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*e traditional algorithm performing direction of arrival (DOA) estimation under the background of strong interference and
colored noise has the problems of low estimation accuracy and small measurement targets. Based on the construction of a fourth-
order cumulant (FOC) matrix to suppress colored noise, this paper adopts the extended noise subspace (ENS) algorithm and the
fixed projection blocking (FPB) algorithm to estimate the DOA of weak targets. Firstly, a FOCmatrix of the received signal vector
is established to curb the noise component, and the eigenvalue decomposition is performed. *en, two approaches of weak signal
DOA estimation are proposed. One approach is to merge the space where the strong interference steering vector lies into the noise
subspace to construct an extended noise subspace, and then, the multisignal classification (MUSIC) algorithm is used to obtain the
DOA estimation of the weak signal on the basis of the extended noise subspace. Another approach is to build the orthogonal
projection matrix of the interference subspace as the interference blocking matrix, and the receiving array signal is preprocessed,
and on the basis of it, the eigen decomposition is performed again to obtain the DOA information of the weak signal. Both
algorithms make breakthroughs in the aperture limitation of the traditional algorithm, effectively expand the aperture, and
promote the accuracy of estimation. *e simulation tests the effectiveness of the proposed method.

1. Introduction

With the increasing intricacy of the electromagnetic envi-
ronment, radar detection is interference by more and more
electromagnetic, making it increasingly difficult for radar to
detect targets [1, 2]. Strong electromagnetic interference will
cover up the target’s echo signal or overload the signal
processor and receiver [3, 4]. When the power of the in-
terference signal is greater than that of the echo signal, the
received data is directly used in the estimation of the di-
rection of arrival, and the false peak resulting from strong
interference will be regarded as the peak of the source, which
will give birth to the misinterpretation of the correct angle
[5, 6]. Firstly, at present, one method to address this problem
is signal separation, mainly including the Relaxation (Relax)
algorithm [7] and the CLEAN algorithm [8]. *is type of
algorithm separates the output part of the array of all signals
into multiple data blocks and then determines and removes

the data blocks containing the interference signals according
to the characteristics of the interference signal so as to
achieve target recognition. However, this type of algorithm is
extremely complex. Secondly, the jamming jam method
(JJM) was proposed by Fang et al. and its extended appli-
cation [9, 10]. *e core concept is to use the angle infor-
mation of the signal receiving matrix to establish an
interference blocking matrix to eliminate the interference
signal part of the received signal covariance matrix. How-
ever, the algorithm requires a precise prediction of the di-
rection of interference. In addition, there is an Extended
Noise Subspace algorithm [11]. *e algorithm first con-
structs an extended noise subspace for strong interferences
and noises, and then performs conventional DOA estima-
tion. Dong et al. [12] deduced an interference blocking
method based on modified projection. *e interference
direction is not a necessity in this approach, and it is of more
practical use.
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However, the abovementioned strong interference re-
jection algorithms are characterized by low estimation ac-
curacy and small measurement targets in the direction
finding under the background of nonideal colored noise.
According to related literature, the calculation of high-order
cumulants is blind Gaussian which can achieve aperture
expansion and provides a powerful tool in response to
Gaussian colored noise. Literature [13, 14] accordingly
proposed a variety of FOC-based algorithms, which have
better angle estimation performance under Gaussian colored
noise conditions. Nonetheless, there are still some problems
in terms of angular resolution and complexity. Tufail and
Ahmed [15] used the FOC and ESPRITalgorithm to propose
DOA estimation based on the genetic algorithm (GA) and
obtained the multiple invariant cumulant ESPRITalgorithm,
which has a better angular resolution, but the problem of
excessive complexity remains unsolved. Literature [16] used
the real-valued sparse Bayesian learning method to trans-
form the FOC matrix into a real-valued matrix and simplify
the algorithm through unitary transformation. *e above-
mentioned FOC algorithm has made certain progress in the
field of array signal processing, but the research on the
background of strong interference is scarce.

To tackle the above problems, this paper puts forward the
fourth-order cumulant-expanded noise subspace (FOC-
ENS) algorithm and the fourth-order cumulant-fixed pro-
jection blocking (FOC-FPB) algorithm. One is to use the
FOC matrix to substitute for the traditional covariance
matrix. After eigenvalue decomposition, the space of the
strong interference steering vector is incorporated into the
noise subspace, and thus, the extended noise subspace is
constructed. And the conventionalMUSIC algorithm is used
to obtain the DOA estimation of the weak signal on the basis
of the extended noise subspace. *e other method is to
construct the orthogonal projection matrix of the strong
interference signal subspace as the interference blocking
matrix, and the received array signal is preprocessed. And
the eigenvalue decomposition is performed again to obtain
the noise subspace. Eventually, the MUSIC algorithm is used
to search for spectral peaks to obtain the azimuth angle of the
weak signal. Compared with traditional algorithms, this
algorithm enjoys higher estimation accuracy under a variety
of conditions.

2. Signal Model and FOC Vector Formulation

2.1. Signal Model. Assuming that K far-field narrowband
signals and J strong interference signals Si(t)(i � 1, 2, . . . , J,

. . . , K + J) are incident on a uniform linear array, the in-
cident angle is θi, and if the first J is a strong interference
signal, their power satisfies σ21 > σ22 > · · · > σ2J≫ σ2J+1 > · · · >
σ2K+J. *e distance d of the array elements is half of the signal
wavelength. *e array is composed of M array elements,
each of which is omnidirectional. *e received signal of the
m-th array element of the array at time t can be expressed as

xm(t) � 

K+J

i�1
si(t)exp j(m − 1)πsin θi(   + nm(t), (1)

where nm(t) is the Gaussian colored noise of the m-th el-
ement at time t and si(t) is the complex envelope of the i-th
source.

Assuming that the plane wave propagates along a
straight line, the array response vector corresponding to the
direction can be expressed as

a θi(  � 1, exp −jπsinθi( , . . . , exp −jπ(M − 1)sinθi(  
T
,

(2)

among which, (·) T represents the transpose of the matrix.
*e direction matrix is defined as

A(θ) � a θ1( , a θ2( , . . . , a θJ , . . . , a θK+J  . (3)

*is matrix is a M × (K + J) dimensional direction
matrix.

*e vector output of the array element is expressed as

X(t) � A(θ)S(t) + N(t). (4)

In the above formula, S(t) is the (K + J) × 1 dimensional
signal vector and N(t) is the M × 1 dimensional Gaussian
colored noise vector.

2.2. Observation Model Based on FOC Vector. Compared
with the second-order cumulant, the high-order cumulant
can better characterize the signal characteristics and has the
blind Gaussian property.*erefore, in the actual array signal
processing, the fourth-order cumulant is frequently used for
processing.

Regarding a uniform linear array, according to the
symmetric definition of the FOC of the zero-mean stable
random process, the FOC of the array received data is
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(5)

In the above formula, (·)∗ represents conjugate and
cum() represents cumulant.

According to literature [13], it is easy to get

Cx � E X⊗X∗(  X⊗X∗( 
H

 −

E X⊗X∗(  E X⊗X∗( 
H

  − .

E (XX)
H

 ⊗E XXH
 

∗
 

(6)

In the above formula, ⊗ represents the Kronecker
product.

Substituting the signal vector into the above formula can
obtain the FOC matrix of the signal as follows:

Cs � E S⊗ S∗(  S⊗ S∗( 
H

 

− E S⊗ S∗(  E S⊗ S∗( 
H

 

− E (SS)
H

 ⊗E SSH 
∗

 ,

(7)
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where the signal FOC matrix Cs is a K2 × K2 complex
matrix, and its (i + 1)K + j row and (k − 1)K + l column
elements can be expressed as

cum si, sj, s
∗
k , s
∗
l ,∀i, j, k, l ∈ 1, 2, . . . ,K{ }. (8)

With respect to an independent signal source, according
to the nature of the higher-order cumulant, the elements in
the FOC Cs of the signal are not zero if and only if
i � j � k � l, and all other elements are zero, namely,

Cs � cum si, sj, s
∗
k , s
∗
l 
≠ 0, i � j � k � l,

� 0, otherwise .
 (9)

Hence, there are onlyK nonzero elements inCs, and they
are situated at position (k − 1)K + k(k � 1, 2, . . . , K) on the
diagonal of Cs. Now, the rows and columns are deleted with
all zero elements in Cs; Cs is reduced from the K2 × K2

dimensional matrix to the K × K dimensional diagonal
matrix. *en, the simplified signal FOC matrix can be
expressed as

Cs � diag c1, c2, . . . , ck( . (10)

In the above formula, ck � cum(sk, sk, s∗k , s∗k ).
It can also be obtained that the FOC matrix of noise is

Cn � E N⊗N∗(  N⊗N∗( 
H

 

− E N⊗N∗  · E N⊗N∗( 
H

 

− E N · NH
 ⊗E N · NH

 
∗

 .

(11)

In addition, the array steering vector after array ex-
pansion according to the FOC defined above is

b(θ) � a(θ) ⊗ a∗(θ). (12)

*e expanded direction matrix is

B(θ) � b θ1(  b θ2(  · · · b θk(  

� a θ1( ⊗ a∗ θ1( a θ2( ⊗ a∗ θ2(  · · · a θK( ⊗ a∗ θK(  .

(13)

If each signal source is completely independent, the
following formula holds [17]:

Cx � B(θ)CsB
H

(θ) + Cn . (14)

Assuming that the noise is Gaussian noise, whether it is
white noise or colored noise with unknown spectral char-
acteristics, the theoretical definition by the above formulaCn

should always be a zero matrix. Due to noise deviation from
Gaussian or finite data length calculation accuracy, Cn is a
matrix approaching 0.

3. DOA Estimation Based on FOC Vector

Eigenvalue decomposition is performed on Cx, and its ei-
genvalues are arranged from large to small as λ1, λ2, . . . , λM2 ,
and the corresponding eigenvector is e1, e2, . . . , eM2 , where
the eigenvectors corresponding to the J large eigenvalues of

the matrix Cx are transformed into a fourth-order strong
interference signal subspace [18–20]:

EJ � e1, e2, . . . , eJ . (15)

*e eigenvectors corresponding to the K larger eigen-
values are transformed into a fourth-order signal subspace:

Es � eJ+1, eJ+2, . . . , eJ+K . (16)

*e eigenvectors corresponding to the other M2 − K − J

small eigenvalues are transformed into a fourth-order noise
subspace:

EN � eJ+K+1, eJ+K+2, . . . , eM2 . (17)

3.1. Expanded Noise Subspace DOA Estimation. Taking the
MUISC algorithm as an example, the spatial spectrum value
of a certain angle is the reciprocal of the projection modulus
of the steering vector in direction to the projection space,
that is, the noise subspace [21–23].*e peak value represents
that the steering vector at this angle projected in the noise
subspace is smaller than its surrounding angle.*e direction
steering vector is merged into the noise subspace to form an
expanded noise subspace [24]. When the expanded noise
subspace is used for spectrum estimation, there must be no
peak in this direction, and the steering vector of the weak
signal will be in the expanded noise subspace.*e projection
of the steering vector of the weak signal on the extended
noise subspace is a small nonzero value, and its reciprocal
will generate a larger peak so that strong interference can be
curbed, and the DOA of a weak signal can be estimated [11].

Accordingly, the feature vector of the interference signal
can be incorporated into the noise subspace to form an
extended noise subspace, namely,

EJN � e1, e2, . . . , eJ, eJ+K+1, . . . , eM2 . (18)

Based on the interference-noise subspace, since the weak
signal steering vector and the interference signal steering
vector are often not orthogonal, in order to ensure the
correct formation of the weak signal peak, the steering vector
is transformed as follows:

c(θ) � I − EJE
H
J b(θ), (19)

where b(θ) is the steering vector after the expansion of the
FOC.

*e conventional MUSIC method is adopted to search
for spectral peaks and estimate the DOA of the weak signal:

P1(θ) �
cH(θ)c(θ)

cH(θ)EJNE
H
JNc(θ)

. (20)

In the above formula, since the total signal subspace is
orthogonal to the noise subspace, there is EH

J EN � 0. If θi is
the incident angle of the weak signal, then

EN I − EJE
H
J a θi(  � ENa θi(  − 0 � 0. (21)
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So the weak signal steering vector is orthogonal to the
interference-noise subspace after transformation by equa-
tion (20).

Finally, the angle corresponding to the maximum point
obtained through the spatial spectrum is the incident di-
rection of the weak signal.

According to the above analysis, the FOC-ENS algo-
rithm is summarized, as shown in Table 1.

3.2. Modified Projection Blocking Method DOA Estimation.
After the division of the strong interference signal subspace,
signal subspace, and noise subspace according (after for-
mulas (15)–(17)) to the subspace theory, a modified pro-
jection blocking matrix G orthogonal to the strong
interference signal subspace is established [12] as follows:

G � I − EJ EH
J EJ 

− 1
EJ. (22)

*e global subspace is performed to get

D � GE � G EJ,ES,EN  � 0J,DK+1,DK+2, . . .DM2 . (23)

*at is, the matrix D after the modified projection
blocking transformation is merely related to the weak signal
and noise and has nothing to do with the interference,
achieving the suppression of the strong interference.
*erefore, in order to avoid interference, the transformed
data vector should be

Y � GCx. (24)

*e data covariance matrix after modified projection
transformation is

RY � GERsE
HGH

+ σ2GGH
. (25)

After the modified projection transformation, the strong
interference is blocked, thereby eliminating the influence of the
strong interference on the weak signal. *en, eigenvalue de-
composition is performed on the receiving matrix again to
obtain a new signal subspace ES

′ and noise subspace EN
′. At this

time, ES
′ is only correlated with the weak signal, EN

′ orthogonal
to the steering vector in the direction of the weak signal, and the
spatial spectrum function is used as follows [25–27]:

P2(θ) �
1

bH(θ)EN
′EN
′Hb(θ)

. (26)

Finally, the azimuth angle of the weak signal can be
estimated with the help of the spectral peak search.

According to the above analysis, the algorithm of this
paper is summarized, as depicted in Table 2.

4. Simulation Results and Analysis

Suppose the signal-to-noise ratio of the signal is defined as
10log10(σ2k/σ

2
n), the interference-to-signal ratio is defined as

10log10(σ2j /σ
2
k), and the interference-to-noise ratio is defined

as 10log10(σ2j /σ
2
n). Among them, σ2k is the power of the k-th

signal, σ2j is the power of the strong interference signal, and
σ2n is the noise power.

*e root mean square error (RMSE) is

RMSE �

������������������

1
KN



N

i�1


K

k�1
θi − θik



2

 




. (27)

Among them, N is the number of Monte-Carlo exper-
iments, K is the number of weak signals, and θi and θik are
the true value and estimated value of the azimuth angle of
the i-th signal in the k-th experiment.

4.1. Spatial Spectrum Estimation. Experiment 1 sets the
incident angles of 3 target signals at −30°, 0°, and 30°, re-
spectively; the incident angles of 2 strong interference signals
are −60° and 60°; the number of array elements is 10; the
signal-to-noise ratio (SNR) is 10 dB; the signal-to-interfer-
ence ratio (SIR) is 30 dB; the number of snapshots is 200.*e
advantages of the proposed algorithm in DOA estimation
accuracy are analyzed. Figure 1 illuminates the spatial
spectrum curves of the conventional FOC-MUSIC algo-
rithm, JJM algorithm, FOC-ENS algorithm, and FOC-FPB
algorithm.

Figure 1 illustrates that the conventional FOC-MUSIC
algorithm is inclined to regard the false peak formed by the
strong interference signal as the peak of the real target, thus
failing to estimate the arrival angle of the target. Although
the JJM algorithm can suppress strong interference signals, it
has a mediocre effect on the estimation of the target’s arrival
angle, and it requires precise prediction of the direction of
the strong interference signal. *e FOC-ENS algorithm can
better estimate the direction of arrival of the target. How-
ever, the direction of strong interference will exist during the
estimation of small spikes, which will affect DOA estimation
under certain conditions. *e FOC-FPB algorithm can
determine the target wave arrival angle best.

4.2. Comparative Analysis of Errors of Different Algorithms.
Experiment 2 sets the number of array elements at 10, the
SIR is 30 dB, and the number of Monte Carlo experiments is
500. *e errors of different algorithms in the Monte Carlo
simulation experiment are also analyzed. Figure 2(a) illu-
minates that under the condition of SNR� 10 dB, the
number of snapshots varies from 50 to 500 in step of 50 and
the variation curves of the RMSE of the JJM algorithm, ENS
algorithm, FPB algorithm, FOC-ENS algorithm, and FOC-
FPB algorithm with the number of snapshots. Figure 2(b)
shows the curve of the RMSE of the five algorithms changing
from −10 dB to 10 dB in step of 2 dB under the condition of
200 snapshots.

It can be inferred from Figure 2 that the RMSE of these
methods dwindles as the SNR and the number of snapshots
grow. In a composite background, when the number of
snapshots and the SNR climb to a certain extent, the RMSE
of several algorithms tends to be stable. Due to the sup-
pression of spatial colored noise, the FOC-ENS algorithm
and the FOC-FPB algorithm are better than other algorithms
in low SNR.
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4.3. Comparative Analysis of Errors under Different Numbers
of Interference Sources. Experiment 3 sets the number of
array elements at 10, the SIR is 30 dB, the number of
snapshots is 200, and the number of Monte Carlo experi-
ments is 500. *e RMSE of the proposed algorithm under
different numbers of interference sources is analyzed.
Figure 3(a) shows the SNR of the FOC-ENS algorithm from
−10 dB to 10 dB in step of 2 dB and the curves of the RMSE
with the SNR under the different numbers of interference
sources. Figure 3(b) depicts the FOC-FPB algorithm SNR
changes from −10 dB to 10 dB in step of 2 dB, reflecting the
variation curves of the RMSE with the SNR under the
different numbers of interference sources.

As presented in Figure 3, the two algorithms can sup-
press interference and accurately estimate weak signals in a
composite background. It effectively addresses the defect
that the traditional algorithm cannot accurately estimate the
weak signal under the background of strong interference and
colored noise. As the number of interference sources in-
creases, the direction finding performance of the proposed

algorithm is slightly worse. *e reason for the poor per-
formance may be that the increase in the number of in-
terferences gives rise to the leakage of the interference
subspace, which affects the noise subspace.

4.4. Comparative Analysis of Errors under Different Noise
Backgrounds. Experiment 4 sets the number of array ele-
ments at 10, the SIR is 30 dB, the number of snapshots is 200,
and the number of Monte Carlo experiments is 500. *e
RMSE under different noise backgrounds is analyzed.
Figure 4(a) shows the SNR of the FOC-ENS algorithm from
−10 dB to 10 dB in step of 2 dB and the curves of the RMSE
versus SNR under the two noise backgrounds. Figure 4(b)
illuminates the FOC-FPB algorithm SNR changes from
−10 dB to 10 dB in step of 2 dB, providing the curves of the
RMSE with the SNR under different backgrounds.

Due to the unique blind Gaussian type of the FOC, the
performance of this method under colored noise is similar to
that under white noise.

Table 1: FOC-ENS algorithm basic steps.

FOC-ENS algorithm
Step 1: estimate the data covariance matrix R of the array from the output vector X(t) of the array element
Step 2: perform eigen decomposition on the covariance matrix Cx and arrange the eigenvalues in descending order so as to obtain
interference subspace EJ, signal subspace Es, and noise subspace EN

Step 3: take a set of orthogonal bases EJ determined by interference in the total signal subspace and merge it into the noise subspace EN to
form the interference-noise subspace EJN

Step 4: based on the interference-noise subspace EJN, perform a spectral peak search on P1(θ) to estimate the DOA of the weak signal

Table 2: FOC-FPB algorithm basic steps.

FOC-FPB algorithm
Step 1 and Step 2 are the same as the FOC-ENS algorithm
Step 3: construct a modified projection matrix G orthogonal to the interference steering vector
Step 4: preprocess the received data vector to get Y
Step 5: similarly duplicate Step 2 to do the second eigenvalue decomposition to get the noise subspace EN

′
Step 6: perform a spectral peak search on P2(θ) and estimate the DOA of the weak signal
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Figure 1: Comparison of spatial spectrum curves.
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4.5. Algorithm Aperture Expansion Effect. Experiment 5
analyses themultitarget direction finding performance of the
proposed algorithm. Figure 5(a) shows the simulation of the
FOC-ENS algorithm. It sets the incidence angle of 12 target
signals to be uniformly distributed from −50° to 60°, and the
incidence angle of 2 strong interference signals to be 70° and
80°, and other settings are the same as in Section 4.1.
Figure 5(b) is the FOC-FPB simulation. It sets the incident

angle of 11 target signals to be uniformly distributed from
−40° to 60°, and the incident angle of 2 strong interference
signals to be −60° and −50°.

Owing to the aperture expansion characteristics of the
FOC algorithm, the combined ENS algorithm and the FPB
algorithm do not experience aperture loss, and the two
improved algorithms perform well in multiobjective
situations.
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4.6. Time Complexity Analysis. Supposing that the number
of sampling points is N, and the number of angle searches is
Nθ. *e calculation amount of FOC-ENS and FOC-FPB
algorithms mentioned in this paper is mainly the con-
struction of the cumulant matrix, eigenvalue decomposition,
and spectral peak search. *e calculation amount is
O(9NM4 + M6 + NθM

4) and O(9NM4 + 2M6 + NθM
4),

respectively. Compared with the JJM and ENS algorithms
with complexity O(NM4 + M6 + NθM

4) and the FPB al-
gorithm with complexity O(NM4 + 2M6 + NθM

4), the
complexity is slightly higher.

Firstly, the calculation time of the two improved algo-
rithms is simulated, and the number of target signals and the
number of interference sources are set. K represents the

number of target, and J represents the number of inter-
ference sources. Figures 6(a) and 6(b) show the simulation
time comparison of FOC-ENS and FOC-FPB algorithms at
different target numbers and interference sources, respec-
tively. *en, K� 8 and J� 2 are set, and they are compared
with traditional algorithms. Figure 6(c) shows the simulation
time comparison of different algorithms.

It can be seen from Figure 6 that the FOC-ENS and FOC-
FPB algorithms construct FOCmatrix, so the calculation time
is slightly longer than that of the JJM, ENS, and FPB algo-
rithms. FOC-ENS algorithm simulation time is shorter than
the FOC-FPB algorithm in that the FOC-FPB algorithm has
one more feature decomposition than the FOC-ENS algo-
rithm, which enhances the complexity to a certain extent.

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

FOC-ENS with colored noise
FOC-ENS with white noise

RM
SE

 (d
eg

re
e)

10-2

10-1

100

101

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

RM
SE

 (d
eg

re
e)

10-2

10-1

100

101

FOC-FPB with colored noise
FOC-FPB with white noise

(b)

Figure 4: *e statistical performance of different noise background algorithms varying with SNR. (a) FOC-ENS algorithm. (b) FOC-FPB
algorithm.

-60
-40

-30

-20

-10

0

10

20

30

40

50

60

-40 -20 0 20 40 60 80
DOA (degree)

sp
ec

tr
um

 (d
B)

(a)

60

40

20

0

-20

-40

-60
-60 -40 -20 0 20 40 60 80

DOA (degree)

sp
ec

tr
um

 (d
B)

(b)

Figure 5: Multitarget direction [1] finding effect. (a) FOC-ENS algorithm. (b) FOC-FPB algorithm.

International Journal of Antennas and Propagation 7



5. Conclusion

To address the direction finding problem under the com-
pound background of strong interference and colored noise,
this paper proposes two algorithms based on FOC. Both
algorithms need to construct a FOC matrix by receiving
signal vectors to suppress noise components and then
perform eigenvalue decomposition on the matrix and divide
the subspace in accordance with the eigenvalues. *e FOC-
ENS algorithm merges the space where the strong inter-
ference steering vector is located into the noise subspace to
construct an extended noise subspace for spectral peak
search. *e FOC-FPB algorithm constructs the orthogonal
projection matrix of the strong interference signal subspace
as the interference blocking matrix, uses the matrix to pre-
transform the global subspace, and then eigen decomposes

again to obtain the target DOA. Compared with the tra-
ditional algorithm, the algorithm proposed in this paper has
a smaller RMSE, and there is no array aperture loss. It
functions in a complex and volatile electromagnetic
environment.
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Figure 6: Comparison of simulation time. (a) Number of different targets. (b) Number of different interference sources. (c) Different
algorithms.
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