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0e rapid development of the sensor equipment has promoted the rapid growth of the Internet of 0ings (IoT). 0e IoT has been
widely employed in the multidimensional signal processing and gradually formed the IoT networks. Mobile communication
promotes the wide application of the IoT networks. In this study, the transmit antenna selection (TAS) scheme is employed to
investigate the average symbol error probability (ASEP) performance of mobile IoT networks over the 2-Rayleigh channels. We
first employ moment-generating function (MGF) approach to derive the exact ASEP expressions. We also investigate the outage
probability (OP) performance and derive OP expressions. Employing the deep neural network (DNN), an OP intelligent
prediction algorithm is proposed. 0en, the numerical simulations are conducted to confirm the ASEP and OP performance
analysis. 0e effect of different channel parameters is also analyzed. Compared with Nakagami and Rayleigh channel models, the
2-Rayleigh model has 83.6% and 59.1% increase in ASEP values, respectively. Compared with ELM and RBF models, the DNN
model has 31.7% and 22.5% increase in OP prediction accuracy, respectively.

1. Introduction

In recent years, the information society is facing the
transformation from information age to intelligent age.
Sensor industry is developing towards the direction of in-
telligence, low power consumption, and high precision. 0e
intelligent sensor industry plays an important supporting
role in the development of the Internet of 0ings (IoT) and
gradually forms the IoT networks [1–3]. With the extensive
application of mobile communication, the IoT networks are
widely used in transportation, agriculture, and
manufacturing [4, 5]. 0e perspectives and challenges of
physical Internet employed in the IoT networks were in-
vestigated in [6]. Due to IoT device mobility, the IoT net-
works are facing many challenges. A new secure user
authenticated scheme was employed in the IoTenvironment
to establish a secure transmission process [7]. In the
transmission of the biomedical information, smartphone
was employed to power the electrochemical biosensing
dongle in the IoT networks [8].

Multiple-input multiple-output (MIMO) is an impor-
tant method to obtain the high data-rate in mobile IoT
networks [9]. To improve the system throughput, a Kalman
filtering combining scheme was employed in the MIMO
system [10]. To improve the power efficiency, the robust
beamforming was designed in magnetic MIMO systems
[11]. In [12], a deep neural network-based linear precoding
method was proposed for multiuser MIMO systems, which
can achieve a higher downlink rate. With sparse channels, a
low complexity parameter estimation method was proposed
for MIMO big data communication system [13]. In [14], the
authors considered covert MIMO communications and
investigated the covert capacity with variational distance
constraint. 0e sparse Bayesian learning method was used to
realize the channel estimation in industrial IoT networks
[15].

Transmit antenna selection (TAS) has been widely used
in the MIMO system to reduce complexity [16, 17]. With
deep neural network, the data-driven prediction method was
employed to achieve the TAS in the MIMO system [18]. In
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[19], the exact average symbol error probability (ASEP) and
outage probability (OP) expressions for underwater MIMO
system with TAS were derived. 0e TAS was employed to
improve the ASEP performance of underlay spectrum-
sharing MIMO system in [20]. In [21], using the moment-
generating function (MGF) method, the TAS scheme was
employed to derive the error rate expressions for space-time
line code system.

However, the TAS performance of the IoTnetworks over
the 2-Rayleigh channels is very difficult. Motivated by the
above discussion, employing TAS and SC schemes, the ASEP
and OP performance of the mobile IoT networks is inves-
tigated. 0e main contributions are as follows:

(1) 0eMGF approach was employed to derive the exact
ASEP expressions with TAS, which are used to in-
vestigate the ASEP performance of different mod-
ulation methods.

(2) Employing the CDF-based approach, the OP ex-
pressions are also derived. 0e derived OP results of
the 2-Rayleigh model are more complicated than
those of Nakagami and Rayleigh channel models.
However, they have a high computational
complexity.

(3) Employing the deep neural network (DNN), an OP
intelligent prediction algorithm is proposed in this
study. 0e prediction algorithm can achieve rapid
analysis of OP performance.

(4) 0rough different conditions, the effect of different
channel parameters is analyzed. Compared with
Nakagami and Rayleigh channel models, the 2-
Rayleigh model has 83.6% and 59.1% increase in
ASEP values. Compared with ELM and RBF models,
the DNNmodel has 31.7% and 22.5% increase in OP
prediction accuracy, respectively.

Table 1 shows the notations.

2. The Mobile IoT Networks

In the mobile IoT networks, it has a mobile source (S) and
mobile destination (D). 0ere are K antennas at S and L
antennas at D. Es is the transmit power. Figure 1 shows the
system model.

Firstly, Si transmits the signal. 0e received SNR of Dj is
given as

cij � hij




2 Es

N0
, i � 1, . . . , K, j � 1, . . . , L, (1)

where hij is the channel gain, which follows the 2-Rayleigh
model and N0 is the noise power.

0e average SNR is given as
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where W is the power attenuation factor.
Karagiannidis et al. [22] give the CDF and PDF of cij as
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D employs the SC combiner, which can select the best
cij. 0e output SNR ci is

ci � max ci1, ci2, . . . , ciL( . (4)

To derive the ASEP and OP results, it needs to obtain the
CDF and PDF of ci. 0e CDF of ci � max(ci1, ci2, . . . , ciL) is
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With the derivative of (5), it can obtain the PDF of ci
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S employs the TAS scheme. For K antennas at S, the g is
selected as

g � argmax ci( , 1≤ i≤K. (7)

Redha [23] gives the PDF of cg

fcg
(r) � K FSC(r) 

K− 1
fSC(r). (8)

So, it can obtain the MGF of cg [21]:

Table 1: Notations.

Notations Designation
PDF Probability density function
MSE Mean square error
SC Selection combining
CDF Cumulative density functions
SNR Signal-to-noise ratio
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3. The ASEP and OP Performance

Yilmaz and Kucur [24] give the ASEP of q-ary PSK:
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0e OP is
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where rth is a given threshold.
Employing (3) and (4), it can obtain the OP as
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4. OP Prediction Algorithm

However, (14) has a high computational complexity. In
order to realize real-time analysis of OP performance, we
propose an OP prediction method based on DNN.

From (13), K, L, rth, andW constitute the DNN input X.
0e DNN output y is Pout.

0e DNN structure is shown in Figure 2. It has six layers,
which are input layer, two hidden layers, ReLU layer, sig-
moid layer, and output layer, respectively.

For the input layer, it has four characteristics. 0en, it
uses full connection to connect with two hidden layers. 0e
hidden layers have 512 and 1024 neurons, respectively.
Meanwhile, we use ReLU and Sigmoid functions after
hidden layer 1 and hidden layer 2, respectively. To make
regression prediction, Sigmoid function is employed to fi-
nally predict the output.

MSE is widely used as an evaluation criterion in deep
learning. So, we also employ the MSE to evaluate the OP
prediction effect. MSE is given as [16, 17]

MSE �


S
i�1 ti − yi( 

2

S
, (14)

where ti is the predicted output and S is the number of the
testing date.

5. Simulation Analysis

Figures 3 and 4 present the impact of W on the ASEP andOP
performance, respectively.0e parameters are in Table 2.We
can obtain that the ASEP andOP performance is degraded as
W increases. For example, when SNR� 16 dB, the W values
are 0.5, 2, and 4, respectively, the ASEP values are 9×10− 4,

Source Destination

Figure 1: 0e TAS/SC model.
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3.9×10− 3, and 8.2×10− 3, respectively. With W increases, the
fading severity is more serious.

Figure 5 presents the ASEP performance comparison.
We can obtain that the ASEP performance of the 2-Rayleigh
model is worse than that of Rayleigh and Nakagami models.
When SNR� 10 dB, the ASEP values are 0.0450, 0.0184, and
0.0074, respectively. Compared with Rayleigh and Nakagami
channel models, the 2-Rayleigh model has a 59.1% and
83.6% increase in ASEP values, respectively. 0is shows that
the communications environment of the 2-Rayleighmodel is
more complex than that of Rayleigh and Nakagami models.

Figure 6 presents the OP performance comparison.
When SNR� 6 dB, the OP values are 0.3214, 0.1902, and
0.0968, respectively. Compared with Nakagami and Rayleigh
channel models, the 2-Rayleigh model has a 69.9% and
49.1% increase in OP values, respectively.

For the DNN, ELM, and RBF algorithms, Figures 7–9
show the prediction results, and Table 3 shows the

simulation parameters. 0e prediction results of the DNN
algorithm are better than ELM and RBF methods. Table 4
shows the MSE comparison. 0e MSE with the DNN
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Table 2: Simulation parameters for Figures 3–6.

Parameters Value
E 1
W 0.5, 2, 4
K 2
L 2
cth 5 dB
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Figure 5: 0e ASEP performance comparison with different
channel models.
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Figure 7: DNN prediction.
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algorithm is only 0.0557, which is lower than ELM and RBF
methods. Compared with ELM and RBF models, the DNN
model has 31.7% and 22.5% increase in OP prediction ac-
curacy, respectively.

6. Conclusions

We investigated the ASEP and OP performance of the 2-
Rayleigh model, respectively. 0rough different conditions,
the effect of K, L, and W on the ASEP and OP performance
was analyzed. K or L values increased, and the system
performance was improved. 0e ASEP and OP performance
degraded as W increased. Compared with Nakagami and
Rayleigh channel models, the 2-Rayleigh model had 83.6%
and 59.1% increase in ASEP values, respectively. 0e DNN
model had a better OP prediction accuracy than the ELM
and RBF algorithms.
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