-
lutions are outputted in the encoder module, with sizes of
8× 25, 4×13, 2× 7, and 1× 4, respectively. (e single In-
dependent Trans Conv2D Layer is used to expand the size of
feature maps with lower resolutions, so that the size of each
resolution feature map is the same, that is, 8× 25. From
Figure 8, it can be seen that the feature maps generated by
the Independent Trans Conv2D Layers contain more text
information than the bilinear interpolation in the size of
4×13, which can reduce the loss of feature information in
the process of size expansion. However, for the size of 2× 7,
the feature maps generated by the bilinear interpolation can
only maintain some edge information, so very little infor-
mation is transmitted to the recognition branch for text
recognition. Meanwhile, the feature maps generated by the
Independent Trans Conv2D Layers can retain some visual
information even at the lowest resolution. Moreover, the
multiscale fusion results transmitted to the attention-based
decoder can contain more effective text information. In
other words, the recognition effect of the model is signifi-
cantly improved by several proposed methods on various
testing sets, as shown in Table 2. As shown in Table 4, the
three ablation models and the proposed model all use the
super-resolution branch in the training stage and abandon it

Table 3: PSNR results of restored images by Trans Conv2D and
bilinear interpolation (dB).

Bilinear interpolation Trans Conv2D Improved
IIIT5k 27.57 30.88 +3.31
SVT 31.93 36.05 +4.12
IC03 27.79 31.68 +3.89
IC13 27.82 32.06 +4.24
IC15 33.08 38.11 +5.03
SVTP 32.76 37.86 +5.10
CUTE80 24.98 28.39 +3.41

IIIT5K

CUTE80

SVT

SVTP

IC03

IC13

IC15

Figure 7: Performance of the adoption of Trans Conv2D in the
super-resolution branch. In each image, from the top to bottom are
the original image, blurred low-resolution image, and super-res-
olution image, respectively.
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in the testing stage, which can reduce the model complexity.
Moreover, the proposed model, which adds the effective
methods, such as super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers, does not increase too
many model parameters.

5. Conclusions

(is paper proposes a HRNet encoder and dual-branch
decoder framework-based STR model to recognize distor-
tion, blurred, and low-resolution text in natural scenes.
Based on the encoder-decoder framework, the model in-
novatively introduces the HRNet as feature extraction
network and introduces the SAM to enhance the learning of
important features. (e feature maps with multiple reso-
lutions extracted by the HRNet encoder are inputted to the
dual-branch decoder module composed of the super-reso-
lution branch and the recognition branch. Specifically, the
feature maps with the highest resolution are inputted to the
super-resolution branch to restore the super-resolution
images and to strengthen the feature extraction effect of the
encoder module. After multiscale fusion through the In-
dependent Trans Conv2D Layers in the recognition branch,
the four kinds of feature maps with different resolutions are
decoded by the attention-based decoder and finally the
recognized text is obtained. (rough ablation experiments
and comparative experiments, the effectiveness of the
proposed methods such as the HRNet encoder, the super-
resolution branch, and the Independent Trans Conv2D
Layers is verified. Compared with the ASTER model and
other recent models, the proposed model can better perform
STR on multiple public natural scene datasets, especially for
the text with distortion, blurring, and low resolution. In the

future, STR for images with complex background and jitter
imaging will be further studied.
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