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A four-port dielectric resonator-based connected ground multiple-input multiple-output (MIMO) antenna is designed. �e
presented antenna was excited through the aperture feeding technique. �e dual bands are achieved by optimally feeding the
rectangular dielectric resonator through engineered triangular slots. �e antenna has operating modes of TEX111 and TEY111 at
4.5 GHz and 5GHz, respectively. It presents a 2 :1 VSWR bandwidth of 2.64% (4.48GHz–4.60GHz) and 1.2%
(4.96GHz–5.04GHz) in the lower and upper bands, respectively. �e edge-to-edge distance between array elements is around
7.5mm. �e single antenna dimension is 30mm× 30mm, whereas the four-port antenna dimension is 60mm× 60mm. �e
optimum isolation was achieved by carefully placing the antenna elements on the substrate through multiple iterations. �e
antenna provides port isolation better than 20 dB at both resonances with full ground pro�le. �e advantage of the antenna is that
it provides fair antenna and MIMO parameters without additional isolation techniques. �e antenna has e�ciency in order of
88.02% and 86.31%.�e peak gain is 7.67 dBi and 8.32 dBi at 4.5GHz and 5GHz, respectively. �e optimum envelope correlation
coe�cient (ECC) is 0.037, channel capacity coss (CCL) is 0.2 bits/sec/Hz, diversity gain (DG) is 9.99 dB, and total active re£ection
coe�cient (TARC) is − 18.87. �e antenna elements are orthogonally placed with adequate separation to achieve polarization
diversity and spatial diversity. �e antenna provides the utilization in Sub-6GHz 5G and WLAN communication applications.

1. Introduction

�e need for faster communication is rapidly increasing
with the rising demand for multimedia and real-time tra�c
data. Co-channel interference is one of the key issues while
accommodating users within the same spectrum. High-
speed streaming needs advanced technological require-
ments beyond the 3G and 4G communication systems. �e
5G communication technology provides quite a high data
rate without any major sacri�ce in the user bandwidth [1,
2]. �e 5G system has much lower latency and delay
compared to the earlier communication systems. With the
evolution of each generation, a multifold rise in data rate

has been attained by employing advanced technology. �e
multiple-input multiple-output (MIMO) technology fa-
cilitates the requirements of a 5G communication system,
and it is expected to also provide the platform for the 6G
communication system. In 5G communication, it was
necessary to cover multiple frequency resonances to pro-
vide coverage to a range of standards and also provide
diverse gains within the allocated bands. �e MIMO
technology provides high spectrum e�ciency to facilitate
seamless connectivity. �e 5G communication system
supports a signi�cantly higher count of mobile users with
unobtrusive connectivity through adequate frequency
channel allocation.
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To improve communication reliability, the 5G tech-
nology employs multiple antennas. &e MIMO technology
addresses the multipath fading issue by sending data from
multiple transmitting antennas to multiple receiving an-
tennas. &e information received by each antenna is dif-
ferent as it undergoes inconsistent fading across different
antennas. A wide range of multiplexing schemes is in ex-
istence for providing degrees of freedom by the use of
MIMO technology.&emobile terminals are posing a space-
constrained environment. Planar and surface-mountable
antennas are the most viable choices for supporting multiple
antenna systems [1, 2]. &e planar, typically patch, antennas
also offer suitability in the manufacturing process and cost-
effectiveness. &e patch antenna suffers from constraints of
limited bandwidth and gains while fabricated on substrates
posing high dielectric losses. On the other hand, dielectric
resonator antennas (DRAs) give higher radiation efficiency
while adequate excitation is employed. &e adequate
implementation of geometric attributes leads to lower
conduction losses, resulting in higher efficiency. &ere is a
compact list of literature on the utilization of dielectric
resonators for the design of MIMO antennas compared to
traditional antennas [3–10]. It becomes possible to optimize
the antenna parameters such as front-to-back ratio, beam-
width, bandwidth, and cross-polarization by appropriately
designing the dielectric material. &e multiple resonant
modes can be excited by the appropriate selection of size and
shape of the dielectric resonator. &e presented dielectric
resonator-MIMO could excite modes of TEX

111 and TEY
111 to

achieve dual-band resonance.
Oneof theprime factors affecting the isolationbetween the

ports of the MIMO antenna is the spacing between the ele-
ments on the antenna. &ere has been significant research
available in the literature for improvement in theport isolation
across the antennaelement, especially by introducing isolating
elements or networks [11–20].&ere is substantial researchon
multiband MIMO wireless communication [21–27]. It is
extremely challenging to achieve antenna compactness and
high levels of port isolation simultaneously.&e port isolation
can be attained by an adequate organization of resonators on
the feeding elements in the nonexistence of the decoupling
mechanism. &e internal decoupling of the modes is fre-
quently employed for attaining port isolation. &e optimized
dimensions of the resonators will ensure different current
directions to avoid strong interelement coupling. &ere shall
be a constraint in dimension optimization for the large
number of the resonators, causing coupling between the el-
ements, which makes port isolation poor for the antenna. It
becomesvital to address the challengeof compromisebetween
port isolation and antenna electrical size. &e present com-
munication technology requires an antenna with multiple
resonant frequencies. &is requirement also applies to the
MIMOantennas.&edielectric resonator excited by the patch
antenna is one of the techniques adopted for MIMO com-
munication. &e engineered patch antennas can excite the
dielectric resonator through aperture coupling of fields.

2. Antenna Configuration

&e engineered MIMO dielectric resonator antenna is
depicted in Figure 1. &e top and perspective views of the
antenna have been exhibited for distinction. Initially, only the
rectangular-shaped patch resonator fed by the microstrip line
is designed. &e key feature of the dielectric resonator is the
absenceofmetal,where the conducting loss tends tobe large at
high frequencies. &e traditional conductor-based antenna
suffers considerably from such metallic losses. &e radiation
efficiency of such antennas is quite good, which provides high
antenna gain. If an adequate dielectric constant is selected,
then these antennas tend to provide larger bandwidth than
traditional patch antennas. An alumina material with a di-
electric constant of 9.9 having a loss tangent of 0.0001 has been
utilized for the antennadesign because of its cost-effectiveness
and wide availability. Figure 2 illustrates the design evolution.
&e dielectric resonator was fed through a slit on the patch by
means of aperture feeding.&e position of the slot was chosen
by doing the parametric study and observing its effects on the
reflection coefficient of the proposed aperture-fed DRA
MIMO. It was observed that the coupling varies as we vary the
position of the slot, and hence an optimized value providing
better couplingwas chosen.&e shapes and dimensions of the
slots on the patch were altered to excite the resonatingmodes.
&e excitation of fundamental TEX

111 mode along with TEY
111

mode is the signature feature for achieving desired antenna
resonance characteristics. Table 1 tabulates the physical di-
mensions of the proposed antenna.

&e dielectric material is excited through the aperture
coupling technique, through the electromagnetic coupling of a
field being emitted from a conducting patch. Microstrip feed
excitation is used for conducting patches. &e microstrip feed
technique provides the least design complexity while exciting
the patch antenna. &e excited patch further induces the field,
which gets coupled with the DR. &e DR gets excited through
aperture coupling.&e standard FR-4 substrate is employed in
the dielectric resonator (DR) antennadesign.&e typical 70μm
copper sheets were considered on top of the FR4 dielectric
resonator for simulation.&e dielectric resonator has an equal
length and width of 16mm and a height of 10mm. A full-wave
finite element-based numerical software is used for the
implementation of the proposedDR-MIMOantenna.&e core
reason for employing the squareDR compared to circular and/
or cylindrical resonators is the feasibility anddegree of freedom
for the optimization process in the antenna design. &e sec-
ondaryreason is toavoiddegeneratedmodesbeingproduced. It
is quite difficult to derive a prediction model for antenna res-
onance,whilethecombinationofresonatorandpatchisutilized.
It is only possible throughnumerous simulations to achieve the
target resonances.However, closepredictioncanbe takenupby
using the DRA excitation mode equations.

&e engineered dimensions of rectangular dielectric
resonators were numerically computed using the following
equations to generate the fundamental TE111 mode to meet
the target resonance. &e numerically computed resonance
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of the resonator is 4.53GHz whereas the simulated reso-
nances of the fundamental TEX111 and TEY111 are achieved at
4.5GHz and 5GHz. It can be seen that the numerically
computed and simulated values are fairly close. �rough the
simulations, fundamental modes can be observed using
electric �eld simulation within the dielectric resonator as
shown in Figure 3. �e dissimilarity in these resonances is
due to the fact that the dielectric waveguide model does not
consider the adopted feeding technique [8].

�rough the simulations, higher-order modes can be
observed using electric �eld simulations within the dielectric
resonator. �e E-�eld distribution in the x-z and y-z cross-
section of the dielectric resonator at 4.5GHz and 5GHz has
been displayed in Figures 3(a) and 3(b), respectively. It can
be validated that TEX111 and TEY111 modes are excited. �e
computation of the resonant modes of the rectangular DRA
can be taken up by using the following equations as per the
dielectric waveguide model [8]:

kz tan
kzd

2
( ) �

��������������
εr − 1( ) k2z( ) − k2z

√
,

k2x + k
2
y + k

2
z � εrk

2
o,

kx �
mπ
a
,

ky �
nπ
b
,

ko �
2π
λo
,

(1)

where ko is the free-space wavenumber; kx, ky, and kz are
half-wave variations; a, b, and d are the length, width, and
height of the resonating element.

3. Parametric Optimization in Antenna Design

Apparently, there are multiple physical parameters of the
antenna which can a¨ect the radiation �elds. Intuitively,
these alterations will a¨ect the antenna radiation parameters
such as resonance, directivity, polarization, bandwidth, and
beamwidth, to name a few.

Multiple iterations were carried out to obtain the target
resonance from the proposed antenna. Out of many possible
iterated combinations, a few of the parametric variations are
exhibited in Figure 4. �e variation in resonator length and
width is shown in Figures 4(a) and 4(b).�e variations in height
of the dielectric resonator are exhibited in Figure 4(c). �e DR
height was varied to see the optimum response around the
targeted resonance. �e selection of the DR height is crucial as
the antenna volumewill increase signi�cantly with an increase in
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Figure 1: �e proposed antenna element view: (a) top and (b) perspective.
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DR height. Increased DR height may improve the antenna
parameters; however, antenna placement or mounting must be
considered by the design engineer. All displayed dimensions are
in mm. It is extremely challenging to have an empirical rela-
tionship between changes in an antenna’s physical dimensions
and the antenna resonance. By modifying the height of DRA, it
was observed that antenna resonance was reduced. �is is well
expected as by altering the height of DRA, the e¨ective dielectric
constant of the antenna will vary. Similar variations were carried
out for changes in the DRA length and width.�e �eld coupling
will varywith the change in the slot beneath theDRA.Hence, the
antenna resonance will vary. �e triangular slots were initially
tried for analyzing the antenna resonance. To further tune it
further near to the targeted resonance, inner armswere taken up.
�e impact of variation of arm slots has been depicted in
Figure 4(d). �is was also demonstrated in the antenna evo-
lution. All the dimensions were varied in multiple iterations to
optimize the antenna for the target frequencies.

4. MIMO Antenna Configuration

�e MIMO antenna con�guration is exhibited in Fig-
ure 5. �e proposed MIMO antenna has four elements. It
is intuitive that to minimize the interelement mutual
coupling and provide adequate spatial diversity, the
substrate dimensions were increased adequately while
maintaining the full ground pro�le. Multiple iterations
were carried out to optimize the antenna’s electrical
compactness without compromising the port isolation.
Similarly, an orthogonal arrangement of the patch with
dielectric resonators was performed to achieve polari-
zation diversity. �e substrate length (SX) and width (SY)
are kept at 60 mm each, and the optimized MIMO an-
tenna dimensions are 60 × 60 ×1.56 mm3. �e MIMO
antenna model is exhibited in Figure 5. �e DRs are
attached to the patch elements with the use of a thin layer
of conducting adhesive.

Table 1: Physical dimensions of proposed single element antenna.

Parameter Dimensions (mm) Parameter Dimensions (mm) Parameter Dimensions (mm)
SEx 30 Dh 10 W1 5
L1 3 Dw 16 W2 3.5
L2 16 Dl 16 Sx � Sy 60
L3 19 Fw 2.4 SEy 30
t 1.56 Fl 5.5 Sw 1

600.4630
E Field [V/m]

560.4351
520.4072
480.3792
440.3513
400.3233
360.2954
320.2675
280.2395
240.2116
200.1836
160.1557
120.1277
80.0998
40.0718
0.0439
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Figure 3: Excited E-�eld. (a) 4.5 GHz (x-z), (b) 5GHz (x-z), (c) 4.5 GHz (y-z), and (d) 5GHz (y-z).
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5. Results and Discussions

�emeasurement of antenna parameters was carried out on
the fabricated antenna prototype as depicted in Figure 6.�e
alumina material was prepared by using laser cutting
technology. Keysight benchtop Vector Network Analyzer
E5063A was utilized for re£ection coe�cient measurements.
�e dual-band antenna resonates at 4.5GHz and 5GHz.�e
simulated resonances are illustrated in Figure 7(a), and
measured resonances are illustrated in Figure 7(b).

�ere appears to be a fair correlation between these re-
sults. �e re£ection coe�cient is measured at a port by
keeping the remaining ports terminated at 50Ω.�e achieved
fractional bandwidth for VSWR is better than 2 :1, in the
order of 2.64% (4.48GHz–4.60GHz) and 1.2%
(4.98GHz–5.04GHz) has been achieved. �e frequencies
cover the sub-6GHz andWLAN communication targets.�e
S11 is only depicted due to the identical nature of S11 and S22.
A port isolation of 22.5 dB and 24.98 dB has been attained for
4.5GHz and 5GHz, respectively. It is expected to have port
isolation above 20 dB for good diversity performance.

�e chosen topology for the proposed quad element DRA
MIMO antenna was selected in order to achieve the necessary
isolation levels, which should be greater than 15 dB. �e
antenna elements are arranged in an orthogonal fashion to
reduce the mutual coupling amongst the elements and thus
achieve the anticipated MIMO diversity performance. Var-
ious other topologies, such as mirror symmetric alignment
along vertical and horizontal directions, were also simulated
in the simulator. All the topologies provided satisfactory
results. �e reason for choosing the orthogonal topology is
that it provides polarization diversity, which has the ad-
vantage of providing better isolation performance while
keeping the structure compact. However, the other topolo-
gies provide spatial diversity wherein to achieve the desired
isolation performance, and the antenna footprint increases.

It is noteworthy that in the proposed antenna, no iso-
lation mechanism was employed to attain port isolation of
such magnitude. Figures 8 and 9 represent the antenna
radiation pattern and gain/e�ciency against frequency. �e
cross-pol isolations for both frequencies are satisfactory.�e
omnidirectional radiation pattern was achieved at both
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Figure 4: Parametric study of DRA. (a) length, (b) width, (c) height, (d) slot width.
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frequencies. �e antenna has an e�ciency of 88.02% and
86.31%. �e peak gain is 7.67 dBi and 8.32 dBi at 4.5GHz
and 5GHz, respectively.

6. MIMO Diversity Performance

�e primary reason to employ the MIMO antenna is to
provide diversity. �e diversity techniques improve the
reliability of the communication by employing high spec-
trum e�ciency and a faster data rate. �e MIMO diversity
techniques aid in the e¨ective utilization of the channel
capacity despite the presence of fading environment. �e
performance parameters were analyzed to examine the
antenna diversity performance, namely, the envelope cor-
relation coe�cient (ECC), the channel capacity loss (CCL),
mean e¨ective gain (MEG), and total active re£ection co-
e�cient (TARC). �e ECC performance shows the corre-
lation between the antenna radiation patterns. If two
patterns are inhomogeneous, then they shall not correlate,
for instance, a vertically polarized pattern shall not correlate
with the horizontally polarized pattern. �e correlation shall
be zero for the case if the direction of radiation is opposite

from the radiating elements. For the multiple antenna
systems, the ECC amongst ith and jth resonator can be an-
alyzed using the far-�eld patterns as given in the following
equation:

ρe�ECC� J4π
0 [

F1
�→
(θ,∅)∗ F2

�→
(θ,∅)]dΩ|2

J4π
0 |F1
�→
(θ,∅)|2dΩJ4π

0 |F2
�→
(θ,∅)|2dΩ

.

∣∣∣∣∣∣∣∣∣∣∣
(2)

Ri(θ, ϕ) and Rj(θ, ϕ) are 3D-pattern when ith and jth port
are excited, ω is the solid angle, ∗ is the Hermitian product,
and θ and ϕ are elevation and azimuth angles, respectively. It
is anticipated that ECC should be less than 0.5; for the
designed antenna, the ECC values are around 0.037 and
0.002 as illustrated in Figure 10. �ese are well within the
acceptable levels of ECC.

�e antenna diversity gain (DG) provides an improve-
ment in signal-to-noise ratio (SNR) when the MIMO an-
tenna diversity scheme is established. With the existence of
the MIMO system, the SNR is enhanced, and subsequently
the signal reception. �is improves the reliability of the
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Figure 5: Proposed MIMO antenna: (a) top view, (b) top perspective view, and (c) bottom perspective view (full ground pro�le).
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communication system. &e DG can be computed from
calculated values of ECC as shown in (3). &e values are
depicted in Figure 11.&e calculated values along with other
diversity parameters are tabulated in Table 2.

DG � 10
������������

1 − |0.99 ECC|
2

􏽱

. (3)

&e MEG provides the received power for the MIMO
antenna in comparison to the isotropic antenna. &e calcu-
lation of the presented antenna is shown in (4).&e presented
antenna has four-port hence i will take up value up to four.
Owing to the lower coupling between the antenna elements,
the MEG of the proposed antenna is good. MEG values are
depicted in Figure 12 for corresponding resonances.

MEGi � 0.5 1 − 􏽘
N

j�1
Sij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2⎡⎢⎢⎣ ⎤⎥⎥⎦. (4)

&e TARC provides the ratio of reflected to incident
power for the n-port MIMO antenna. &e S and N represent
the scattering matrix and count of MIMO antenna elements,
respectively. &e value of TARC is less than − 18.87 dB, as
shown in Figure 13. &is exhibits a very low reflection
coefficient of the overall antenna system and less coupling
between the elements. &e inter-element isolation is a key
diversity component of MIMO antenna design. Typically,
the channel capacity increases substantially with an increase
in the resonating elements in the MIMO antenna. However,
the tight coupling and footprint tradeoff become vital for the

(a) (b)

(c)

Figure 6: Proposed MIMO antenna: (a) top view without DR, (b) top view with DR, and (c) bottom view.
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Figure 7: Scattering parameters (a) simulated and (b) measured.
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Figure 8: Continued.
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design as the increase in element count will considerably
increase the coupling between the elements. �e CCL was
computed by Eq. (7) and it has been exhibited in Figure 14.
�e suitable value of the CCL is 0.6 bits/sec/Hz and the
proposed MIMO antenna is within the permissible range.
Table 3 tabulates the comparison of the proposed antenna
with published literature, and it is apparent that the pro-
posed antenna is well suited for the targeted communication
applications. �e antenna exhibits quite improved charac-
teristics in terms of electrical size and gain.

TARC�

��������
∑Nn�1 bn
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Figure 8: Antenna radiation pattern (a) 4.5GHz and (b) 5GHz.
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Figure 11: Simulated and measured DG.

Table 2: Antenna diversity parameters.

Frequency
(GHz) ECC DG

(dB)
MEG
(dB)

TARC
(dB)

CCL(bits/
sec/Hz)

4.5 0.037 9.9999 1.0005 − 24.91 0.2
5.0 0.002 9.9999 1.0002 − 18.87 0.78
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Figure 12: Mean e¨ective gain of MIMO antenna.
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Figure 13: Proposed MIMO antenna TARC.
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Figure 14: Proposed MIMO antenna CCL.

Table 3: Comparison of the proposed antenna with literature.

Citation Operating frequencies
(GHz) Antenna size (λ) Gain

(dBi)
Bandwidth

(%)
E�ciency

(%) Feed type Design
complexity

[28] 4.9 2.28× 0.73 x 0.13 6.2 5.1 — Microstrip line Low
[29] 3.22–3.97, 4.95–5.51 0.86× 0.86 x 0.12 5.2 5.5 4.97, 2.35 95 Microstrip line Low
[30] 5.71–8.2, 7.57–7.95 1.53×1.53 x 0.12 − 1.9, 3.8 34.85, 4.55 — Microstrip line Low
[31] 3.40–4.13 1.13×1.13 x 0.19 8.1 19.4 >90 Probe feed High
[32] 3.50–5.10 1.43×1.43 x 0.36 8.5 45 88 Probe feed High
[33] 4.56–9.96 1.5×1.5 x 0.39 — 74 — Trapezoidal patch Medium
[34] 4.33–7.02 2.6× 2.6 x 0.36 — 47.4 89 Probe High
Proposed
antenna 4.5, 5 0.89× 0.89 x 0.17 7.67, 8.32 2.64%, 1.2% 88.02, 86.31 Aperture couple Medium
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ΨR
�

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

ρii � 1 − 􏽘
4

n�1
S
∗
inSni( 􏼁,

ρij � − 􏽘
4

n�1
S
∗
inSnj􏼐 􏼑, For i, j � 1,2,3or4.

(9)

7. Conclusion

An aperture coupled DRA antenna is presented. Electro-
magnetic coupling in feeding characterizes the dual-band
operation of the antenna by suitably optimizing the physical
properties of the antenna. &e excitation of fundamental
TEX

111 and TEX
111 mode is utilized to achieve the desired

antenna resonance characteristics. &e antenna provides the
bandwidth in the order of 2.64% and 1.2% along with the
gain of 7.67 dBi and 8.32 dBi at 4.5GHz and 5GHz, re-
spectively. &e optimum envelope correlation coefficient
(ECC) is 0.037, channel capacity loss (CCL) is 0.2 bits/sec/
Hz, diversity gain (DG) is 9.99 dB, and total active reflection
coefficient (TARC) is − 18.87. &e diversity performance of
the proposed antenna meets the necessary requirements of
5G and WLAN communication applications.
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