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In antenna array design, low dynamic range ratio (DRR) of excitation coefcients is important because it simplifes array’s feeding
network and enables better control of mutual coupling. Optimization-based synthesis of pencil beams allows explicit control of
DRR. However, incorporating DRR into an optimization problem leads to nonconvex constraints, making its solving challenging.
In this paper, a framework for global optimization of linear pencil beams with constrained DRR is presented. By using this
framework, the methods for synthesis of pencil beams with minimum sidelobe level and minimum sidelobe power are developed.
Both methods utilize convex problems suitable for the synthesis of pencil beams whose coefcients’ signs are known in advance.
By incorporating these problems into a branch and bound algorithm, the procedures for global optimizations are formed which
systematically search the space of all coefcient signs. Te method for minimization of sidelobe power is further analyzed in the
context of beam efciency. It is shown that this method can be utilized in an approximate and at the same time global design of
pencil beam arrays with maximum beam efciency and constrained DRR. Based on this approach, a method for the design of
pencil beam arrays with minimum DRR and specifed beam efciency is proposed.

1. Introduction

Pencil beam arrays are widely used in wireless communica-
tions [1–15] and wireless power transmission [16–23]. In both
applications, they are utilized to direct the radiated energy into
a specifed spatial region. Terefore, the main concern in a
pencil beam synthesis is shaping its radiation pattern. How-
ever, the implementation aspects of antenna arrays introduce
additional requirements. One of them is low dynamic range
ratio (DRR) of excitation coefcients. A low DRR simplifes
the design of array’s feeding network and enables better
control of mutual coupling between antenna elements.

Many analytical [1–6] and optimization-based methods
[7–14] provide pencil beams with low DRR. Analytical
methods are based on popular windows and polynomials,
for example, Gaussian [2] and ultraspherical [3] windows, as
well as the Chebyshev [4], Gegenbauer [5], and Kaiser-
Hamming [6] polynomials. Te methods in [2–4] provide a

low DRR inherently, whereas [1, 5, 6] incorporate the re-
quirement for low DRR as a design objective.

Optimization-based synthesis allows explicit control of
DRR. Such a synthesis utilizes one of the following approaches:
DRR minimization while other pencil beam parameters are
kept within given requirements [7, 8], or optimization of other
pencil beam parameters while DRR is kept below a predefned
value [9–14].Te optimization-based methods utilize diferent
solving techniques such as alternating direction method of
multipliers [8, 13], genetic algorithms [9], and convex pro-
gramming [7, 10, 11]. Generally, the convex programming is
preferable because it provides global solution. Unfortunately,
incorporating DRR into an optimization problem leads to
nonconvex constraints, making its solving challenging. Re-
cently, efcient methods for coping with this problem have
been proposed in [7, 8, 13] and [14].

Clearly, pencil beams with low sidelobe levels are de-
sirable. Classic example of such a beam is obtained by
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Dolph-Chebyshev method, which provides the narrowest
main lobe for a given maximum sidelobe level. Te Dolph-
Chebyshev synthesis is analytical. However, it can also be
formulated as a second-order cone programming problem
[24]. In such a problem, it is simple to constrain the DRR,
though with the loss of convexity. In [10], a global mini-
mization of the sidelobe level with specifed DRR has been
introduced.Tis work has been extended for sparse arrays in
[11], where some coefcients are allowed zero values.

In wireless power transmission, the goal is to maximize
the amount of energy emitted in the spatial region of interest.
Tis is often evaluated by using the beam efciency, which is
defned as a ratio between the energy emitted in a desired
region and the total radiated energy. For linear arrays, the
optimum in terms of beam efciency is found analytically, via
discrete prolate spheroidal sequences (DPSS) [16]. For planar
arrays, the optimum is also found analytically, as a solution of
the generalized eigenvalue problem [17]. Te synthesis of
pencil beams with high beam efciency may also take into
account other requirements. In [18], a method based on
evolutionary programming is proposed, which yields pencil
beams with high beam efciency and constrained maximum
sidelobe level. Te methods in [20, 21] also consider beam
efciency and the sidelobe constraints, but the solution is
found by using convex programming. In [22], a deterministic
algorithm has been developed to reduce the sidelobe power
pattern for linear arrays having uniform excitation and un-
equal element spacing. Heuristic approach to this problem has
been considered in [23]. Recently, analytical method [5] based
on Gegenbauer polynomials has been proposed, which
maximizes the beam efciency for a given sidelobe level. DRR
constraints in power pattern synthesis have been used in [19].

In this paper, we consider methods for global optimi-
zation of pencil beams with constrained dynamic range ratio
of excitation coefcients. We cover the optimization of
sidelobe level (SLL), sidelobe power (SLP), and beam ef-
ciency (BE). In this context, the paper ofers the following
contributions:

(1) Amethod for global optimization of pencil beamswith
constrained DRR is proposed.Te method is based on
branch and bound optimization framework which we
introduced in [10]. Here, we generalize this framework
for the minimization of sidelobe level and sidelobe
power. In addition, we present a detailed analysis of
the infuence of DRR constraints on the behavior of
optimum array patterns.

(2) Te method for minimization of sidelobe power is
discussed in the context of beam efciency. Nu-
merical evaluation is provided showing that this
method can be utilized in an approximate and at the
same time global design of pencil beam arrays with
maximum beam efciency. Moreover, in a design of
highly-efcient arrays, the approximation error is
negligible.

(3) A method for the design of pencil beam arrays with
minimum dynamic range ratio of excitation coef-
cients and specifed beam efciency is proposed. Te

behavior of optimum arrays is illustrated by exam-
ples, showing that signifcant reduction in DRR is
possible with negligible loss in efciency, when
compared to the arrays with maximum possible
beam efciency.

Te paper is organized as follows. Section 2 describes the
global optimization of sidelobe level and sidelobe power with
constrained dynamic range ratio of excitation coefcients.
Section 3 discusses the behavior of optimum pencil beams in
the context of DRR constraints. Section 4 provides examples
of pencil beams with minimum sidelobe level. Te sidelobe
power as a criterion for maximization of beam efciency is
considered in Section 5. One application of this approach is
described in Section 6, which presents a method for the
design of pencil beam arrays with minimum DRR and
specifed beam efciency. Section 7 concludes the paper.

2. Synthesis of Pencil Beams with
Constrained DRR

2.1. Basic Optimization Problem. Linear array with N iso-
tropic elements uniformly spaced on x axis of the coordinate
system has the far-feld radiation pattern

f(a, θ) � 
N

k�1
ake

j2π/λxksin(θ)
, (1)

where a= [a1, a2, ..., aN]T, a ∈ RN, is the vector of excitation
coefcients of antenna elements placed at the positions xk,
k= 1, 2, ...,N, λ is the wavelength of transmitted signal, and θ
is azimuth direction angle in range −π/2≤ θ≤ π/2. In the
synthesis of pencil beams, the objective is to minimize an
error in the sidelobe region and keep the unity amplitude at
θ= 0. Such a synthesis can be expressed by the optimization
problem

minimize
a

ε a, θS( 

subject to 
N

k�1
ak � 1,

(2)

where ε(a, θs) is sidelobe error and θs is the beginning of the
sidelobe region. In further text, we will frst consider the
problem in (2) and then the defnition of ε(a, θs).

2.2. DRR Constraints. Te problem in (2) does not take into
account the DRR of the excitation coefcients. However, in
many applications, DRR should be kept below a specifed
value, D, as in

max
1≤k≤N

ak


 

min
1≤k≤N

ak


 
≤D. (3)

Te constraint in (3) can be incorporated into the
problem in (2) by using additional inequality constraints and
auxiliary variable t, as in
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minimize
a,t

ε a, θS( 

subject to 
N

k�1
ak � 1

ak


≤Dt, k � 1, 2, . . . , N

ak


≥ t, k � 1, 2, . . . , N

t≥ 0.

(4)

Unfortunately, the constraints |ak|≥ t, k= 1, 2, ..., N are
not convex and the problem in (4) is difcult to solve
globally. However, if the signs of coefcients ak are known in
advance, the problem in (4) can be solved globally [10].
Assuming S+⊆ {1, 2, ...,N} and S− ⊆ {1, 2, ...,N} are the sets of
indexes corresponding to positive and negative coefcients,
the optimization problem can be written in the form

minimize
a,t

ε a, θS( 

subject to 
N

k�1
ak � 1

ak ≤Dt, k ∈ S
+

− ak ≤Dt, k ∈ S
−

ak ≥ t, k ∈ S
+

− ak ≥ t, k ∈ S
−

t≥ 0.

(5)

Te problem in (5) is convex. Moreover, if all coef-
fcients are positive, the problem in (5) solves the problem
in (4) globally. In general case, the signs of the coefcients
are not known in advance. Terefore, to fnd global so-
lution of the problem in (4), one may take an exhaustive
search over 2N possible combinations of signs and solve
the optimization problem in (5) for each of them. Tis
procedure can be accomplished in an acceptable time only
if the number of antenna elements is small. To accomplish
the design of larger arrays, we utilize the branch and
bound method from [10], which globally solves the
problem in (4) while reducing the design time for several
orders of magnitude.

2.3. Global Solving of Optimization Problem. Te proposed
optimization procedure explores a tree that contains all
combinations of the coefcients’ signs. An example of the
tree for N = 4 is shown in Figure 1. At the root, all co-
efcients are considered positive. At the frst branching,
the coefcients as, s = 1, 2, ..., N, are one by one assigned

negative values. Negative values are further assigned at
each branching. Tey are placed at the positions s = r+1,
r + 2, ..., N, where r denotes the position at which negative
value has been assigned previously. Te value r = 0 is
assumed at the root.

Solving the problem in (5) for each node would corre-
spond to an exhaustive search. Instead, we cut several branches
using the following procedure. Let εopt and aopt denote the
optimum sidelobe error value and the corresponding coef-
cients. At the beginning of the optimization procedure, it is
assumed εopt =∞. Ten, the tree is explored by using a depth-
frst algorithm. At each node, two steps are made. First, the
node is tested by solving the optimization problem in (5). If the
problem is feasible, a∗ and ε∗ are obtained as the optimum
solution. If ε∗ < εopt, an update εopt = ε∗ and aopt = a∗ is made.
Second, the branches leaving the node are tested by using the
following optimization problem

%

minimize
a,t

ε a, θS( 

subject to 
N

k�1
ak � 1

ak ≤Dt, k ∈ S
+&k≤ r

ak ≥ t, k ∈ S
+&k≤ r

− ak ≤Dt, k ∈ S
−&k≤ r

− ak ≥ t, k ∈ S
−&k≤ r

ak ≤Dt, k � r + 1, r + 2, ..., N

− ak ≤Dt, k � r + 1, r + 2, ..., N

t≥ 0.

(6)

Te above problem is obtained by relaxing the problem
in (4). As shown in Figure 1, at each node, the signs of the
frst r coefcients are uniquely specifed, whereas N−r co-
efcients remain to be assigned one of 2N−r possibilities. Te

r=1

r=0

r=2 r=3 r=4

r=2 r=3

r=3

r=4

r=4 r=4 r=4

r=4 r=4 r=4

r=3

Figure 1: Example of tree containing all combinations of coef-
cients' signs in array with four elements. Signs which are uniquely
specifed in particular nodes are shown in red, and their count is
denoted by r.
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frst possibility (containing N−r positive signs) has already
been processed in the frst step (the node testing), whereas
2N−r−1 possibilities wait to be explored along the branches
growing from the node. Terefore, upper- and lower-bound
constraints are used in (6) only for coefcients ak, k= 1, 2, ...,
r. Te remaining coefcients are constrained only in their
maximum absolute value, that is, |ak|≤Dt, k= r+1, r+ 2, ...,
N, whereas the corresponding nonconvex constraints |ak|≥ t
are omitted. Clearly, the solution of such an optimization
problem might not satisfy (3). However, if ε∗ > εopt is ob-
tained, there is no possibility to fnd better solution by
further branching- and the node is pruned.

Te sidelobe error does not change if the antenna ele-
ments reverse their order. Terefore, the node testing might
be performed only once for a pair of nodes with symmet-
rically placed coefcient signs (for example, +−++ and
++−+). Te redundant check can be detected easily. Te
node value is expressed in a binary form, assuming− and +
correspond to 0 and 1. Let B and Br denote the binary values
of the original and the reverse ordering of the node being
tested. If B>Br, the node testing is redundant.

2.4. Sidelobe Error. Te error in (2) can be expressed as the
integral of p-powered radiation pattern, calculated in the
sidelobe region, θs≤ |θ|≤ π/2, as in

εp a, θs(  � 4π 

π/2

θs

|f(a, θ)|
p cos(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

1/p

. (7)

By using substitution ω= sin(θ), the error in (7) can be
written in a compact form

εp a, θs(  � 4π 

1

sin θs( )

|f(a,ω)|
p
dω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/p

, (8)

where

f(a,ω) � 
N

k�1
ake

j2π/λxkω. (9)

Te expression in (8) is recognized as the Lp-norm of |f(a,
ω)| calculated on the interval [sin(θs), 1]. In further text, we
consider only the cases p⟶∞ and p= 2, which lead to
sidelobe-level and sidelobe-power minimization.

2.5.MinimizationofSidelobeLevel. For p⟶∞, the error in
(8) represents the L∞-norm, which can also be obtained as

ε∞ a, θs(  � max
sin θS( )≤ω≤ 1

|f(a,ω)|. (10)

Te minimization of ε∞ results in beam patterns which
approximate the sidelobe level in a minimax sense.

Commonly, ε∞(a,θs) is approximated by evaluating |
f(a,ω)| on a fnite grid ωq, q= 1, 2, ..., Q, thus taking the form

ε∞ a, θs(  ≈ max A1a
����

����, A2a
����

����, . . . , AQa
����

���� , (11)

where ||·|| denotes the L2 norm, and

Aq �

cos uqx1  cos uqx2  · · · cos uqxN 

sin uqx1  sin uqx2  · · · sin uqxN 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

uq �
2π
λ
ωq, q � 1, 2, ..., Q. (13)

Te branch and bound method described in Section 2.3
utilizes two optimization problems− one for testing a node
and the other for testing the branches leaving the node.Teir
general forms are given in (5) and (6). Here, they utilize the
error in (11), thus taking the forms

minimize
a,δ,t

δ

subject to 
N

k�1
ak � 1

Aqa
�����

�����≤ δ, q � 1, 2, ..., Q

ak ≤Dt, k ∈ S
+

−ak ≤Dt, k ∈ S
−

ak ≥ t, k ∈ S
+

−ak ≥ t, k ∈ S
−

t≥ 0,

(14)

minimize
a,δ,t

δ

subject to 
N

k�1
ak � 1

Aqa
�����

�����≤ δ, q � 1, 2, ..., Q

ak ≤Dt, k ∈ S
+&k≤ r

ak ≥ t, k ∈ S
+&k≤ r

−ak ≤Dt, k ∈ S
− &k≤ r

−ak ≥ t, k ∈ S
−&k≤ r

ak ≤Dt, k � r + 1, r + 2, ..., N

−ak ≤Dt, k � r + 1, r + 2, ..., N

t≥ 0.

(15)

2.6. Minimization of Sidelobe Power. To form an optimi-
zation problem which minimizes the sidelobe power, we
start from the error in (8), which for p� 2 takes the form

ε2 a, θs(  �

������������������

4π 

1

sin θs( )

|f(a,ω)|
2dω





. (16)

Clearly, the above error represents the square root of SLP
rather than SLP itself. However, the coefcients that
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minimize the SLP can also be obtained by minimizing
ε2(a,θs) because ε2(a,θs)≥ 0 and, consequently,

argmin
a

ε22 a, θs(  � argmin
a

ε2 a, θs( . (17)

Te radicand in (16) can be approximated by using
numerical integration. In such an approximation, the in-
tegration domain [sin(θs), 1] is discretized in a fnite grid, ωq,
q� 1, 2, ...,Q, whereQ is an odd integer.Ten, the Simpson’s
1/3 rule is applied, resulting in

ε 2 a, θs(  ≈

���������������

4π
1 − sin θS( 

3(Q − 1)


Q

q�1




K
2
q f a,ωq 



2

, (18)

where Kq, q� 1, 2, ..., Q, is given by

Kq �

1, for q � 1 and q � Q
�
2

√
, for q � 2k + 1, k � 1, 2, . . . ,

Q − 3
2

2, otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

Te expression (18) can be written in a matrix form, as in

ε 2 a, θs(  ≈

������������

4π
1 − sin θS( 

3(Q − 1)



‖Aa‖, (20)

where

A �

K1 sin u1x1(  K1 sin u1x2(  · · · K1 sin u1xN( 

K1 cos u1x1(  K1 cos u1x2(  · · · K1 cos u1xN( 

K2 sin u2x1(  K2 sin u2x2(  · · · K2 sin u2xN( 

K2 cos u2x1(  K2 cos u2x2(  · · · K2 cos u2xN( 

⋮ ⋮ ⋮
KQ sin uQx1  KQ sin uQx2  · · · KQ sin uQxN 

KQ cos uQx1  KQ cos uQx2  · · · KQ cos uQxN 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

and uq, q= 1, 2, ..., Q, is obtained by using (13).
Te error in (18) is now incorporated into (5) and (6) to

form the branch and bound procedure. Te problem for
node testing is obtained in the form

minimize
a,δ,t

δ,

subject to



N

k�1
ak � 1,

‖Aa‖≤
1

�����������������������
4π 1 − sin θS( ( /(3(Q − 1))

 δ,

ak ≤Dt , k ∈ S
+

−ak ≤Dt , k ∈ S
−
,

ak ≥ t, k ∈ S
+
,

−ak ≥ t, k ∈ S
−
,

t≥ 0.

(22)

Branches leaving the nodes are tested by solving the
problem

minimize
a,δ,t

δ,

subject to



N

k�1
ak � 1,

‖Aa‖≤
1

�����������������������
4π 1 − sin θS( ( /(3(Q − 1))

 δ,

ak ≤Dt , k ∈ S
+&k≤ r,

ak ≥ t, k ∈ S
+&k≤ r,

−ak ≤Dt , k ∈ S
−&k≤ r,

−ak ≥ t, k ∈ S
−&k≤ r,

ak ≤Dt , k � r + 1, r + 2, . . . , N,

−ak ≤Dt , k � r + 1, r + 2, . . . , N,

t≥ 0.

(23)

2.7. Efciency of ProposedMethod. As shown in Section 2.2,
global optimization of pencil beam array with constrained
dynamic range ratio has combinatorial complexity. Design
based on the exhaustive search would require solving of 2N
subproblems given in (5). However, the proposed branch
and bound approach signifcantly reduces the number of
subproblems. Table 1 shows the number of subproblems and
the design time estimated for the exhaustive search, as well as
the number of subproblems and the design time obtained in
the proposed minimization of SLL and SLP. An average
design time of 1ms per subproblem is assumed in the ex-
haustive search. Te minimizations of SLL and SLP have
been performed on a personal computer with quad-core
Intel i7 processor operating at the clock of 3GHz. Clearly,
the exhaustive search is unsuitable for the design of arrays
with more than 20 elements. On the other hand, the pro-
posed approach enables global design of low and medium-
size arrays in a few seconds.

3. Properties of Pencil Beams with
Constrained DRR

Constraining dynamic range ratio of excitation coefcients
reduces design freedom and, consequently, causes the de-
terioration of radiation pattern. However, a small deterio-
ration is acceptable if it is accompanied by a signifcant
improvement in DRR. In further text, we discuss such cases.
Unless otherwise specifed, we consider pencil beam arrays
with half-wavelength element spacing.

Figure 2 shows sidelobe levels and dynamic range ratios of
the arrays with 30 elements obtained by minimization of SLL.
Te comparison is made between the arrays with uncon-
strained DRR [24] and the proposed arrays with DRR con-
strained to D=2. Clearly, constraining DRR increases SLL
more in wider beams. However, the improvement obtained in
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DRR is signifcant. Diferent behavior is encountered for
narrow beams. Te improvement in DRR is somewhat lower,
but it is here obtained with a negligible increase of SLL.

Figure 3 compares the beams obtained via discrete prolate
spheroidal sequences [16], whose DRR is unconstrained, and
the proposed beams with minimum sidelobe power and DRR
constrained to D=2.5. Te former ensure maximum beam
efciency. Terefore, we calculated the efciency of the latter,
as well. As shown in the fgure, the proposed beams exhibit

lower efciency than those obtained in [16]. However, the
decrease does not exceed 1.2%. Tis is acceptable because the
reduction in DRR of up to 10 times has been obtained.

To illustrate how pencil beam pattern is infuenced by DRR
constraints, we designed arrays with 30 elements, beamwidth of
12°, and DRRs constrained to several values between one and
the values achieved in DRR-unconstrained designs. Figure 4
shows the radiation patterns obtained by minimization of SLL.
Clearly, for DRRs which are close to 5.7, the sidelobes exhibit
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Figure 3: (a) Beam efciency and (b) Dynamic range ratio of pencil beam arrays with 30 elements obtained by minimization of SLP and
DRR constrained to D� 2.5, compared to DRR-unconstrained design with maximum beam efciency [16].

Table 1: Number of subproblems, Nsub, and design time, tdesign, estimated for exhaustive search and obtained in proposed minimization of
SLL and SLP for arrays with various numbers of elements, N, DRR constraints, D, and beamwidth of 12°. Number of points Q� 10N and
Q� 10N+ 1 are used in minimization of SLL and SLP.

N D
Exhaustive search SLL minimization SLP minimization

Nsub tdesign Nsub tdesign Nsub tdesign

20
3 1.049e6 17.4 min 20 0.42 s 20 0.31 s
2 1.049e6 17.4 min 20 0.42 s 20 0.39 s
1 1.049e6 17.4 min 112 2.10 s 20 0.28 s

30
3 1.074e9 298 hours 60 2.17 s 30 0.70 s
2 1.074e9 298 hours 142 5.10 s 30 0.71 s
1 1.074e9 298 hours 1595 49.4 s 30 0.74 s

40
3 1.100e12 34.9 years 80 4.53 s 40 1.57 s
2 1.100e12 34.9 years 80 4.58 s 40 1.60 s
1 1.100e12 34.9 years 2104 95.4 s 40 1.24 s
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Figure 2: (a) Sidelobe level and (b) Dynamic range ratio of pencil beam arrays with 30 elements obtained by minimization of SLL and DRR
constrained to D� 2, compared to DRR-unconstrained minimax design [24].
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regular, nearly equiripple behavior. On the other hand, for
DRRs close to one, the sidelobe equality vanishes. For DRR ≥
1.94, all optimum coefcients are positive, whereas for DRR <
1.94, some coefcients take negative values, as well. Te latter
cases also difer in the shape of far-out sidelobes. Figure 5 shows
the distribution of all-positive as well as positive-and-negative
coefcients in optimum arrays with various numbers of ele-
ments and dynamic range ratios. Clearly, the coefcients
containing positive and negative values appear in arrays with
lower DRRs.

Diferent behavior is encountered in Figures 6 and 7, which
show the radiation patterns obtained by minimization of
sidelobe power and the corresponding distribution of coefcient
signs. In all arrays, the coefcients take positive values. Con-
sequently, all beam patterns have similar shapes, with sidelobe
levels which decrease with an increase in DRR.
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Figure 5: Distribution of all-positive (blue) as well as positive-and-
negative (red) coefcients in pencil beam arrays with various
numbers of elements and beamwidth of 12°, obtained by mini-
mization of SLL and constrained DRR. Black curve indicates
maximum DRR, which is achieved in DRR-unconstrained design.
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Figure 6: Radiation patterns of pencil beam arrays with 30 ele-
ments and beamwidth of 12°, obtained by minimization of SLP and
DRR constrained to various values between D� 1 and D� 12.6.
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Figure 7: Distribution of all-positive (blue) as well as positive-and-
negative (red) coefcients in pencil beam arrays with various
numbers of elements and beamwidth of 12°, obtained by mini-
mization of SLP and constrained DRR. Black curve indicates
maximum DRR, which is achieved in DRR-unconstrained design.

Table 2: Properties of proposed pencil beam array with 16 elements
and beamwidth of 10°, compared with array having equiripple
sidelobes and unconstrained DRR [24] and with array having
minimum DRR for given SLL and all positive coefcients [7].
Improvement is highlighted in bold.

Figure of merit [24] [7] Proposed, D� 1.8
Sidelobe level, dB −12.0 −11.3 −11.3
Directivity, dB 11.1 11.6 10.8
Dynamic range ratio 3.6 2.0 1.8

Table 3: Properties of proposed pencil beam array with 30 elements
and beamwidth of 6°, compared with array having equiripple
sidelobes and unconstrained DRR [24], and with array having
minimum DRR for given SLL and all positive coefcients [7].
Improvement is highlighted in bold.

Figure of merit [24] [7] Proposed, D� 2.4
Sidelobe level, dB −14.8 −14.4 −14.4
Directivity, dB 13.6 14.1 13.9
Dynamic range ratio 5.1 3.0 2.4
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Figure 4: Radiation patterns of pencil beam arrays with 30 ele-
ments and beamwidth of 12°, obtained by minimization of SLL and
DRR constrained to various values between D� 1 and D� 5.7.
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4. Examples of Minimax Pencil Beams with
Constrained DRR

Tables 2 and 3 show two examples, comparing the
sidelobe level, directivity, and dynamic range ratio of the
arrays with equiripple sidelobes and unconstrained DRR [24],
the arrays having minimum DRR for specifed SLL and all
positive coefcients [7], and the proposed arrays. As expected,
the arrays in [24] exhibit the lowest SLL and the highest DRR.
ConstrainingDRR in [7] deteriorates SLL only slightly, whereas
the improvement in DRR is high. Further improvement in
DRR is achieved by the proposed arrays. Tis is a consequence
of the presence of positive and negative coefcients, which are
both allowed in the presented design.

Figure 8 shows the radiation patterns of the arrays from
Table 3. As clear from the fgure, equiripple sidelobes are
obtained in DRR-unconstrained design, whereas introduc-
ing constraints causes less regular behavior in the sidelobe
region.

Numerical values of the proposed coefcients are shown
in Tables 4 and 5, for convenience.

5. Optimization of Beam Efficiency

5.1. Sidelobe Power as Criterion for Maximization of Beam
Efciency. Beam efciency is defned as a ratio of the power
radiated in a spatial region of interest and the total radiated
power. In a pencil beam, the efciency is obtained as

BE a, θs(  �
PML a, θs( 

PML a, θs(  + PSL a, θs( 
, (24)

where PML(a,θs) and PSL(a,θs) are powers radiated in the
main lobe and the sidelobe region, respectively. Assuming

argmax
a

BE a, θs(  � argmin
a

1
BE a, θs( 

, (25)
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Figure 8: Radiation patterns of proposed pencil beam array, array
having equiripple sidelobes and unconstrained DRR [24], and array
having minimum DRR for given SLL and all positive coefcients
[7]. All arrays have 30 elements and beamwidth of 6°.

Table 4: Optimum coefcients of proposed array from Table 2.

k ak
1 0.098430
2 0.095558
3 0.098430
4 −0.054683
5 0.093002
6 0.054683
7 0.054683
8 0.054700
9 0.061373
10 0.054683
11 0.054683
12 0.054683
13 0.058629
14 0.058988
15 0.063726
16 0.098430

Table 5: Optimum coefcients of proposed array from Table 3.

k ak
1 0.067332
2 0.063506
3 0.042457
4 −0.028055
5 0.038673
6 0.028055
7 0.028055
8 0.028055
9 0.028055
10 0.044739
11 0.028055
12 0.028055
13 0.036311
14 0.035011
15 0.028055
16 0.037935
17 0.037873
18 0.028055
19 0.039736
20 0.028220
21 0.028055
22 0.028055
23 0.028055
24 0.028055
25 0.028055
26 0.028055
27 0.028055
28 0.028055
29 0.040053
30 0.067332
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the coefcients maximizing BE can be found by solving the
problem

minimize
a

PSL a, θs( 

PML a, θs( 
,

subject to 4π 
N

k�1
a
2
k � 1,

(26)

or

minimize
a

PSL a, θs( 

PML a, θs( 
,

subject to 
N

k�1
ak � 1.

(27)

Teconstraint in (26) keeps the total radiated power equal to
one, whereas its counterpart in (27) keeps the unity amplitude at
θ=0. However, neither of these constraints does infuence the
shape nor the efciency of the optimum beam pattern.

Te constraint in (26) normalizes the total radiated power,
thus ensuring PML(a, θs) +PSL(a, θs) = 1. By using this identity,
the objective function can be written as PSL(a, θs)/(1− PSL(a,
θs)). Clearly, in this function, numerator’s minimizer is equal to
denominator’s maximizer. Terefore, this objective function
takes its minimum at the same point as PSL(a, θs) itself. Te
sidelobe power can be obtained as PSL(a, θs) � ε22(a, θs), with
ε2 defned in (16). By using (17), the coefcients maximizing BE
can be found by solving the problem

minimize
a

ε2 a, θs( ,

subject to 4π 

N

k�1
a
2
k � 1.

(28)

As shown in (20), ε2(a,θs) can be expressed in a convex
form. Unfortunately, the constraint in (28) is not convex and
the problem is difcult to solve globally.

Te constraint in (27) does not force the total radiated
power to unity. Terefore, the above considerations cannot
be applied. However, it is expected that minimization of the
sidelobe power while keeping the unity amplitude at θ= 0
also results in efcient beam patterns. Terefore, we ap-
proximate the problem in (27) by

minimize
a

ε2 a, θs( ,

subject to 
N

k�1
ak � 1.

(29)

Note that this problem is convex. Moreover, it is
equivalent to the problem in (22), with the exception of the
constraints for DRR.

To evaluate the quality of approximation in (29), we
compare the beam efciencies of the patterns obtained by
solving (29) and those obtained analytically, via discrete
prolate spheroidal sequences [16]. Te relative approxima-
tion error is shown in Figure 9 for the arrays with 30 ele-
ments and various θs. It is clear that the proposed
optimization results in a small approximation error.
Moreover, the error becomes negligible in arrays with high
beam efciency.
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Figure 9: Relative approximation error of beam efciency in pencil
beam arrays with 30 elements, obtained by minimization of SLP.
Selected values of obtained beam efciencies, BEs, are added to graph.
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Figure 10: Beam efciency of pencil beam arrays with various
numbers of elements and beamwidth of 12°, obtained by mini-
mization of SLP and constrained DRR. Black curve indicates
maximum DRR, which is achieved in DRR-unconstrained design.

Table 6: Properties of proposed pencil beam arrays with 16 ele-
ments and beamwidth of 20°, compared with array having maxi-
mum efciency and unconstrained DRR [16]. Improvements are
highlighted in bold.

Figure of merit [16] Proposed, D� 4 Proposed, D� 2
Beam efciency, % 99.8 99.6 98.0
Directivity, dB 11.1 11.3 11.8
Dynamic range ratio 7.3 4.0 2.0
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By adding constraints for DRR, the problem in (29) takes
the form of the problem in (22), thus becoming suitable for
the synthesis of efcient beam patterns with constrained
dynamic range ratio of excitation coefcients. Clearly, the

problem in (22) assumes the coefcients’ signs are known in
advance. Tis is convenient because the analysis in Section 3
shows that coefcients take positive values at the optimum,
regardless of DRR. However, if a global solution or global

Table 7: Properties of proposed pencil beam arrays with 30 ele-
ments and beamwidth of 12°, compared with array having maxi-
mum efciency and unconstrained DRR [16]. Improvements are
highlighted in bold.

Figure of merit [16] Proposed, D� 6 Proposed, D� 2.5
Beam efciency, % 99.9 99.8 98.8
Directivity, dB 13.6 13.8 14.3
Dynamic range ratio 13.5 6.0 2.5
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Figure 11: Radiation patterns of proposed pencil beam arrays with
minimum SLP and DRR constrained to D� 6 and D� 2.5, com-
pared to array with maximum efciency [16]. All arrays have 30
elements and beamwidth of 12°.

Table 8: Optimum coefcients of proposed array from Table 6,
obtained for D� 2.

k ak
1 0.040660
2 0.040660
3 0.048548
4 0.059630
5 0.069742
6 0.078117
7 0.081321
8 0.081321
9 0.081321
10 0.081321
11 0.078117
12 0.069742
13 0.059630
14 0.048548
15 0.040660
16 0.040660

Table 9: Optimum coefcients of proposed array from Table 7,
obtained for D� 2.5.

k ak
1 0.018349
2 0.018349
3 0.018349
4 0.021167
5 0.024685
6 0.028199
7 0.031632
8 0.034906
9 0.037948
10 0.040689
11 0.043070
12 0.045038
13 0.045872
14 0.045872
15 0.045872
16 0.045872
17 0.045872
18 0.045872
19 0.045038
20 0.043070
21 0.040689
22 0.037948
23 0.034906
24 0.031632
25 0.028199
26 0.024685
27 0.021167
28 0.018349
29 0.018349
30 0.018349
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Figure 12: Beam efciency of pencil beam arrays with minimum
SLP and constrained DRR, obtained for unequal element spacing
from [22] and for equal element spacing of λ/2. Both arrays have 32
elements and beamwidth of 6°.
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proof is required, the branch and bound search described in
Sections 2.3 and 2.6 can be applied.

5.2. Beam Efciency of Arrays with Minimum Sidelobe Power
and Constrained DRR. Figure 10 shows the beam efciency
of pencil beam arrays with the beamwidth of 12°, obtained by
minimization of sidelobe power and constrained DRR. Black
curve indicates maximum DRR, which is achieved in DRR-
unconstrained design. As clear from the fgure, the increase
in beam efciency is accompanied by an increase in DRR.
Nevertheless, after reaching a certain value, small or even
negligible improvement in efciency is achieved with the
price of high increase in DRR. Apparently, in the design of
highly-efcient pencil beam arrays, constraining the DRR
might pay of.

Tables 6 and 7 show two examples, comparing the beam
efciency and dynamic range ratio of the arrays with
maximum efciency [16] and the proposed arrays with
minimum sidelobe power and constrained DRR. It is clear
from the tables that the proposed arrays ofer high im-
provement in DRR and small loss of efciency.

Figure 11 illustrates the radiation patterns of the arrays
in Table 7. Numerical values of the proposed coefcients

obtained for D� 2 and D� 2.5 are shown in Tables 8 and 9,
for convenience.

5.3. Beam Efciency of Unequally Spaced Arrays. In previous
examples, we considered pencil beam arrays with half-
wavelength element spacing. However, the presented
method also allows the optimization of the arrays with
unequally spaced elements, assuming their positions are
known in advance. In [22], the positions of unequally spaced
elements which minimize the sidelobe power of the arrays
with uniform excitation have been provided. Here, we
employed these positions to optimize the SLP assuming
nonuniform coefcients with constrained DRR.

Figure 12 shows the beam efciency of optimum arrays
with 32 elements and the beamwidth of 6°, obtained for
element spacing from the last column of Table 2 in [22] and
for half-wavelength element spacing. Positive coefcients are
obtained in all cases. As shown in the fgure, higher beam
efciency is obtained for unequal element spacing. Te
improvement is the highest for D= 1 and decreases with an
increase in D. It is expected since the used unequal positions
are optimal for D= 1 and suboptimal for D> 1.

Table 10 shows the optimum coefcients obtained for the
array with unequal element spacing and D� 2, for
convenience.

6. Pencil Beams with Minimum DRR and
Specified Beam Efficiency

In a design at hand, it might be interesting to know the
lowest value to which the DRR can be constrained while still
achieving desired beam efciency, BEdes. As shown in Fig-
ure 10, for a given number of elements, the beam efciency
decreases monotonically with a decrease in DRR. Appar-
ently, the minimum value of DRR is uniquely determined by
BEdes. We found this minimum by using bisection method.

6.1. Synthesis of Pencil Beams with Minimum DRR and
Specifed Beam Efciency. In pencil beam array, the lowest
value of DRR is one. Te highest value of DRR in array that
maximizes beam efciency is achieved by using discrete

Table 10: Optimum coefcients of array with unequal element
spacing obtained for D� 2.

k ak
1 0.017019
2 0.021629
3 0.025969
4 0.029987
5 0.033372
6 0.034037
7 0.032678
8 0.034037
9 0.033545
10 0.034037
11 0.033714
12 0.034037
13 0.033864
14 0.034037
15 0.034000
16 0.034037
17 0.034037
18 0.034000
19 0.034037
20 0.033864
21 0.034037
22 0.033714
23 0.034037
24 0.033545
25 0.034037
26 0.032678
27 0.034037
28 0.033372
29 0.029987
30 0.025969
31 0.021629
32 0.017019

Table 11: Beam efciency and dynamic range ratio of DPSS pencil
beam arrays [16] and proposed arrays with minimum DRR and
BEdes of 99.9%, 99.5%, and 99.0%, together with design time of
proposed arrays, tdesign. Improvements are highlighted in bold.

N BW, deg
DPSS pencil beams

[16] Proposed pencil beams

BEDPSS, % DRRDPSS BEopt, % DRRopt tdesign, s

15 25 99.95 11.37
99.90 6.64 2.1
99.50 3.53 2.0
99.00 2.59 2.0

30 12 99.93 13.54
99.90 7.97 11.6
99.50 3.68 10.9
99.00 2.70 10.7

40 9 99.93 14.67
99.90 8.06 24.9
99.50 3.69 24.8
99.00 2.71 24.8
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prolate spheroidal sequences. We denote this value by
DRRDPSS.

Te search for optimum DRR starts with specifying the
interval of its possible values, which is given by [DRRlow,
DRRhigh] = [1, DRRDPSS]. Te interval’s middle point is then
found as D= (DRRlow +DRRhigh)/2. Using D as DRR con-
straint, a pencil beam synthesis described in Section 2.6 is
performed. Either method can be chosen—the convex op-
timization with all-positive coefcients or the global search
covering all coefcient signs. Te beam efciency of the
obtained pencil beam, BE, is then calculated. If BE<BEdes,
the lower bound of DRR is updated as DRRlow =D. Oth-
erwise, the upper bound is updated as DRRhigh =D. In the
next step, new middle point is found and the procedure is
repeated until the interval [DRRlow, DRRhigh] has been
tightened below specifed tolerance, εtol, what indicates that
D represents the optimum DRR with sufcient accuracy. In
practice, εtol = 1e−3 is appropriate.

A systematic search performing the above procedure is
given by Algorithm 1. Its input parameters are the number of
elements,N, beamwidth, BW, desired beam efciency, BEdes,
and tolerance, εtol. To ensure that BEdes is possible to achieve
with given N and BW, an initial check is performed, which
compares BEdes with its highest as well as with its lowest
possible value, denoted as BEhigh and BElow.

6.2. Examples of Pencil Beams with Minimum DRR and
Specifed Beam Efciency. Table 11 shows the beam ef-
ciency and dynamic range ratio of the arrays from [16] and

the proposed arrays with minimumDRR and specifed beam
efciency. Te efciency of the arrays from [16] exceeds
99.9%, whereas DRR >11. In the proposed design, the ef-
fciency is specifed to somewhat lower values, BEdes, of
99.9%, 99.5%, and 99.0%. As shown in the table, the coef-
fcients obtained have signifcantly lower DRRs, which take
the values down to 2.59.

Te proposed optimization can be performed in a short
time. It is illustrated in the last column of Table 11, which
shows the time required for each design. Te time is ob-
tained by using Algorithm 1 utilizing the global search in
Steps 2 and 8.

7. Conclusion

Method for global optimization of linear pencil beams with
specifed DRR and minimum sidelobe level or minimum
sidelobe power was described. Te analysis of optimum
pencil beams shows that minimization of sidelobe level
results in positive coefcients if higher values of DRR are
allowed, whereas positive and negative coefcients are ob-
tained for lower values of DRR. Diferent behavior is ob-
tained in minimization of sidelobe power, where optimum
coefcients are all positive.

Te proposed method for minimization of sidelobe
power can be utilized in approximate and at the same time
global design of pencil beam arrays with maximum beam
efciency. In such a design, all coefcients can be assumed
positive, which leads to convex optimization. However, if the

(1) specify N, BW, BEdes, and εtol
(2) for specifed N and BW calculate

coefcients aDPSS of DPSS array
coefcients a1 by using method in Section 2.6 with D� 1

(3) calculate
BEhigh as beam efciency of array with coefcients aDPSS
BElow as beam efciency of array with coefcients a1

(4) if BEdes>BEhigh then
error: BEdes is too large for given N and BW

end if
(5) if BEdes<BElow then

error: BEdes is too small for given N and BW
end if

(6) calculate DRRhigh as dynamic range ratio of aDPSS
(7) set DRRlow � 1 // dynamic range ratio of a1
(8) while (DRRhigh −DRRlow)> εtoldo

calculate D� (DRRlow+DRRhigh)/2
calculate coefcients a by using method in Section 2.6
calculate BE as beam efciency of array with coefcients a
if BE<BEdesthen
DRRlow �D

else
DRRhigh �D

end if
end while

(9) set aopt � a, DRRopt �D, and BEopt �BE
(10) return aopt, DRRopt, and BEopt

ALGORITHM 1: Search for pencil beam array with minimum DRR and specifed beam efciency.
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global solution or global proof is required, the branch and
bound search can be applied.

Te minimization of sidelobe power was utilized in a
design of pencil beam arrays with minimum DRR and
specifed beam efciency. In comparison with the arrays
having maximum efciency, the proposed arrays exhibit
signifcantly lower DRRs and negligible loss of
efciency.
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