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Spectrum monitoring is one of the significant tasks required during the spectrum sharing process in cognitive radio networks
(CRNs). Although spectrum monitoring is widely used to monitor the usage of allocated spectrum resources, this work focuses on
detecting a primary user (PU) in the presence of secondary user (SU) signals. For signal classification, existing methods, including
cooperative, noncooperative, and neural network-based models, are frequently used, but they are still inconsistent because they
lack sensitivity and accuracy. A deep neural network model for intelligent wireless signal identification to perform spectrum
monitoring is proposed to perform efficient sensing at low SNR (signal to noise ratio) and preserve hyperspectral image features. A
hybrid deep learning model called SPECTRUMNET (spectrum sensing using deep neural network) is presented. It can quickly
and accurately monitor the spectrum from spectrogram images by utilizing cyclostationary features and convolutional neural
networks (CNN). The class imbalance issue is solved by uniformly spreading the samples throughout the classes using the
oversampling method known as SMOTE (Synthetic Minority Oversampling Technique). The proposed model achieves a
classification accuracy of 94.46% at a low SNR of —15dB, which is an improvement over existing CNN models with minor

trainable parameters.

1. Introduction

Due to the prevailing spectrum scarcity problem, recent
technologies have emerged to innovate new approaches to
efficient spectrum usage and management. The Federal
Communications Commission (FCC) is a standard body
which is responsible for managing and licensing the allo-
cation of spectrum for all the commercial and noncom-
mercial operations in the United States. These regulatory
agencies typically use the fixed spectrum access (FSA)
strategy to assign distinct areas of the available radio
spectrum to diverse applications [1]. Only approved users,
also known as licensed users or primary users (PUs), have
the right to use the allotted spectrum under such a fixed and
exclusive spectrum allocation policy. Regardless of how busy
the designated spectrum is, other users, also known as
unlicensed or secondary users (SUs), are not permitted to

use the spectrum. When a band of frequencies designated to
a primary user is not used by that user at a certain time and
location, it generates “spectrum holes.” Nowadays, re-
searchers’ primary goal is to enhance spectrum usage and
propose a novel standard to optimize the existing wireless
spectrum. As a result, Mitola coined and suggested the
cognitive radio (CR) technology [2] that can intelligently
sense the available spectrum and increase spectrum usage by
utilizing the idle spectrum called dynamic spectrum access
(DSA), which enables the use of available spectrum
opportunistically.

The process of sensing the radio frequency spectrum for
signal occupancy is called spectrum monitoring, which is an
essential spectrum management function [3] used by
spectrum managers in identifying occupied and unoccupied
frequency bands. If the channel is idle, then all SUs starts
data transmission and the information about the channel
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state (idle or busy) is sent to the fusion center (FC) [4]. It is
essential to combine the sensing results of numerous known
and unknown SUs to enhance the detection performance,
and this process is known as cooperative spectrum sensing
(CSS) [5].

Spectrum monitoring is becoming more crucial in
commercial, governmental, and military applications as the
number of linked devices is increasing rapidly with the
development of fifth-generation (5G), sixth-generation
(6G), and beyond cellular networks [6]. The outcome of
spectrum monitoring is used to assign frequencies effi-
ciently, prevent incompatible usage, and discover sources of
harmful interference. A spectrum monitoring system will
help to find and eliminate unauthorized or unlicensed in-
terference signals in cognitive radio networks (CRNs). An
effective technique to identify and accurately predict the
interference problem’s cause is done by continuously
scanning the spectrum for patterns of undesired signal
activity. Spectrum monitoring is used, in addition to in-
terference detection, to assess spectrum occupancy, find
white spaces, etc.

Figure 1 outlines the key features associated with cog-
nitive radio spectrum monitoring, and they are as follows:

(1) Sense: Observe the spectrum continuously for signal
occupancy

(2) Collaborate: Gain collective
knowledge from other devices

observation and

(3) Decide: Make a decision and adapt to its current
environment

(4) Act: Anticipate events for future decisions

The radio spectrum is getting increasingly congested due
to the increased number of applications in wireless elec-
tronic devices that consume more bandwidth. Wireless
innovations, including mobile phones, intelligent electron-
ics, and IoT devices, are now a significant force behind
commercial development in the business sector. Newer
video-based applications need large amounts of wireless
bandwidth to deliver the essential mission-critical perfor-
mance in military and public safety applications. Despite
having a significant economic impact, the RF spectrum is a
restricted, finite resource, and its access has become in-
creasingly expensive in recent years. The standard regula-
tions body FCC (Federal Communications Commission)
conducted an auction for 700 MHz spectrum in 2009,
bringing in $19.5 billion, while the AWS-3 spectrum auction
in 2014 brought in $44.5 billion [7]. Policymakers can use
the valuable information gathered from spectrum moni-
toring to identify unused frequency bands that can be
transferred through auctions or repurposed over policy
changes. Making informed decisions on spectrum policy and
planning, in particular, depends on data from stations
monitoring the spectrum continuously over a long period.

The identification of illegal users abusing the expensive
spectral resource, the detection of interference, and the
assurance of spectral mask compliance are all achieved by
spectrum monitoring, which is also crucial for enforcement
purposes. Deep learning techniques are highly efficient for
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FIGURE 1: Overview of spectrum monitoring.

signal identification in wireless communication networks
since big data spectrum datasets need intelligent signal
processing algorithms.

This work considers two types of signal classesLTE and
WiFi spectrogram signal data denoting the primary and
secondary users, respectively. A deep learning model is
created to accomplish signal identification that learns the
input features from the spectrogram images.

The contribution addressed by this paper is as follows.

(i) We use cyclostationary detection to extract signal
features initially for performing sensing at a low
signal-noise ratio (-15dB to 15dB) [8] and retain
hyperspectral information

(ii) We train a deep-learning modulation recognition
model by building a spectrogram-based convolu-
tional neural network called SPECTRUMNET from
big spectrum data of spectrogram signals to perform
quick and accurate signal classification

(iii) We use the SMOTE approach, which addresses the
problem of class imbalance in the dataset and re-
solves the overfitting issue

(iv) The efficiency of SPECTRUMNET has been
assessed using unbalanced and balanced datasets
compared with other deep learning spectrum
sensing algorithms.

In the rest of the work, the relevant survey and its re-
search are elaborated on in Section 2. Section 3 elaborates
the overview of the proposed model, and the SPEC-
TRUMNET model for spectrum monitoring is presented
under Section 4. Section 5 analyzes the extensive experi-
mental findings, while Section 6 concludes the work with
potential directions.

2. Literature Survey

Deep learning has recently received much attention from
researchers working on cognitive radio networks’ spectrum
sensing research. Several works have been proposed for
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efficient RF signal classification, focusing on various chal-
lenges of dynamic spectrum allocation. Few research works
reflecting the proposed work are elaborated in this section.

2.1. Cyclostationary-Based Feature Detection Methods.
Traditionally, the process of signal identification was
performed using signal processing tools like cyclosa-
tionary-based feature detection. Further signal identifi-
cation was performed using traditional machine learning
algorithms such as the decision tree model, support vector
machine, k-nearest neighbor, and artificial neural net-
works [9]. However, all the conventional techniques need
time-consuming characteristics extraction that necessi-
tates a substantial degree of technical and domain ex-
pertise. In reference [10], the author first performed signal
detection and preprocessing using data from the cycle
frequency domain profile (CDP), then identified and
classified signals with low signal-to ratio. Then, using a
pattern matching approach, the hidden Markov model
(HMM) was developed to analyze the retrieved signal
characteristics for classification. Authors in reference [11]
have incorporated cyclostationary features to perform fast
spectrum sensing using the concept of change detection,
and they also addressed the computation time and
memory issues utilizing their work. According to the
study in reference [12], cyclostationary signatures are an
effective technique for solving network rendezvous dif-
ficulties in Long Term Evolution (LTE) advanced net-
works and beyond. Instead of the more straightforward
periodogram-based detectors, they have suggested an
autocoherence function (AF)-based detector. The author
explored the cyclostationary feature of IEEE 802.11 (WiFi)
signals, which is caused by their underlying OFDM frame
structure, in reference [13]. The team has studied its
relevance to resolving the signal-selective direction esti-
mation (SSDE) problem by analyzing the cyclostationary
characteristics of WiFi signals and deriving the spectral
correlation function (SCF).

2.2. Deep Learning Methods for Signal Classification. In
reference [14], Dong Han et al. have developed a convolution
neural network (CNN)-based spectrum sensing technique
by taking into account the environment when there is low
SNR and examining the primary user (PU) detection rate.
The cyclostationary feature and energy feature are first
extracted to train the CNN. They state that at roughly 0.5 in
—20dB, CNN generated a greater detection probability than
cyclostationary feature detection (CFD).

Cooperative spectrum sensing (CSS) was studied by the
author in reference [15], who also suggested deep cooper-
ative sensing (DCS), which is based on CNN. By taking into
account the geographical and spectral correlation, the au-
thors have made it possible to learn the sensing results of the
secondary users using CNN.

The study in reference [16] used a hybrid CNN Long-
Short-Term Memory (LSTM) networks based detector called
CNNLSTM to extract the correlation of energy features from
the covariance matrices produced by the data from sensing

using CNN. The author then used the LSTM to train it on the
pattern of PU activity and increase the detection probability
by feeding the energy-correlation characteristics for various
sensing periods as input.

The author in reference [17] used deep learning networks
to conduct spectrum sensing of signals from OFDM signals.
The team’s initial suggestion was autoencoder-based spec-
trum sensing, which allows users” actions to be classified by
extracting hidden characteristics from OFDM signals,
particularly under low SNR settings.

With an emphasis on efficient methods to optimize the
energy of distributed CSS, the team in reference [18] ex-
amined the use of deep learning algorithms for wireless
communication systems. The team has created a deep
learning framework to increase the overall system energy
efficiency by combining reinforcement learning with
graphical neural networks.

An LSTM based-automatic modulation classification
is shown in work in reference [19]. The author states that
their approach effectively categorizes modulation signals
with various symbol rates. To overcome the consequences
of uncertainty in the noise power, the author in reference
[20] introduced a spectrum sensing approach using deep
learning classification. For real-world signals, the team
has improved performance using transfer learning
techniques.

A 3-layered convolutional neural network was used in
the study [21] to compare the effectiveness of three alter-
native approaches for SPN-43 radar detection. The research
team claims their model is better than the LSTM-based
recurrent neural network. This research used approximately
14,000 spectrograms in the 3.5 GHz band.

The author in reference [22] has proposed a multiclass
classification problem to accurately predict spectrum sce-
narios. By testing with deep neural networks (DNNs),
CNNs, and LSTM to identify signals with varying levels of
SNR, they have stated that deep learning has improved
sensing.

From the literature, it can be seen that there are several
methods for classifying signals using machine learning and
deep learning. However, preserving hyperspectral features
and class imbalance is still an issue. We proposed a cyclo-
stationary feature-based detection to resolve this issue, and
the resulting reduced features are utilized by the CNN model
using fewer parameters. We used the SMOTE technique to
overcome the data class imbalance and correctly predict the
presence of the primary user.

3. Proposed Spectrum Monitoring Model

Figure 2 depicts the proposed spectrum monitoring model’s
overview. It is a two-stage procedure; in the first phase, the
PU signal’s cyclostationary information is used to extract its
features [23]. Then, the proposed SPECTRUMNET model
performs signal identification utilizing the extracted features
as input after preprocessing the imbalanced dataset in the
second step. The detailed process of step 1 and step 2 are
elaborated under Sections 3.1 and 3.2.
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FIGURE 2: Overview of the proposed spectrum monitoring model.

3.1. Cooperative Sensing Using Cyclostationary Feature
Detection. Cyclostationary feature detection is a sensing
technique for detecting PU transmissions by processing
cyclostationary features of the received signals. One PU and
several SUs comprise a cognitive radio network (CRN)
scenario that may be modeled as a binary hypothesis testing
where the SUs perform cooperative spectrum sensing-based
spectrum monitoring. Traditional CSS schemes include both
centralized and distributed CSS. In our method, we consider
the centralized CSS, where each node accumulates local
sensing data and transmits it to fusion center (FC), which
then gives a decision feedback based on the fusion rules. The
centralized cooperative spectrum sensing uses the fusion
rules like AND, OR, and majority-based methods at the
fusion center for performing decision making [24]. In
equations (1) and (2), the essential hypotheses Hy and H; are
considered as follows.

Hy: Power of PU absent at time “t.”

H;: Power of PU present at the time “t.”
Hy: x(t) = n(t), (1

H: x(t) =h(t) +n(t), (2)

where t=0, 1, ..., N—1, where N represents the total
samples of the received signal over time, x(¢) denotes the
signal received by the SU at time “¢,” h (¢) indicates the signal
transmitted by the PU at time “,” and n(#) represents the
additive white Gaussian noise (AWGN) with variance o2 .

The noise and signal features are extracted from the
teatures of the cyclostationary signal for PUs. The SU’s cyclic
autocorrelation function may be expressed as equation (3) if
SU receives the signal h(t).

RS = L JTO R, (t, T)e 2™ dt (3)

x = TO o x\b> >

where R{ (1) =autocorrelation function, a=cyclic fre-
quency, and T, = cycle period.

The power spectral density and autocorrelation are used

to compute the spatial correlation as denoted in equation

(4).

S°(f) = j R (1)e ", (4)
where S§ (f) = power spectral density.

(i) auto-correlation function, (ii) spectral correlation
function, and (iii) energy function of the extracted signals
are computed as in equations (5)-(7), respectively, using the
binary hypothesis-testing function

R o »Ho
R0 = , (5)
Ryy» H,y

where Hy = R, (t, T)e 72mt and H, =Ry, (t, T)e izt
S o (f)H,
S:(f) = , (6)
Se1(f), Hy

where Hy, H, = p20(a), since noise is the white Gaussian
noise.
The extracted signals’ energy feature is obtained as in

equation (7).

E..Hy

B, - { sotlo 7)
Ee,l > Hl

where Hy = YN, (n(t))* and H, = Y, (h(t) + h(t))™.
The preprocessed data can be used to create the train and

test dataset after the extracted features, allowing the

SPECTRUMNET model to identify signals [25].

3.2. Deep Learning Model for Signal Classification. Deep
learning approaches have been proposed for signal identi-
fication in wireless communication networks as a result of
their impressive performance for various applications [26].
The primary steps involved in the deep learning-based
sensing model for signal classification are as follows:

(1) The relationship among set of inputs and outputs X
and Y, respectively, is expressed mathematically by
the function F, as shown in equation (8).

F: X —Y. (8)

(2) Input XeR™™" represents set of different observa-
tions which is represented as in equation (9).

T
X1

X=[x] (9)

T

Xm

(3) Then, m denotes the size of sample and x;e R" in

« »

equation (10) denotes “n” features (or) labels of every
i™ observation called feature vector that contains

T
xi:[xil’ Xigs v xin] > (10)



International Journal of Antennas and Propagation

where i=1,2, ..., m

(4) The output YeR™, denotes the target or output
corresponding to the m inputs x;, denoted as in
equation (11).

T
Y=[yi -5 ¥ml| - (11)
(5) The training dataset S is constructed from m ob-
served pair of XY (input output) as denoted in
equation (12)/

s ={(x1 1) (X2 72)s -+ o5 (Ko i)} (12)

where each pair (x;,y;) is known as the training factor
obtained from the spectrogram to generate F.

4. Spectrum Monitoring Using SPECTRUMNET

The process of monitoring and PU spectrogram signal
classification is performed using the proposed SPEC-
TRUMNET model. The proposed SPECTRUMNET uses a
CNN model to extract the unique signal features while
improving the accuracy of PU classification. Figure 3 rep-
resents the proposed system model’s overall flow, which
comprises four main stagesdata imbalance checking, bal-
ancing dataset by oversampling using SMOTE, splitting the
balanced dataset and performing classification using
SPECTRUMNET, and generating the signal classification
output.

4.1. Dataset Description and Imbalance Checking. The
spectrogram dataset used for this study consists of cus-
tomized dataset of reference [27] into two classes, class 0
means LTE absent (or) Wi-Fi present and class 1 means LTE
present (or) Wi-Fi absent. The sample images of class 0 and
class 1 are shown in Figure 4.

The LTE-8 FDD (frequency division duplex) frequency
band consisting of 880-915 MHz uplink and 925-960 MHz
downlink is considered for data generation and simulation.
Similarly, Wi-Fi 802.11b signals that are using ISM 2.4 GHz
band with OFDM (orthogonal frequency-division multi-
plexing) modulation at a sampling rate of 20 MS/s are
generated. The generated signals are configured with signal
power and noise power based on power spectral density
(PSD) and signal-to-noise ratio (SNR), respectively. A signal
power from —40dBm to —120dBm and an SNR ranging
between —15dB and 15 dB is used to generate totally 10020
LTE and 8004 Wi-Fi samples. Ideally, there might be an
equal number of observations among the classes. However, it
is typical for the courses in the training set to be unbalanced
with wireless signals [28]. Compared to WiFi signals, LTE
transmissions may have a wider bandwidth, but the back-
ground noise is still present. An imbalance in the number of
observations per class might be harmful to learning since
learning is biased in favor of the dominating classes.

The distribution of the total images in the dataset before
SMOTE is outlined in Table 1, which makes it abundantly
evident that the dataset is class-imbalanced. By replicating
the minority class randomly to match the majority class, the

5
Spectrogram Dataset
Split Dataset
Ficure 3: Workflow of spectrum monitoring using
SPECTRUMNET.

SMOTE approach has been utilized to resolve the issue of the
class imbalance problem. Utilizing SMOTE has advantages
such as the ability to limit overfitting and decrease
knowledge loss. Table 2 displays the dataset distribution after
the SMOTE approach was expanded to 20040 samples, with
10020 pictures per class. Then, the dataset is split into 60%
training, 20% validation, and the remaining 20% as a testing
set, as shown in Table 3. The learning of the optimal pa-
rameters is improved by the use of normalized images.

4.2. The SPECTRUMNET Architecture. Our proposed
SPECTRUMNET architecture is shown in Figure 5. Here, a
spectrogram with a 128 x 128 image size serves as the net-
work’s input. The images are loaded into a CNN once the
dataset has been preprocessed and normalized, which ex-
tracts discriminating factors to identify the LTE or WiFi
signal. In our work, a CNN model created from scratch is
used to classify signals. The proposed architecture consists of
a convolutional layer with ReLU (rectified linear unit) ac-
tivation function, a single max-pooling layer, two SPEC-
TRUMNET blocks, two dropout layers, and two dense
layers, and one SoftMax classification layer.

The convolutional layer consists of 64 x 64 filter sizes of
16 filters. Using the pooling layer after each convolution
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Class:0

FIGURE 4: Sample images of class 0 and class 1 from the dataset.

6
Class:1

TaBLE 1: Dataset distribution before SMOTE.
Class type Before SMOTE
Class 0 8004
Class 1 10020
Total 18024

TaBLE 2: Dataset distribution after SMOTE.
Class type After SMOTE
Class 0 10020
Class 1 10020
Total 20040

reduces the spatial domain, thus minimizing the feature
dimensionality by maintaining the spatial features. In our
model, max-pooling layers are used as computed by equa-
tion (13), where the input is x, the window size is p, and s
denotes the stride value.

MP=Floor(x;p+l). (13)

Each SPECTRUMNET block comprises two convolu-
tional layers that are layered on the other, with ReLU ac-
tivation, batch normalization, and a max-pooling layer. In
SPECTRUMNET, the filters 32, 64, and 256 are employed to
extract the discriminative features. If the value is positive, the
activation function gives the direct output, else it is zero. The
activation function manages the vanishing gradient prob-
lem, which allows quicker learning and performance of
networks than other activation functions. The activation
function is given in (3).

F = max (0, x). (14)

In the proposed model, a regularization method called
batch normalization is employed in the SPECTRUMNET
block to overcome the overfitting problem. During training,
specific neurons present in the hidden layer are randomly
removed using the dropout layer. The optimal dropout levels
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TaBLE 3: Number of images after splitting the dataset into train, test, and validation sets.
a Without SMOTE With SMOTE
ass
Training Testing Validation Total Training Testing Validation Total
5125 1603 1276 8004 6436 1993 1591 10020
1 6410 2002 1608 10020 6389 2015 1616 10020
3 £ EI EI ] ~ g
E 3 a 2 = ‘ !
: LS|80 B9 | & |Eg |2 5 E E :
8 s RSB e B | 2 & A
2 B E=| |G= a 6= 2 e 8 3 :
3 = 2 z 3 g g g
Input Image o & &5 & A A A

SPECTRUMNET Block
Conv2D + ReLu

Conv2D + ReLu

Batch Normalization

MaxPool2D

DENSE Block
Dense + ReLu

Batch Normalization

Dropout

FIGURE 5: Architecture of SPECTRUMNET for signal classification.

of 0.5 are used in the first dense layer and optimal dropout
levels of 0.2 are used in the second dense layer.

The flattened layer is used after the convolutional layer in
the proposed architecture to perform dimensionality re-
duction. The dense layer does mathematical operations
similar to the artificial neural network. It receives input from
the flattened layer and processes it. The proposed method
employs two dense layers, with each neuron in the lower part
of the layer linked to each neuron in the dense layer. Then,
the probability P (¥Y;=k|x; 6) for k € {0, 1} is calculated using
SoftMax in which the number of neurons denotes the total
output classes, where 6 denotes model parameters, x denotes
the input spectrogram, and k=1 denotes the existence of
LTE signals.

Figure 5 illustrates the proposed SPECTRUMNET ar-
chitecture for classifying the signals with SPECTRUMNET
block and DENSE block representation. The proposed
model architecture details of the SPECTRUMNET are
provided in Table 4.

4.3. Evaluation Metrics. The accuracy, precision, recall, F1
score, and AUC for the proposed model are evaluated using
the confusion chart. The model outcomes are shown in the
confusion chart, using which the metrics for efficiency are
evaluated.

4.3.1. Classification Accuracy. The accuracy denotes the

model efficiency by predicting the actual positive and

negative values as denoted in equation (15).
TP + TN

(TP + TN + FP + EN)’

Accuracy = (15)

TN, TP, FN, and FP denote true negative, true positive,
false negative, and false positive, respectively. The result is

TP if both the predicted and actual labels are regular. The
result is TN when the algorithm outputs an abnormal image
as abnormal. The output is FP when the model prediction is
standard, but the actual label is abnormal, and if it predicts a
standard output as abnormal, it is FN.

4.3.2. Precision. The metric precision (PR) denotes the
number of valid positive observations over the total opti-
mistic predictions as denoted in equation (16). A good
model is one in which the precision is 1.

TP

R= (TP + FP)’ (16)

4.3.3. Recall. Recall (REC), sometimes referred to as sen-
sitivity, measures how well the classifier can find all positive
samples. (14) is used to compute the recall.

TP

REC=—— .
(TP + FN)

(17)

4.3.4. F1 Score. The value of the F1 score measures how well
the recall and precision values are balanced and is computed
using equation (15).

(2xPRx REC)

F1 - MEXERXRAL) 18
SCOT€ = PR+ REC) (18)

4.3.5. Support. The number of real instances of the class in
the given dataset is referred to as support. Unbalanced
support in the training data may be a sign of structural flaws
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TaBLE 4: SPECTRUMNET model architecture details.

Layer (type) Output shape Parameters
conv2d (Conv2D) (None, 64, 64, 16) 448
max_pooling2d (MaxPooling2D) (None, 32, 32, 16) 0
SPECTRUMNET Block_1 (None, 16, 16, 32) 4768
SPECTRUMNET Block_2 (None, 8, 8, 64) 18752
Dropout (dropout) (None, 8, 8, 64) 0
SPECTRUMNET Block_3 (None, 4, 4, 256) 148736
dropout_1 (dropout) (None, 4, 4, 256) 0
Flatten (flatten) (None, 4096) 0
DENSE block (None, 128) 524928
DENSE block (None, 64) 8512
SoftMax layer (None, 2) 130
Total parameters706,274
Trainable parameters705,186
Nontrainable parameters1,088
Model Accuracy Model AUC Model Loss
L0 — main T AT 1.0 { — ain - — Tain
vaiigation | VA “ "“ e — vaigaton | | (| 25 Validation | |
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FIGURE 6: Model accuracy, AUC, and loss of training without SMOTE.

in the classifier’s reported scores and may point to the need
for stratified sampling or rebalancing.

4.3.6. Macro Average. The macro average is computed using
the arithmetic mean of all the per-class F1 scores. This
method treats all classes equally regardless of their support
values.

4.3.7. Micro Average. The micro average metric considers a
balanced dataset and evaluates the overall performance
regardless of the class. Micro averaging computes a global
average F1 score by counting the sums of the TP, FN, and FP.

MCC = TP % TN — FP % FNsqrt((TP + FP) * (TP + FN) * (TN + FP) % (TN + FN)).

4.3.11. Optimizer Function. Adam is utilized in this study as
the optimizer function to update the network’s weights and
biases and lower the error function, determined using back-
propagation. The AdaGrad and RMS prop optimizer functions
are combined to create the Adam optimizers, whose name is
imitative of adaptive moment estimation. An extended form of
stochastic gradient descent is employed by using the training
data to update the network’s weights iteratively. For various

4.3.8. Weighted Average. The weighted average function
computes F1 score for each label and returns the average
considering the proportion for each label in the dataset.

4.3.9. Samples Average. The samples average function
computes F1 score for each instance and returns the average.

4.3.10. Matthews Correlation Coefficient. The Matthews
correlation coefficient (MCC), increasing accuracy for the
classes of different sizes, was utilized to evaluate the effec-
tiveness of binary class prediction [29]. Equation (16) de-
notes the Matthews correlation coeflicient determined using
the confusion matrix.

(19)

parameters, the Adam optimizer has a unique learning rate.
The Adam optimizer’s Algorithm 1 is outlined below:

The number of iterations has been specified at the start of
the algorithm. The gradients are computed in step 1, and the
moving averages are calculated exponentially using the
moving averages formula in steps 2 and 3 for x and y, re-
spectively. To perform bias correction, the estimator must
now be corrected using the x_hat and y_hat equations. The
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FIGURE 7: Model accuracy, AUC, and loss of training with SMOTE.
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Figure 8: Confusion matrix of SPECTRUMNET (a) without SMOTE and (b) with SMOTE.

Adam optimizer algorithms in the last step update the
network’s weight indicated as z.

5. Experimental Result and Discussion

The proposed SPECTRUMNET model is trained using the
Adam optimizer with the hyperparameter of 50 epochs, with
a batch size of 16 and 0.00las initial learning rate. The
proposed model has been trained under two scenarios, one
without SMOTE and the other with SMOTE. The area under
curve (AUC) classification for each epoch is done to check
whether the model successfully differentiates between the
positive and negative classes.

Figures 6 and 7 illustrate the training curves for model
accuracy, AUC, and model loss without and with SMOTE.
The value of AUC indicates if the model classifies between
positive and negative classes correctly. The model without
SMOTE approach achieves an overall training accuracy of
78.09% and 77.67% as validation accuracy, which is not
optimal due to the imbalance in the dataset and overfitting.
The SMOTE approach results in 95.86% overall training and
95.01% validation accuracy. Once the model is trained, the
testing is done with a test dataset. The model is unaware of

the images in the testing dataset since they are not used
during the training process. Finally, the confusion matrix is
obtained from the model testing.

Figures 8(a) and 8(b) depict the resulting confusion
matrix obtained for SPECTRUMNET architecture without
and with SMOTE to correctly classify LTE and WiFi signals
in order to predict primary users. The confusion matrix
indicates how well the model performed on the train images.
It is evaluated over the (i) 10020 images from LTE and (ii)
8004 images from WiFi. Figures 9 and 10 depict the resulting
ROC and precision-recall curve obtained for the model
without and with SMOTE, respectively, which are used to
determine the model’s effectiveness.

Tables 5 and 6 show the SPECTRUMNET model’s ex-
perimental classification and individual performance anal-
ysis reports. We have evaluated the performance of the
model with respect to both imbalanced and balanced
datasets without SMOTE and with SMOTE, respectively, as
mentioned in Section 4.1. Tables 5 and 6 show the SPEC-
TRUMNET model’s experimental classification and indi-
vidual performance analysis reports, respectively. Thus, the
proportion of accuracy alone would be ineffective in
assessing model performance. Since all classes in the
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Figure 10: ROC curve and precision-recall curve with SMOTE.

for each t in range (num_iterations):
w = compute gradient (a, b)
x =beta_l*x+ (1 —beta_1) *w

y_hat = y/(1 — np. power (beta_2, t))

y =Dbeta_2 % y+ (1 —beta_2) * power(y,2)
x_hat = m/(1 — np. power (beta_1,t)) + (1 —beta_1) * w/(1 — np. power (beta_1,t))

z = z — step_size * x_hat / (np. sqrt (y_hat) + epsilon)

ALGORITHM 1: Adam optimizer algorithm.

spectrogram dataset are equally important, we determine the
metrics for each class separately using the averaging
methods (macro, micro, weighted, and samples) using the
support values with SMOTE and without SMOTE, to de-
scribe overall the performance. The result of averaging
metrics obtained without SMOTE is only maximum 77%,
whereas the value of average metrics using SMOTE is 94%.

Promising results can be seen with the testing dataset’s
precision, recall, and F1 score for LTE and WiFi classes.
During testing, the SPECTRUMNET model obtains a test
accuracy of 94.46% with SMOTE and 77.48% without
SMOTE. The proposed model achieves an area under the
ROC curve of 94.43% with SMOTE and 79.63% without
SMOTE.
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TaBLE 5: Classification report of SPECTRUMNET.
Without SMOTE With SMOTE

Precision Recall F1 score Support Precision Recall F1 score Support
0 0.67 0.99 0.8 1903 1 0.89 0.94 1993
1 0.99 0.6 0.75 2002 0.9 1 0.95 2015
Micro avg 0.77 0.77 0.77 3905 0.94 0.94 0.94 4008
Macro avg 0.83 0.8 0.77 3905 0.95 0.94 0.94 4008
Weighted avg 0.84 0.77 0.77 3905 0.95 0.94 0.94 4008
Samples avg 0.77 0.77 0.77 3905 0.94 0.94 0.94 4008

TaBLE 6: Performance analysis of SPECTRUMNET.

Without SMOTE (%)

With SMOTE (%)

Training accuracy 78.09 95.86
Validation accuracy 77.67 95.01
Testing accuracy 77.48 94.46
Balanced accuracy score 79.63 94.43
Matthew’s correlation coefficient 62.27 89.44
TaBLE 7: Comparison of SPECTRUMNET with other models.
Network Signal type Accuracy Precision Recall F1 score
WiFi 0.7 1 0.55
CNN [29] LTE 81.53 0.8 0.7 0.6
WiFi 0.63 0.85 0.72
CM-CNN ([30] LTE 92.89 0.8 1 0.9
WiFi 0.56 0.8 0.6
CLDNN [31] LTE 93.05 033 : 05
. WiFi o 0.67 0.99 0.8
SPECTRUMNET (without smote) LTE 77.48% 0.99 0.6 075
, WiFi . 1 0.89 0.94
SPECTRUMNET (with smote) LTE 94.46% 0.9 1 0.95

Experimental results show that the SPECTRUMNET
model classifies two classes with a minimum of 705,186
trainable parameters and performs better with the accu-
racy, precision, recall, and F1 score compared to all the
other models. Table 7 outlines the results of the model,
where it is compared against various CNN models from
the literature, such as CNN [29], CM-CNN [21], and
CLDNN [31]. On the provided dataset, the SPEC-
TRUMNET model performs well. The model agrees
perfectly with SMOTE, as evidenced by Matthew’s cor-
relation coeflicient of 89.44% with SMOTE and 62.27%
without SMOTE.

6. Conclusion

The deep neural network was used to study and implement a
monitoring radio environment for performing spectrum
detection to conduct spectrum handover. The suggested
SPECTRUMNET deep learning algorithm model was used
to provide image feature extraction using cyclostationary
signal-based cooperative spectrum sensing. A novel CNN
architecture model is proposed in this research to classify
spectrum signals. A customized RF signal dataset with severe
class imbalance is used to build the classification model, and
the SMOTE technique has been applied to overcome this

problem. Compared to existing CNN techniques, the pro-
posed model attained an overall accuracy of 94.46% with
96% AUC when tested using testing data consisting of two
classes. As a result, it can identify the signal at a low SNR of
—15 dB while predicting spectrum holes with great accuracy.
In the future, the SPECTRUMNET model will be imple-
mented using an FPGA board for real-time deployment,
focusing on terrestrial applications as a standalone frame-
work for monitoring spectrum and improving spectrum
handover.
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