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Direction of arrival (DOA) estimation has recently been developed based on sparse signal reconstruction (SSR). Sparse Bayesian
learning (SBL) is a typical method of SSR. In SBL, the two-layer hierarchical model in Gaussian scale mixtures (GSMs) has been
used to model sparsity-inducing priors. However, this model is mainly applied to real-valued signal models. In order to apply SBL
to complex-valued signal models, a general class of sparsity-inducing priors is proposed for complex-valued signal models by
complex Gaussian scale mixtures (CGSMs), and the special cases correspond to complex versions of several classical priors are
provided, which is helpful to analyze the connections with different modeling methods. In addition, the expression of the SBL
form of the real- and complex-valued model is unified by parameter values, which makes it possible to generalize and improve the
properties of the SBL methods. Finally, the SBL complex-valued form is applied to the offgrid DOA estimation complex-valued
model, and the performance between different sparsity-inducing priors is compared. ,eoretical analysis and simulation results
show that the proposed algorithm can effectively process complex-valued signal models and has lower algorithm complexity.

1. Introduction

Direction of arrival (DOA) estimation of spatial signals is an
important content of array signal processing research. In
recent years, compressive sensing (CS) [1] and sparse signal
reconstruction (SSR) [2] have been introduced into the field
of DOA estimation owing to their ultra-high resolution,
good robustness to noise, and low dependence on the
number of snapshots. One representative method is the
L1-SVD algorithm proposed in [3], which uses L1-norm to
construct an SSR model, reduces the complexity of the al-
gorithm by singular value decomposition (SVD) under
multisnapshots, and has a high resolution for the correlated
sources as well. Sparse Bayesian learning (SBL) [4–7] or
Bayesian compressed sensing (BCS) [8, 9] is another rep-
resentative method for the SSR in CS. In SBL, the signal
recovery problem is formulated from a Bayesian perspective,

while the sparsity information is exploited by assuming a
sparse prior for the signal of interest. One merit of SBL is its
flexibility in modeling sparse signals, which can improve the
sparsity of its solution [10]. ,erefore, research work on
DOA estimation based on SBL has been gaining momentum
in recent years [11, 12]. While these methods have shown
advantages over the conventional ones, however, there exists
still difficulties in practical applications.

For these SSR methods mentioned above, which are
called ongrid methods, true DOAs are assumed to lie exactly
on a set of fixed sampling grids, and the existing sparse
representation techniques can be directly applied. When the
assumption that the true DOAs are located on a sampling
grid fails, the performance of on-grid methods deteriorates
due to the problem of mismatch. Although the offgrid (the
distance from the true DOA to the nearest grid) error can be
reduced by a dense sampling grid, the computational
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complexity will increase significantly. Furthermore, a dense
grid may lead to the correlation between two steering vectors
becoming high, which means the performance cannot be
improved by the theory of CS.

Accordingly, an offgrid DOA estimation model was first
studied in [13], where the true DOAs are no longer con-
strained in the sampling grid, and they proposed a sparsity
cognizant total least-squares (S-TLS) method for the per-
turbed compressive sensing under sparsity constraints. It has
been shown in [13] that the S-TLS can yield a MAP
(maximum a posteriori) optimal estimate if the matrix
perturbation caused by the basis mismatch is Gaussian. But
the Gaussian condition cannot be satisfied in all DOA es-
timations. In [14], a new algorithm named offgrid sparse
Bayesian inference (OGSBI) is proposed for the offgrid case.
Firstly, the true DOA steering vector is approximated by a
first-order Taylor expansion to handle the off-grid problem,
and it is assumed to have a uniform distribution for off-grid
parameters. Based on the OGSBI method, a linear inter-
polation between two adjacent grids is adopted in [15] to
approximate the true DOA steering vector, and they pro-
posed a perturbed sparse Bayesian learning (PSBL) algo-
rithm to solve the offgrid DOA estimation problem.

Both ongrid and offgrid methods are grid-based
methods. Another method to deal with the offgrid problem
is the gridless method [16–18], which directly operates in the
continuous domain so that can completely avoid the grid
mismatch problem. However, this kind of method needs
strong theoretical guarantees. In addition, it can only be
applied to uniform or sparse linear arrays [19].

,e SBL algorithm mainly deals with real-valued signals.
In practical applications, such as DOA estimation, the ex-
perimental signals are often in complex-valued form. ,e
results obtained in the real-valued model cannot be directly
applied to the complex-valued model. In order to apply SBL
to the complex-valued model, in [20–22], the real and
imaginary parts of the complex-valued signal were separated
to construct a new real-valued model, and then the SBL real-
valued model was applied for processing. But in [20, 21], the
real and imaginary parts of the complex-valued signal were
treated as two independent variables, and the different
hyperparameters were specified by ignoring the correlation
between the real and imaginary parts of the complex-valued
signal, which has obvious theoretical defects, and the re-
construction performance of the algorithm is low. It was
improved in [22], where the performance of the algorithm
was improved by assigning the same hyperparameters to the
real and imaginary parts of the complex-valued signal by
taking advantage of the fact that they have the same sparse
structures. However, by decomposing the complex-valued
signal into real and imaginary parts, the dimensionality of
the signal is doubled, and the sensing matrix is tripled, so the
complexity of the algorithm will increase significantly.

In this paper, the extension of SBL from the real-valued
model to the complex-valued model in conjunction with the
DOA estimation complex-valued model is considered, and
the complex multisnapshot SBL (CSBL) offgrid DOA esti-
mation algorithm is proposed. ,e expression of the SBL
form is unified under the two models by parameter values,

which enables us to generalize and improve the properties of
the SBL methods.,eoretical analysis and simulation results
show that the proposed algorithm can effectively process
complex-valued signals with lower complexity.

A comment on notation: we use boldface lowercase letters
for vectors and boldface uppercase letters for matrices. (·)T,
(·)− 1, (·)∗, and (·)H denote the transpose, inverse, conjugation,
and conjugation-transpose operations, respectively. ‖ · ‖F and
‖ · ‖2 are the F-norm and 2-norm of amatrix, respectively. tr(·)

denotes the trace operation of amatrix. ⊙ describes Hadamard
product operator. p(·) represents the probability density
function of random variables.

2. Offgrid DOA Estimation Model

Consider a uniform linear array (ULA) with N isotropic
sensors and interelement spacing Δ d as shown in Figure 1.
Suppose that K far-field narrowband signals of frequency f0
illuminate on this ULA from directions θk, k � 1, 2, . . . , K.
By defining the first sensor of the array as the reference, the
received signals can be expressed as

Y � A(θ)S + E, (1)

where Y � [y(1), y(2), . . . , y(M)], S � [s(1), s(2), . . . ,

s(M)], E � [e(1), e(2), . . . , e(M)], and M is the number of
snapshots. y(m) � [y1(m), y2(m), . . . , yN(m)]T ∈ CN×1,
A(θ) � [a(θ1), a(θ2), . . . , a(θK)] ∈ CN×K, a(θk) � [1,

exp j2πf0Δd sin θk/c , . . . , exp j(N − 1)2πf0Δd sin

θk/c}]T ∈ CN×K, s(m) � [s1(m), s2(m), . . . , sK(m)]T ∈
CK×1, e(m) � [e1(m), e2(m), . . . , eN(m)]T ∈ CN×1 is the
additive complex white Gaussian noise vector with zero
mean and variance σ2I. When M> 1, equation (3) is the case
of multiple measurement vector (MMV).

Let θ � θ1, θ2, . . . , θL  be a fixed sampling grid in the
DOA range [-90°, 90°], where L denotes the grid number and
typically satisfies L≫N>K. Without loss of generality, let θ
be a uniform grid with a grid interval r � θ2 − θ1∝L− 1. In
practical situations, the target locations are randomly dis-
tributed in space, which leads to the offgrid problem.

Suppose θk ∉ θ(k ∈ 1, 2, . . . , K) and that
θl(

l ∈ 1, 2, . . . , L) is the nearest grid to θk, which satisfies

|θk − θl|≤ r/2. So, the steering vector a(θk) can be ap-
proximated by the first-order Taylor [23],

a θk(  ≈ a θl  + b θl  θk − θl , (2)

where b(θl
) � a′(θl

) is the first-order derivative of a(θ l
).

Let A(θ) � [a(θ1), a(θ2), . . . , a(θL)], B(θ) � [b(θ1), b(θ2),
. . . , b(θL)], and grid parameter βl � θk − θl

, l � l, k � 1, 2,

. . . , K. By considering the approximation error into the
noise, the offgrid DOA estimation sparse model can be
expressed as

Y � Φ(β)X + E, (3)

where Φ(β) � A(θ) + B(θ)diag(β) is abbreviated as Φ
in the following paragraphs,Y ∈ CN×M,E ∈ CN×M,X � [x(1),

x(2), . . . , x(M)] ∈ CL×M, A(θ), B(θ), and Φ(β) ∈ CN×L.
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In SBL, the sparse representation of ΦX is induced by
designing a prior p(x) for x. Instead of using the prior p(x)

directly, the SBL typically uses a two-layer hierarchical prior
model, which involves a conditional prior p(x|α) and a
hyperprior p(α) with the hyperparameters
α � [α1, α2, . . . , αL], which controls the estimation accuracy
and sparsity of x.

3. CSBL Offgrid DOA Estimation Algorithm

3.1. Two-Layer Hierarchical Prior Model. ,e extension of
SBL from the real-valued model is considered to the com-
plex-valued model, and the SBL form is unified, which can
be applied to both real-valued and complex-valued models
with different values of parameters. Assumed that the signals
are independent at different snapshots, i.e.,
x(m), m � 1, 2, . . . , M are independent of each other, there
exist the following conditional prior equations [24],

p(X|α) � 
M

m�1
p(x(m)|α) � 

M

m�1


L

i�1
p xi(m)|αi( . (4)

or

p(X|γ) � 
M

m�1
p(x(m)|γ) � 

M

m�1


L

i�1
p xi(m)|ci( , (5)

where p(xi|αi) � (p/παi)
p exp − p|xi|

2/αi , and p(xi|ci) �

(pci/π)p exp − pci|xi|
2 . αi is the variance of xi, and ci �

1/αi is the precision of xi. ,e parameter p � 1 when xi is
complex, and p � 1/2 when xi is real. Next, the hyperprior
p(αi) for variance αi and hyperprior p(ci) for precision ci

are modeled, respectively.
,e generalized inverse Gaussian (GIG) distribution is

chosen [25, 26] as the hyperprior p(αi) for variance αi with
the following expression with three parameters λ, a, and b.

p(α|λ, b, a) � 
i

GIG αi|λ, b, a(  � 
i

(a/b)
λ/2

2Kλ(
��
ab

√
)
αλ− 1

i exp −
1
2

aαi +
b

αi

  , (6)

where Kλ(·) denotes the modified Bessel function of the
second kind of order λ, and the value range of parameters λ,
a, and b are described later. ,e GIG distribution includes
three distributions as special cases: the Gamma distribution,
the inverse Gamma distribution, and the IG distribution

according to the different values of the three parameters
shown in Figure 2.

For the hyperprior p(ci), from the inverse relationship
between precision and variance ci � 1/αi, the probability
density function transformation formula [26] is used, and
the hyperprior p(ci) is given by

p(c|λ, a, b) � 
i

GIG ci|− λ, a, b(  � 
i

(b/a)
− λ/2

2K− λ(
��
ab

√
)
c

− λ− 1
i exp −

1
2

bci +
a

ci

  . (7)

θk

1 2 3 N

Y

X∆d∆d

sk (m), k = 1,2,L,K

Figure 1: ,e configuration of a ULA.
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In equations (6) and (7), the parameters satisfy the re-
lationship as follows:

b≥ 0, a> 0 if λ> 0,

b> 0, a> 0 if λ � 0,

b> 0, a≥ 0 if λ< 0.

(8)

,e marginal distribution of x can be obtained by the
two-layer hierarchical prior model, p(x|λ, b, a)

� ip(xi|λ, b, a), where

p xi|λ, b, a(  �  p xi|αi( p αi|λ, b, a( dαi

�
p

π
 

p (a/b)
λ/2

(a)
λ/2− p/2

Kλ(
��
ab

√
)

b + 2p xi



2

 
λ/2− p/2

Kλ− p

������������

a b + 2p xi



2

 



 .

(9)

or

p xi|λ, a, b(  �  p xi|ci( p ci|λ, a, b( dαi

�
p

π
 

p (b/a)
− λ/2

(a)
λ− p/2

K− λ(
��
ab

√
)

b + 2p xi



2

 
λ/2− p/2

K− (λ− p)

������������

a b + 2p xi



2

 



 .

(10)

,e abovementioned setting of independent hyper-
parameters for each parameter to be estimated is the
most significant feature of the SBL model, and it is also
the fundamental reason for the sparsity of the model
[27, 28]. When xi ∈ R takes the value p � 1/2, the

equation (9) corresponds to the generalized hyperbolic
(GH) distribution of the real-valued model, where
equation (10) is equivalent to (9). In this paper, p � 1
corresponds to the GH distribution of the complex-
valued model.

p = 1, λ = 3/2

p = 1/2, λ = 1

p = 1, λ = 3/2

p = 1/2, λ = 1

p = 1

p = 1/2

p = 1

p = 1/2

real Laplace

complex Laplace

real student′s t

real student′s t

complex student′s t

complex student′s t

real Laplace

complex Laplace

p (xi|λ, a)

= p (xi|αi) Г (αi|λ, a/2) dαi

p (xi|λ, b) =

 p (xi|αi) IG (αi|-λ, b/2) dαi

p (xi|λ, b)

 = p (xi|γi) Г (γi|-λ, b/2) dγi

p (xi|λ, a, b)

 = p (xi|γi) GIG (γi|-λ, b, a) dγi

p (xi|λ, b, a)

 = p (xi|αi) GIG (αi|λ, b, a) dαi

p (xi|λ, a)

 = p (xi|γi) IG (γi|λ, a/2) dγi

λ > 0, b → 0 +

λ < 0, a → 0+

λ > 0, b → 0+

λ < 0, a → 0 +

GH
xi ∈ ℂ, p = 1; CN (xi|0.αi), CN (xi|0.γi

-1)

xi ∈ ℝ, p = 1/2; N (xi|0.αi), N (xi|0.γi
-1)

p (xi|γi) = (pγi/π)p exp {-pγi|xi|2}

p (xi|αi) = (p/παi)p exp {-p (|xi|2/αi)}

Figure 2: ,e relationship between different two-layer hierarchical priors.
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As mentioned above, the GIG distribution is selected as
the hyperprior p(αi) and p(ci), respectively, as it includes a
fairly broad class of distributions commonly used as
hyperpriors, and the resulting marginal distribution, the GH
distribution, again covers a large number of distributions as
special cases. Due to this generalization, the connections
between different modeling strategies can be analyzed, and
several special cases that correspond to standard priors
commonly used in sparse modeling are summarized in
Figure 2.

3.2. Complex Sparse Bayesian Learning. As mentioned
above, the model of the signal matrix X has been defined by
different two-layer hierarchical priors, and the SBL model
characterization will be completed in the following by
modeling the observation matrix Y in equation (3). Firstly,
according to the different values in the model, the noise E is
modeled as Gaussian (real-valued model) or complex
Gaussian (complex-valued model) with independent and
identical distribution as follows:

p(E|τ) � 
M

m�1


N

n�1
p en(m)|τ(  �

p

πτ− 1 
pNM

exp − pτ‖E‖
2
F ,

(11)

where τ � 1/σ2 is the noise precision with variance σ2. ,e
parameter p � 1 when en(m) is complex, and p � 1/2 when
en(m) is real. ,erefore, the following expression is
obtained:

p(Y|X, β, τ) �
p

πτ− 1 
pNM

exp − pτ‖Y − ΦX‖
2
F . (12)

,e noise precision τ is unknown, and a Gamma
hyperprior is assumed for τ with p(τ | c, d) � Γ(τ|c, d),
where τ obeys the Gamma distribution of parameters c and
d. ,e offgrid parameter β obeys a uniform distribution with
β ∼ U([− r/2, r/2]L). Taking the two-layer hierarchical prior
CN(xi|0, αi), Γ(ci|λ, a/2) as an example, the relationship
between the parameters of the SBL model is shown in
Figure 3.

For equation (3) of the off-grid DOA estimation model,
when the signal variance α is used to model the two-layer
hierarchical prior, the joint probability distribution of the
complete SBL model is represented as

p(Y, X, α, β, τ) � p(Y|X, β, τ)p(X|α)p(α)p(β)p(τ). (13)

According to Bayesian theory, the posterior distribution
of the parameters is estimated as

p(X, α, β, τ|Y) �
p(Y|X, β, τ)p(X|α)p(α)p(β)p(τ)

p(Y)
. (14)

However, the exact posterior p(X, α, β, τ|Y) cannot be
given in closed form due to the fact that p(Y) is not cal-
culated analytically [25]. ,erefore, SBL needs an effective
approximation p(X, α, β, τ|Y). ,e sparsity-inducing
property of the resulting estimator X does not only depend
on the two-layer hierarchical prior, but also the approxi-
mation method used.

In SBL, two widespread approximate approaches re-
ferred to as type I and type II estimation have been used.
Type II is considered in this paper. In type II estimation
[4–9], the impact of hyperparameter αi or ci is concerned on
the model, and p(X, α, β, τ|Y) can be decomposed as

p(X, α, β, τ|Y) � p(X|Y, α, β, τ)p(α, β, τ|Y), (15)

where p(α, β, τ|Y) � p(Y|α, β, τ)p(α)p(β)p(τ)/p(Y).
,erefore, type II estimation needs to effectively approxi-
mate the posterior distribution p(α, β, τ|Y), by using MAP
to estimate hyperparameter α as follows:

αMAP
� argmax

α
p(Y|α, β, τ)

likelihood
p(α)
prior

� argmax
α

p(α)  p(Y|X, β, τ)p(X|α)dX

� argmax
α

ln(p(α)) + ln p(Y|X, β, τ)p(X|α)dX ,

(16)

and type II estimation is equivalent to maximizing the cost
function of α, then

L(α) � − p × tr Y
HΣ− 1

Y Y  − pM ln ΣY


 + ln(p(α)), (17)

where ΣY is the covariance matrix of the likelihood function
p(Y|α, β, τ). In the current widely studied real-valued
model, it is usually assumed that a uniform hyperprior
p(α)∝ 1 for α, which leads tomaximizing αMAP equivalently
to maximizing the likelihood function p(Y|α, β, τ). ,ere-
fore, type II estimation is also called as type II maximum
likelihood (ML) estimation.

In [26], the results show that type II estimation has
superior reconstruction performance than type I estimation.
In subsequent paragraphs, type II estimation combined with
the above two-layer hierarchical prior extension from the
real-valued model is changed to the complex-valued model
for the SBL derivation for offgrid DOA estimation.

In type II estimation, equation (15) is used to decompose
the exact posterior p(X, α, β, τ|Y), and the following ex-
pression can be acquired:

p(X|Y, α, β, τ) �
p(Y|X, β, τ)p(X|α)

p(Y|α, β, τ)
�

p(Y|X, β, τ)p(X|α)

 p(Y|X, β, τ)p(X|α)dX

�
p

π
 

pLM

ΣX



− pM exp − p × tr X − μX( 

HΣ− 1
X X − μX(   ,

(18)
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where ΣX and μX are the covariance matrix and the mean of
p(X|Y, α, β, τ), respectively,

ΣX � τΦHΦ + Λ− 1
α 

− 1

μX � τΣXΦ
HY

⎧⎪⎨

⎪⎩
. (19)

,e signal variance α and noise precision τ are estimated
by using MAP as follows:

p(α, β, τ|Y)∝p(Y|α, β, τ)p(α)p(β)p(τ)

�  p(Y|X, β, τ)p(X|α)p(α)p(β)p(τ)dX

�
p

π
 

pNM

ΣY



− pM exp − p × tr Y

HΣ− 1
Y Y  p(α)p(β)p(τ),

(20)

where ΣY is the covariance matrix of p(α, β, τ|Y), and
ΣY � τ− 1IN + ΦΛαΦH. If α and τ are known, type II esti-
mated value of X is obtained as

X � μX � ΛαΦ
HΣ− 1

Y Y, (21)

where Λα � diag(α) is a diagonal matrix composed of signal
variance, and its diagonal elements control the row-sparsity
of X. As αi tends to a particularly small value (theoretically

zero), the corresponding i-th row of X becomes 0T. DOA
parameters θk (the closest grid to the true DOA θk,
k � 1, 2, . . . , K) can be estimated from the position of
nonzero rows in X.

When signal precision c is used to model two-layer
hierarchical prior, similar expression results are acquired as

ΣX � τΦHΦ + Λc 
− 1

,

ΣY � τ− 1IN + ΦΛ− 1
c ΦH

,

X � μX � τΣxΦ
H

YΛ− 1
c ΦHΣ− 1

Y Y.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

where Λc � diag(c) is a diagonal matrix composed of
signal precision, as ci tends to a particularly large value
(theoretically infinity), the corresponding i-th row of X

becomes 0T.
In the above, the complete SBL model is analyzed with

signal modeling variance α or precision c separately. Next,
the iterative process of α will be mainly discussed here, the
iterative process of c is similar and will not be repeated.

3.3. Two-Layer Hierarchical Prior p(xi|αi), IG(αi|− λ, b/2)

Type II Estimation. Maximizing the cost function of α is
equivalent to maximizing the following function:

L � − pM ln Σy


 − p × tr Y
HΣ− 1y Y  + 

L

i�1
(λ − 1)ln αi(  −

b

2αi

  +(c − 1)ln(τ) − dτ. (23)

,en the partial derivative of L with respect to αi is

zL

zαi

� pM Σx( i,iα
− 2
i −

pM

αi

+ p μX( i

����
����
2
2α

− 2
i +

λ − 1
αi

+
b

2
α− 2

i . (24)

unknown

known

αi xi (m) yn (m)a

Γ (αi|λ, a/2) CN (xi|0, αi)

b

p (Y|X, β, τ)

c

d

Γ (τ|c, d)τ

β ~ U -r/2, r/2 L

Figure 3: SBL off-grid DOA estimation parameter model.
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Let the partial derivative be zero, it will result in the
hyperparameter with the following expression:

αi �
pM Σx( i,i + p μX( i

����
����
2
2 + b/2

pM − λ + 1
. (25)

In this paper, the Gamma hyperprior for the noise
precision τ is considered, the update of τ can be similarly
obtained as follows:

τ �
pM × N + c − 1

pM × tr ΦHΦΣx  + p Y − ΦμX
����

����
2
F

+ d
. (26)

3.4. Estimate of the Offgrid Parameter β. As mentioned
above, the updates of signal variance and noise precision by
SBL mode are derived. In the following, the update of the
important parameter β is explained in the offgrid DOA
estimation model. Considering that the only information
β ∼ U([− r/2, r/2]L) is bounded, the update of β cannot be
obtained by MAP, so the maximum expectation algorithm is
used to estimate the offgrid parameter β.

,e quantity X is treated as a hidden variable andmaximize
Ep(X|Y,α,β,τ)[ln(p(Y, X, α, β, τ))], whereEp(X|Y,α,β,τ)[·] denotes
an expectation with respect to the posterior of X as given
in equation (18) using the current estimates of the hyper-
parameters, and is abbreviated as E[·]. For the offgrid pa-
rameter β, the irrelevant items are ignored, and the value of
β is computed by

βnew � argmax
β

E[ln(p(Y|X, β, τ)p(β))]. (27)

According to equations (12) and (14), maximizing
E[ln(p(Y|X, β, τ)p(β))] is equivalent to minimizing
E[‖Y − ΦX‖2F] � βTPβ + 2vTβ + C, where C is a constant
independent of β, P � Re (BHB)∗ ⊙ (M × ΣX + μXμH

X )  is a
positive semidefinite matrix, v � Re M × diag(BHAΣ

X)} − Re 
M
m�1 diag(μ∗X(m))BH(y(m) − AμX(m)) . ,e

optimization problem of β is given by

βnew � argmin
β∈[− r/2,r/2]L

βT
Pβ + 2v

Tβ . (28)

which is a linear least-squares problem with boundary
constraints. Let its partial derivative with respect to β be zero
as follows:

z

zβ
βT

Pβ + 2v
Tβ � 2(Pβ + v) � 0. (29)

If P is invertible, equation (29) has a unique solution,
that is

β � − P
− 1

v. (30)

Considering the boundedness, when β ∈ [− r/2, r/2]L,
then βnew � β. While one of the above two conditions is not
satisfied, β is updated element by element. When updating
βl, other elements are fixed and the l-th equation with the
partial derivative is zero, and the expression is given by

βl � −
vp + Pl( 

T
− lβ− l

Pl

, l � 1, 2, . . . , L, (31)

where (·)− l is the vector to remove the l-th element and Pl is
the l-th column in Pl. ,e calculation formula of β is de-
scribed as

βnewl �

βl if P
− 1 exists and β∈ [− r/2, r/2]

L 1)

βl if 1) doesn’t hold and βl ∈ [− r/2, r/2] 2)

− r/2 if 1) and 2) don’t hold and βl < − r/2 3)

r/2 if 1) and 2) don’t hold and βl > r/2 4)

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.

(32)

Finally, the K DOAs will be estimated in the following
equation:

θk � θk + βk
, k � 1, 2, . . . , K, (33)

where θk is the closest grid to the true DOA θk, and βk
is the

offgrid parameter corresponding to θk.

3.5.ProposedAlgorithmFlow. ,rough the above derivation,
the algorithm flow is concluded in Table 1 for complex
sparse Bayesian learning for offgrid DOA estimation, where
the two-layer hierarchical prior p(xi|αi) � CN(xi|0, αi),
IG(αi|− λ, b/2) as an example.

In this paper, for the two-layer hierarchical prior
p(xi|ci) � CN(xi|0, c− 1

i ), Γ(ci|− λ, b/2) and
p(xi|αi) � CN(xi|0, αi), IG(αi|− λ, b/2), there are
λ � − 1, b⟶ 0+. In the models of the two-layer hierarchical
prior p(xi|αi) � CN(xi|0, αi), Γ(αi|λ, a/2) and
p(xi|ci) � CN(xi|0, c− 1

i ), IG(ci|λ, a/2), with the complex-
valued DOA estimation model, in order to obtain the
L1-norm of xi, there are λ � 3/2, a � 1. ,e p(τ) � Γ(τ|c, d)

for the noise precision, there are c � 1, d⟶ 0+.

4. Simulation and Performance Analysis

,is section validates the validity of the different two-level
hierarchical priors for the application of DOA estimation.
Suppose that ULA with N � 21 array elements for receiving
far-field narrowband sources, the sources carrier frequency
is f0 � 10GHz with SNR � 0 dB and interelement spacing
Δ d � 3 × 108/(2f0) � 1.5 cm in equation (1).

Parameter initialization is as follows: there are αl � 1, l �

1, 2, . . . L (or cl � 1) and σ2 � 10− SNR/10‖Yo‖2F/NM, where
Yo is the noisefree received signal matrix. ,e offgrid pa-
rameter is β � 0. A uniform sampling grid is
θ� θ1, θ2, . . . , θL  with a grid interval r� 1° in the DOA
range [-90°, 90°]. ,e number of snapshots is M � 200. ,e
proposed algorithm terminates if ε≤ 10− 4 or the maximum
number of iterations reaches max_iter� 2000.

,e DOA estimation results and details of the estimation
results of a source located at DOA 0.5° are shown in
Figures 4(a) and 4(b), respectively.
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,eDOA estimation results and details of the estimation
results of the two sources located at DOAs − 2.4° and 3.6° are
shown in Figures 5(a) and 5(b), respectively.

Comparing Figures 4 and 5, it can be seen that under the
consideration of the offgrid DOA model, different two-layer
hierarchical priors used for sparse source xi modeling can
effectively estimate the DOA of the offgrid model, while the
traditional MUSIC and L1-SVD algorithms have the DOA
estimation results located on the spatial sampling grid
nearest to the target point because the sampling grid mis-
match is not considered.

In order to analyze the different two-layer hierarchical
priors used for sparse source xi modeling, the performance
of the different two-layer hierarchical priors will be com-
pared with the traditional MUSIC algorithm and L1-SVD
algorithm, and the performances between the different two-
level hierarchical priors are illustrated by simulation results.

,e root mean square error (RMSE) of the DOA estimation
result is given in the form of dB as follows:

RMSE� 10log10

�����������������

1
KT



K

k�1


T

t�1

θkt − θk 
2




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (34)

where K is the total number of sources (K � 3), T is the
number of experiments (T� 200), and θkt is the estimated
DOA of the k-th source in the t-th experiment. ,en
consider 3 targets with DOAs θ1 � − 2.4°, θ2 � 0.5°, and θ3 �

3.6° respectively.
Figure 6(a) shows the RMSE of DOAs estimation result,

with the variation of SNR under the condition that the
number of array elements is N� 21 and the number of
snapshots M � 200. Figure 6(b) shows the RMSE of DOAs
estimation result, with the variation of array elements under

Table 1: Complex sparse Bayesian learning algorithm for offgrid DOA estimation.

Input quantities: the received signals Y, and the sampling grid in the DOA range θ
Output quantities: offgrid θ
Initialization: giving the initial values of parameters λ, b, c, d, α, τ, β←0, and setting the initial values of the convergence threshold ε and the
maximum number of iterations max_iter, computing the array steering matrices A(θ) and B(θ).
(1) Matrix construction: Computing Φ(β) � A + B diag(β) from A(θ), B(θ), and β.
(2) Parameters update:
1)Updating matrices ΣX and μX based on equation (19) from the current values of α, τ,Φ.
2)Acquiring the estimated values θk (the closest grid to the true DOA θk, k � 1, 2, . . . , K) from the position of nonzero rows in X � μX.
3)Updating quantities α, τ from the current values of ΣX and μX with equations (25) and (26).
4)Updating the offgrid parameter β from the current values A(θ), B(θ), ΣX, and μX according to equation (32).
(3) Iteration termination: Calculating the residual value ‖Y − Φ(β)μX‖2F. If the residual value is less than ε or the number of iterations is
more than max_iter, terminating the iteration process, otherwise, jumping to (1) to start the iteration, and updating the matrices A(θ),
B(θ), and Φ(β) based on equation (33).
(4) DOA detection: K DOAs will be estimated in equation (33).
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Figure 4: Single source of DOA estimation results: (a) single source DOA estimate and (b) single source DOA estimate details.
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Figure 5: Two sources of DOA estimation results: (a) two sources DOA estimates and (b) two sources DOA estimates details.
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Figure 6: Continued.
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the condition of SNR � 0 dB and the number of snapshots
M � 200. Figure 6(c) shows the RMSE of DOAs estimation
result, with the variation of snapshots under the condition of
SNR� 0dB and the number of array elements N� 21. ,e
Cramer–Rao bound (CRB) for the offgrid bias parameters of
the offgrid model in (2) and (3) is acquired by
CRB � 1/(2Mtr(BHB)SNR) [29–33]. Due to the fact that
the value of tr(BHB) tends to 104, the values of CRB in
Figure 6 is about 10− 3 ∼ 10− 4, such as CRB� [0.00107,
0.00085, 0.00067, 0.0005, 0.0004, 0.0003] in Figure 6(a),
which causes that the CRB waveforms appear relatively flat
by compared with RMSE value waveforms.

According to the comparison results of RMSE under
different conditions in Figure 6, it can be seen that the RMSE
of traditional MUSIC and L1-SVD both show a straight line
when the SNR, the number of array elements, and the
number of snapshots reach a certain level. Because they
cannot estimate the offgrid parameter, and the maximum
estimation precision of MUSIC and L1-SVD algorithm is
− 2°, 0° or 1°, 4°, respectively. In addition, the different two-
layer hierarchical priors of the signal xi are considered, and
their performance comparisons are shown in Figure 6. ,e
precision of DOA estimation has been significantly im-
proved due to the fact that the offgrid DOAmodel takes into
account the grid offset.

At the same time, the results of Figure 6 are further
analyzed as following, for the Gamma hyperprior of p(αi)

and p(ci) as an example. ,e marginal prior from two-layer
hierarchical prior p(xi|ci) and Γ(ci|− λ, b/2) is student’s t
prior, and the marginal prior obtained by setting the values
of λ for the two-layer hierarchical prior p(xi|αi), Γ(αi|λ, a/2)

is the Laplace prior. In [12], it is analyzed in detail that the
Laplace prior has better performance than the student’s t
prior under the condition of SMV of the real-valued model.
In this paper, this conclusion is extended to the case ofMMV
of the complex-valued model, the effects of different
hyperpriors are considered, and it is found that the two-layer
hierarchical prior p(xi|αi), IG(αi|− λ, b/2) has better per-
formance than p(xi|ci), IG(ci|λ, a/2), although themarginal
prior obtained by the two-layer hierarchical prior p(xi|ci),
Γ(ci|− λ, b/2) and p(xi|αi), IG(αi|− λ, b/2) are the same as
student’s t prior, and themarginal prior obtained by the two-
layer hierarchical prior p(xi|αi), Γ(αi|λ, a/2), and p(xi|ci),
IG(ci|λ, a/2) are the same as Laplace prior.

,rough the above analysis, the performance of the two-
layer hierarchical prior p(xi|αi) and p(αi) is better than
p(xi|αi) and p(ci), and the IG prior model is better than
Gamma prior model.

,e proposed algorithm is further applied to the angle-
distance positioning in the FDA (frequency diverse array)
[34]. ,e complex multisnapshot SBL combined with FDA
radar characteristics is used for target angle-distance two-
dimensional localization. ,e log frequency offset is used at
the transmitter to remove the distance periodicity of the
beam pattern of the full-band frequency receiving mecha-
nism of FDA radar for distance unambiguous localization.
,rough the transmitting of zero frequency offset and
nonzero frequency signals, the angle-distance two-dimen-
sional estimation is converted into two one-dimensional
estimates of the azimuth and distance, respectively, thus
reducing the amount of calculation. ,e simulation results
are shown in Figure 7 by using the two-layer hierarchical
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Figure 6: RMSE versus parameters: (a) RMSE with different SNR values; (b) RMSE with different array elements; and (c) RMSE with
different snapshots.
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prior p(xi|αi), Γ(αi|λ, a/2). ,e positions of the three targets
are (− 2.4°, 9576m), (0.5°, 9492m), and (3.6°, 9533m), re-
spectively. ,e simulation parameters are consistent with
Figure 5. ,e log frequency offset
Δfn � Δflog(n), n � 1, 2, . . . , N withΔf � 2MHz.,e grid
interval r� 10m in the distance interval [9000m, 10000m].
,e simulation results are (− 2.402°, 9576.336m), (0.505°,
9492.047m), and (3.583°, 9533.193m).

5. Conclusions

A general complex signal prior construction suitable for
complex-valued signal modeling is proposed. By using the
complex Gaussian scale mixtures hierarchy, it has been
shown that this signal model includes complex versions of a
number of signal models commonly used for sparse signal
modeling. In addition, the expression of the SBL form of the
real-valued and complex-valued models is unified by pa-
rameter values. Our motivation is to generalize the current
research work of SBL by this unified form and contribute to
its generalization to complex-valued signal models. Finally,
the SBL complex-valued form is applied to the off-grid DOA
estimation complex-valued model and compared with the
performance between different sparsity-inducing priors.
,eoretical analysis and simulation results show that the
proposed algorithm can effectively use SBL to process
complex-valued signal models and has lower algorithm
complexity.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research is funded by the National Natural Science
Foundation of China (no. 61861011 and 51808554), the
Guangxi Natural Science Foundation (no.
2019GXNSFBA245072), the Dean Project of Guangxi
Wireless Broadband Communication and Signal Processing
Key Laboratory (no. GXKL06160110), and the Science and
Technology on Near-Surface Detection Laboratory Foun-
dation (no. TCGZ2017A010).

References

[1] E. J. Candes and M. B. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 21–30, 2008.

[2] E. J. Candes and T. Tao, “Near-optimal signal recovery from
random projections: universal encoding strategies?” IEEE
Transactions on Information Eeory, vol. 52, no. 12,
pp. 5406–5425, 2006.

[3] D. M. Malioutov, A Sparse Signal Reconstruction Perspective
for Source Localization with Sensor Arrays, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2003.

[4] M. E. Tipping, “Sparse Bayesian learning and the relevance
vector machine,” Journal of Machine Learning Research, vol. 1,
no. 3, pp. 211–244, 2001.

[5] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis
selection,” IEEE Transactions on Signal Processing, vol. 52,
no. 8, pp. 2153–2164, 2004.

[6] D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for
solving the simultaneous Sparse approximation problem,”
IEEE Transactions on Signal Processing, vol. 55, no. 7,
pp. 3704–3716, 2007.

[7] D. Wipf, J. Palmer, and B. Rao, “Perspectives on sparse
Bayesian learning,” Advances in Neural Information Pro-
cessing Systems, vol. 16, pp. 249–256, 2003.

[8] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Transactions on Signal Processing, vol. 56, no. 6,
pp. 2346–2356, 2008.

[9] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian
compressive sensing using Laplace priors,” IEEE Transactions
on Image Processing, vol. 19, no. 1, pp. 53–63, 2009.

−60 −40 −20 0 20 40 60 80−80
Azimuth (°)

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
N

or
m

al
iz

ed
 am

pl
itu

de
 (d

B)

(a)

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

9100 9200 9300 9400 9500 9600 9700 9800 9900 100009000
Distance (m)

(b)

Figure 7: ,ree sources of angle-distance estimation results: (a) three sources azimuth estimates and (b) three sources distance estimates.

International Journal of Antennas and Propagation 11



[10] Z. Yang, L. Xie, and C. Zhang, “Bayesian Compressed Sensing
with New Sparsity-Inducing Prior,” , pp. 1–11, Information
,eory, 2012.

[11] Z.-M. Liu, Z.-T. Huang, and Y.-Y. Zhou, “An efficient
maximum likelihood method for Direction-of-Arrival esti-
mation via sparse Bayesian learning,” IEEE Transactions on
Wireless Communications, vol. 11, no. 10, pp. 1–11, 2012.

[12] M. A. Hannan and P. Rocca, “Directions-of-Arrival estima-
tion in linear sub-arrayed array through compressive sens-
ing,” in Proceedings of the 2019 IEEE International Symposium
on Antennas and Propagation and USNC-URSI Radio Science
Meeting, July 2019.

[13] H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant
total least-squares for perturbed compressive sampling,”
IEEE Transactions on Signal Processing, vol. 59, no. 5,
pp. 2002–2016, 2011.

[14] Z. Yang, L. Xie, and C. Zhang, “Off-grid Direction of arrival
estimation using sparse Bayesian inference,” IEEE Transac-
tions on Signal Processing, vol. 61, no. 1, pp. 38–43, 2013.

[15] X. Wu, W. P. Zhu, and J. Yan, “Direction of arrival estimation
for off-grid signals based on sparse Bayesian learning,” IEEE
Sensors Journal, vol. 16, no. 7, pp. 2004–2016, 2015.

[16] Z. Yang and L. Xie, “On gridless sparse methods for multi-
snapshot direction of arrival estimation,” Circuits, Systems,
and Signal Processing, vol. 36, no. 8, pp. 3370–3384, 2017.

[17] X. Wu, W.-P. Zhu, J. Yan, and Z. Zhang, “A spatial filtering
based gridless DOA estimation method for coherent sources,”
IEEE Access, vol. 6, Article ID 56402, 2018.

[18] M. Wagner, P. Gerstoft, and Y. Park, “Gridless DOA esti-
mation via. alternating projections,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4215–4219, Brighton, UK, May 2019.

[19] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for
direction-of-arrival estimation,” Academic Press Library in
Signal Processing, vol. 7, pp. 509–581, 2018.

[20] G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse
linear array synthesis by bayesian compressive sampling,”
IEEE Transactions on Antennas and Propagation, vol. 60,
no. 5, pp. 2309–2326, 2012.

[21] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa,
“Directions-of-Arrival estimation through bayesian com-
pressive sensing strategies,” IEEE Transactions on Antennas
and Propagation, vol. 61, no. 7, pp. 3828–3838, 2013.

[22] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex
multitask Bayesian compressive sensing,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3375–3379, Florence, Italy,
May 2014.

[23] X. Wu, W.-P. Zhu, J. Yan, and Z. Zhang, “Two sparse-based
methods for off-grid direction-of-arrival estimation,” Signal
Processing, vol. 142, pp. 87–95, 2018.

[24] A. Das and T. J. Sejnowski, “Narrowband and wideband off-
grid direction-of-arrival estimation via sparse Bayesian
learning,” IEEE Journal of Oceanic Engineering, vol. 43, no. 1,
pp. 108–118, 2018.

[25] B. Jorgensen, Statistical Properties of the Generalized Inverse
Gaussian Distribution, Springer Science & Business Media,
Berlin, Germany, 2012.

[26] N. Abramson and D. J. Braverman, Pattern Recognition and
Machine Learning, Springer, Berlin, Germany, 2006.

[27] D. J. C. MacKay, “Bayesian interpolation,” Neural Compu-
tation, vol. 4, no. 3, pp. 415–447, 1992.

[28] R. Giri and B. Rao, “Type I and type II Bayesian methods for
sparse signal recovery using scale mixtures,” IEEE Transac-
tions on Signal Processing, vol. 64, no. 13, pp. 3418–3428, 2016.

[29] R. Jagannath and K. V. S. Hari, “Block sparse estimator for
grid matching in Single snapshot DOA estimation,” IEEE
Signal Processing Letters, vol. 20, no. 11, pp. 1038–1041, 2013.

[30] R. Prasad and C. R. Murthy, “Cramer-rao-Type bounds for
sparse bayesian learning,” IEEE Transactions on Signal Pro-
cessing, vol. 61, no. 3, 2013.

[31] A. Das, “,eoretical and experimental comparison of off-grid
sparse bayesian direction-of-arrival estimation algorithms,”
IEEE Access, vol. 5, Article ID 18075, 2017.

[32] Y. Qin, Y. Liu, and Z. Yu, “Underdetermined DOA estimation
using coprime array via multiple measurement sparse
Bayesian learning,” Signal, Image and Video Processing,
vol. 13, no. 7, pp. 1311–1318, 2019.

[33] X.Wu,W.-P. Zhu, and J. Yan, “Direction of arrival estimation
for off-grid signals based on sparse bayesian learning,” IEEE
Sensors Journal, vol. 16, no. 7, pp. 2004–2016, 2016.

[34] Q. H. Liu, K. Ding, B. S. Wu, and Q. Xie, “Frequency diverse
array target localization based on IPSO-BP,” International
Journal of Antennas and Propagation, vol. 2020, Article ID
2501731, 8 pages, 2020.

12 International Journal of Antennas and Propagation


