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On the basis of combining the two concepts of digital coding metasurface and metasurface antenna, low radar cross-section
(RCS) coding metasurface antenna array with dynamic scattering performances is presented in this paper. Extending scattering
factor theory to coding metasurface antenna, by controlling the states of PIN diodes randomly, the scattering performances of
coding metasurface antenna array can be tuned dynamically without degrading its radiation property. Based on phase
cancellation principle, a 8× 8 antenna array was finally simulated and fabricated. By comparing several different layouts, taking
checkerboard layout, new chessboard layout, and “0101” square ring nested layout as examples, both monostatic and bistatic
RCS of the antenna mentioned above can be reduced 10 dB or more in the frequency range of 9–10.5 GHz under the illu-
mination of x-polarized incident wave. %e measured data are consistent with the simulation data, which proves the ef-
fectiveness of the proposed method.

1. Introduction

As a special strong scatter, the reduction of antenna radar
cross section (RCS) plays a crucial role in improving the
survival and competitiveness of all kinds of weapons. It is
hard to ensure the normal radiation performance of the
antenna only adopting traditional methods of reducing RCS.
A large sea of works have been put forward to solve this
tough task. Based on the analysis of the comparison between
the radiation and scattering current distribution on the
metal patch, antenna shape stealth technology came into
being [1, 2]. %e principle of this method is finding out the
area where current distribution is sparse, by modifying the
configuration of this area; the scattering property of the
antenna can be controlled effectively while maintaining its
satisfactory radiation performance. For military platforms,
one of the most useful means is loading frequency selective
surface (FSS) [3–5]. FSS radome is usually used as a filter to
control the electromagnetic scattering of the aircraft head,
which is a solution to realize out-band antenna stealth. Also,
by means of coating absorbing materials, the incident

electromagnetic wave can be dissipated [6, 7], so as to realize
the stealth effect. Recently, metasurfaces have attracted
worldwide attention. Due to their extraordinary ability to
control electromagnetic waves, some types of them have
been utilized to reduce RCS of target, such as artificial
magnetic conductor (AMC) [8], polarization conversion
metasurface (PCM) [9], metamaterial absorber (MA)
[10, 11], and digital coding metasurface [12–17]. However,
most of these applications of metasurfaces are not combined
with the antennas, or they are designed separately. %is not
only increases the complexity of the design process but also
the relatively higher profile of the overall structure is not
good for the actual fabrication and application.

In order to solve the aforementioned problem, meta-
surface antenna has been proposed to satisfy the needs of the
integrated design of metasurface and antenna [18–23]. As is
proposed in [22], the unit of 2× 2 SRRs array can not only be
regarded as a liner polarized antenna element but also be
considered as the metasurface cell. For scattering property,
these elements are designed to have a 180 degree reflective
phase. %en, by arranging them into checkerboard layout,
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the ideal RCS reduction effect can be achieved. For radiation
performance, due to the antenna array is fed with phase shift
of 90 degrees and positioned in an orthogonal direction, it
possesses left-handed circular polarization property. %is
method is further improved in [23] by using two different
antenna elements which can meet the requirement of 180-
degree reflection phase difference and approximately same
radiation property simultaneously in a 4× 4 array. Broad-
band RCS reduction can then be obtained while the total
gain is almost not unaffected. In order to find the optimal
solution, two kinds of antenna super arrays with the same
upper layer patch shape and different feeding structure are
designed. %e optimal arrangement of the super array with
the lowest RCS peak can be calculated using genetic algo-
rithm. However, these structures inevitably have a common
problem. Once the design is completed, the radiation per-
formance and scattering property of the antenna are fixed, so
they can only be applied to single engineering system. In
order to make the antenna system applicable for changeable
and complex battlefield situation in the future, it is urgent to
design a suitable antenna with its scattering pattern which
can be tuned real time.

In this paper, to address this matter, a 1 bit low RCS
coding metasurface antenna array with dynamic scattering
performances is presented. A parasitic square ring which has
little effect on the radiation performance of the antenna
array is loaded around the rectangular patch and PIN diodes
are embedded onto the metasurface as active components.
By changing the “ON” and “OFF” states of PIN diodes real
time, different types of scattering patterns of the metal layer
can then be obtained. Furthermore, the overall RCS of the
antenna array is reduced to meet the requirement of antenna
stealth.%e rest of this paper is as follows: Section 2 describes
the theoretical analysis and design procedure of 1 bit coding
metasurface antenna array. Section 3 shows the simulation
and experimental results of this antenna to demonstrate the
feasibility of this method, and finally, Section 4 is the
summary of this work.

2. Theoretical Analysis and Design Procedure

2.1. Scattering Mechanism of Coding Metasurface Antenna.
To clearly explain the physical mechanism of RCS reduction,
here the method of analyzing scattering factor [23] of planar
antenna array is adopted. Assuming that the scattering field
of unit cell remains same ignoring the coupling effect of
adjacent antenna elements, theoretically the total RCS of the
antenna array can then be obtained by multiplying the el-
ement scattering factor by the array factor:

σ(θ, φ) � σe(θ,φ) · σa(θ, φ), (1)

where σe represents the unit scattering factor and σa rep-
resents array factor. Considering the m× n scale antenna
array shown in Figure 1, the element spacing of x-direction
and y-direction is dx and dy, respectively, and the phase
mutation introduced by the unit in the mth row and nth
column is δmn, and corresponding scattering factor can be
expressed as [24]

δmn � k(m dx cosφ + n dy sinφ) · sin θ, (2)
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Extending aforementioned principle to coding meta-
surface antenna, when all pin diodes are of “ON” states
(namely, “1” element), scattering factor can be calculated as
equation (3) similarly, while all pin diodes are of “OFF”
states (namely, “0” element); total scattering factor ex-
pression is as follows:
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(4)

%erefore, when the plane wave is incident perpen-
dicularly, by controlling the reflection amplitude of each
unit keeping same, the two-dimensional scattering
factor of coding metasurface antenna can then be cal-
culated as

σtot(θ, φ) � 􏽘
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(5)

where Γmn is a variable, it represents when all pin diodes of
the unit in the mth row and nth column are of “ON” states,
the value of Γmn is 0, conversely when all pin diodes are of
“OFF” states, and Γmn equals to 1. So, it can be concluded
that due to the uncertainty of unknown Γmn, the two-di-
mensional checkerboard arrangement or other different
layouts of coding metasurface antenna units with various
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Figure 1: Schematic diagram of antenna array.
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scattering factors can produce scattering zero points in the
traditional reflection direction.

2.2. Design of Coding Metasurface Antenna. As is shown in
Figure 2(a), this multilayer structure is divided into three
parts: the phase-controlled metal patch layer, the feeding
network layer, and the bottom direct current (DC) bias line
layer used to provide voltage to diodes. First step is the
design of the metal patch layer. A simple rectangle patch
antenna is designed according to the microstrip patch an-
tenna design theory. %e geometry of proposed metasurface
antenna is listed in Figure 2(b). Two PIN diodes are
mounted in the slots of the parasitic square ring and other
two pin diodes are placed in the gaps to provide a connection
of square ring and patch. %e type of selected PIN diodes is
MACOM MADP-000907-14020. When these PIN diodes
are of “ON” states, they can be modeled as a series circuit of a
resistor (7.8 Ω) and an inductor (30 pH). While they are in
“OFF” states, they can be seen as a series circuit comprising a
capacitor (20 fF) and an inductor (30 pH). In order to avoid
the influence of the antenna array feeding network on the
antenna RCS, a corresponding Wilkinson power divider is
designed to be connected to the upper patch layer through
coaxial metal columns, as in Figure 2(c). %ey are connected
to the negative pole of the power supply. Figure 2(d) is the
side view of whole structure. Finally, optimized DC power
lines are etched on the bottom layer of whole structure to
power upper PIN diodes. %ey are connected to the upper
parasitic square ring through green metal column as in
Figure 2(e) to provide positive current. %e four PIN diodes
in a unit are powered together. Sixty-four metal patches are
arranged under the 8× 8 metasurface antenna array peri-
odically, which is convenient for random control of the ON-
OFF states of unit independently. For the antenna unit
structure in Figure 2(b), the unit cell boundaries are set in
the x- and y-directions, while open (add space) boundaries
are set in the z direction. In addition, the Floquet port
excitation is set as wave source. In order to verify the in-
fluence of loading parasitic unit and active components to
coding metasurface antenna, we need to conduct prelimi-
nary analysis on the surface current of the antenna array.
Figures 3(a) and 3(c) are the comparison of radiation current
distribution on the surface of antenna when all the pin
diodes are on and off. It can be seen from the figures that the
area having the strongest current (which is the red area) is
the wide edge of rectangular patch. %e current on the
parasitic rectangular ring is almost dark blue, which means
that current here is weakest. So, we can verify that the
loading of the parasitic element does not affect the radiation
performance of the original patch antenna. Figures 3(b) and
3(d) are the comparison of scattering current distribution on
the surface of antenna. %e difference from the radiation
situation is that the side region of parasitic rectangular ring
which is close to rectangular patch is also current-dense area
in addition to the patch itself. Furthermore, through the
analysis of the scattering states, we can see that when pin
diodes are powered off, only the lower half of parasitic
rectangular ring has a denser current distribution; when they

are powered on, both the upper and lower halves of parasitic
rectangular ring have strong current distribution due to
connection of pin diodes that verifies by means of loading
PIN diodes on slotted square ring to change the length of
current flowing path while maintaining radiation pattern is
practical. According to the principle of equivalent circuit,
the metal patch can be equivalent to inductor, the interval
between two adjacent patches can be equivalent to capacitor,
and the diode itself can be equivalent to an RLC series
circuit. By optimizing size of the parasitic rectangular ring
and selecting appropriate diodes, the required phase dif-
ference can be realized due to the difference of the current
flowing path. Finally, we choose F4B material (with relative
dielectric constant 2.65, and loss tangent 0.001) as all di-
electric substrates.

3. Simulation and Measured Results of Coding
Metasurface Antenna

3.1. Simulated Results of Antenna Unit. %e full-wave sim-
ulation results are carried out using CST commercial soft-
ware. For the overall structure of the 8× 8 coding
metasurface antenna array, free space is set as boundary
condition. At the same time, in this journal, in order to
simulate the far-field scattering characteristics of antenna,
plane wave excitation method is adopted and 50Ω terminal
matching method is used for all antenna ports. In
Figure 4(a), the bandwidth |φ1 − φ2| � 180° ± 37° is ob-
served within 9.5 to 10GHz. %e nearly same resonant
frequency point and radiation performance can be gotten
from Figures 4(b)–4(c). When four PIN diodes are of “OFF”
states, the simulated gain of coding metasurface antenna
unit is 7 dB; when four PIN diodes are of “ON” states, the
simulated gain is 6.1 dB.

3.2. Comparison of Different Layouts. Letting all the active
components of antenna array of “ON” or “OFF” states
cannot achieve the effect of reducing RCS. Only when two
antenna units (“0” and “1” element) with different scattering
factors are arranged randomly in two-dimensional antenna
array, effective scattering zero point can be obtained in the
traditional reflection direction. In order to express different
layouts more clearly and intuitively, here we use the yellow
lattices to replace the “OFF” state (namely, “0” element)
while green lattices represent “ON” state (namely, “1” ele-
ment). Figure 5 depicts several different layouts, taking
checkerboard layout, new chessboard layout, and “0101”
square ring nested layout as example.

To verify the feasibility of coding metasurface antenna
array, a 8× 8 square coding metasurface composed of two
designed elements is finally built. %e radiation and scat-
tering performance comparison of different layouts of an-
tenna array is conducted. Figure 6 shows that by controlling
voltage provided for PIN diodes, dynamic scattering pat-
terns can be obtained. Figure 6(a) is the three-dimensional
scattering diagram of reference antenna under the illumi-
nation of cross-polarized wave. It can be obviously seen that
a main peak beam exists in the traditional mirror reflection
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direction, and Figure 6(b) is the scattering pattern of
checkerboard layout. We can see original main scattered
beam is suppressed and points to four quadrants. Figure 6(c)
explains the scattering situation of new chessboard layout.
As we can see that the main peak beam is dispersed into four
areas according to the divided triangular region, and next
Figure 6(d) is the scattering performance of a nested layout

of square rings in the sequence of “0101,” like the theoretical
prediction, a corresponding null will be generated at the
junction of “0” and “1” unit cells. Figure 6(e) is monostatic
RCS variation curve with frequency; it can be obviously
concluded that certain reduction of radar cross-section can
be achieved no matter which layout the coding metasurface
antenna is of, especially when it is in checkerboard layout
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Figure 2: (a). Overall view of whole structure; (b) dimensions of proposed metasurface antenna unit including p � 15mm, g � 1.5mm,
L� 7.6mm, L1� 8mm, L2�11mm, L3�13mm, and W� 7.5mm; (c) overall view of feeding network; (d) side view of whole structure
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within the frequency range of 9.0–10.5 GHz. According to
Figure 6(f ), bistatic RCS changing curve with angle, the RCS
of antenna can realize a reduction of more than 10 dB
compared with reference antenna in the range of −60° ~60° at
9.5GHz when they are arranged as Figure 5(b).

From the antenna radiation property point of view, the
antenna works at 9.0–9.5GHz and 10.2–10.6GHz. Com-
pared to two reference antennas, the resonant frequency
band of coding metasurface antenna array is basically un-
affected. When all PIN diodes are of “ON” states, the gain at
two working frequency bands is 15.9 dB and 19.3 dB, re-
spectively, while all PIN diodes are of “OFF” states, the gain

at two working frequency bands is 18.9 dB and 21 dB sep-
arately. %en, when antenna exhibits dynamic scattering
performance, just take most common checkerboard layout
as an example; the gain at two resonance frequency points is
18.1 dB and 20 dB, as shown in Figures 7 and 8. It can be
concluded that the presented antenna array can realize ef-
fective RCS reduction in the condition of radiation per-
formance nearly consistent with reference antennas.

According to the theory, for N×Mmetasurface antenna
arrays which are composed of 1-bit coding units, the con-
trollable number of states can be up to 2NM. %erefore, the
8× 8 coding metasurface antenna array studied in this

(a) (b)

(c) (d)

Figure 3: Surface current analysis; (a) surface current distribution on radiation state (“OFF” state); (b) surface current distribution on
scattering state (“OFF” state); (c) surface current distribution on radiation state (“ON” state); (d) surface current distribution on scattering
state (“ON” state).
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journal has 128 controlled states theoretically. Excluding
repeated scattering patterns and all ON/OFF states, the
actual agility degrees of freedom of scattering states will be
less than 128. But in general, the designed antenna can
display the “fake” RCS effect while achieving stealth purpose.
%is shows advantage of dynamically adjusting RCS re-
duction. By improving the degree of freedom of antenna’s
scattering agility, it can not only achieve the RCS reduction
effect but also deceive and confuse enemy to a certain extent.
%e basic performance comparison of three different layout
antennas and reference antenna are given in Table 1.

3.3. Fabrication and Measurements. In order to further val-
idate the practicality of the proposed antenna array, a 8× 8
prototype was finally fabricated and corresponding measured
dates were recorded by using anechoic chamber.%e photos of
fabricated antenna and testing environment are shown in
Figure 9(a). Here, just taking checkerboard layout as an ex-
ample, the measured scattering and radiation performances of
antenna are as follows: from Figure 9(b), the trend of actual
measured monostatic RCS is basically consistent with simu-
lated result. Because the size of anechoic chamber is limited, the
wave emitted from the horn is basically spherical wave when it
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all “ON” states as an example); (b) checkerboard layout; (c) new chessboard layout; (d) “0101” square ring nested layout.
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irradiates the surface of the object. %is cannot fully reach the
excitation condition of plane wave. In addition, the accuracy
error during actual processing and the on-site environmental
noise which is difficult to be eliminated (such as target holder
used to support the sample and rotating platform) also result in
a certain error between the actual measurement and the
simulation result. But in general, the measured results can still
prove that it has a good stealth effect. From Figure 10(b), there

is 300MHz deviation between the measured frequency band
and the simulation value. %e main reason for the frequency
offset is that in the actual processing, the triple-layer dielectric
plates are mainly connected by metal vias.%ere will inevitably
be a little air layer in the gap, which causes the frequency
deviation. %e measured gain of antenna in Figure 10(c) at
frequency point 9.6GHz is 17.8 dB, which is 1.1 dB lower than
simulated result, and the measured gain of antenna in
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Table 1: Basic performance comparison of three different layout antennas and reference antenna.

Reference antenna Checkerboard
layout

New chessboard
layout “0101” square ring nested layout

6 dBsm RCS reduction bandwidth — 8.7–10.5GHz
18.8%
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13.2%
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Figure 10(d) at frequency point 10.6GHz is 20.4 dB, which is
0.6 dB lower than simulated result. %is deviation can be at-
tributed to the loss of the air layer and the losses of PIN diodes.
Anyway measured results also prove that the radiation per-
formance of this structure is almost unaffected.

4. Conclusion

To sum up, we have proposed a coding metasurface antenna
array which possesses various reconfigurable scattering pat-
terns. Both simulated and measured results demonstrate the
feasibility of this structure since an ideal RCS reduction effect
can be achieved no matter the structure is of checkerboard
layout, new chessboard layout, or “0101” square ring nested
layout while antenna radiation performance almost unaffected.
%is work may pave the way for antenna stealth technology,
which has great potential for future changeable battlefield.
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