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Tis article proposes a novel approach for the estimation of the direction-of-arrival (DoA) of multiple signals impinging on time-
modulated arrays (TMAs). Te algorithm transforms DoA estimation into compressive sensing (BCS) formulation to tackle the
sparse signal problem. Based on the voltage outputs of the TMAs at multiple times instants, a strategy using multitasks BCS (MT-
BCS) is applied to recover the DoA and improve the accuracy. Te comparison with the existing algorithms of DoA estimation in
TMAs verifes the efectiveness and feasibility of the proposed method.

1. Introduction

Due to the sideband radiation characteristics, the time-
modulated arrays (TMAs) are extensively used in various
applications, such as future cognitive radio systems [1],
electronic zero scanning [2], multibeam mode [3],
wireless power transmission [4], and communication
applications [5]. Te direction-of-arrival (DoA) esti-
mation has been an essential problem in array signal
processing that has attracted signifcant attention and
many studies have attempted to solve this problem based
on the traditional phased array. On the contrary, few
studies have been done on the DoA estimation in the
TMAs. A method of DoA estimation based on the
MUSIC algorithm in the TMAs was proposed [6], the
sidebands were pointed in diferent directions, and the
received data space could be formed through the cor-
responding received signals. In [7], the target of DoA
could be recovered by comparing the carrier frequency of
the echo signal with that of the transmitted signal.
However, limited to the small number of snapshots, low
signal-to-noise ratio (SNR), and correlated signals [8],
the experimental results cannot meet the requirements.

Recently, compression sensing (CS) [9] has drawn sig-
nifcant attention due to its accuracy, computational ef-
ciency, and robustness. Terefore, CS-based methods have
already been applied to the DoA estimation of traditional
antenna arrays [10].

Te authors have previously estimated the DoA and
bandwidth of unknown signals through the MT-BCS
method based on the traditional phased array [11]. For the
TMAs, few works have used the CS algorithm to estimate the
azimuth information of the target signals. In [8], a weighted
L1-norm with singular value decomposition operation (W-
L1-SVD) method has been proposed for the DoA estimation
in TMLA. Compared with the MUSIC algorithm, although
the W-L1-SVD algorithm is improved and enhances the
sparsity of the reconstructed coefcient vector, it is
inefcient.

To overcome the above-mentioned drawbacks and sat-
isfy the need for accurate and efcient estimation, this article
provides a novel and efective approach based on MT-BCS
for the DoA estimation in TMLA. Te proposed algorithm
based on Laplace prior [12] is used to recover the DoA in
TMLA with a unidirectional phase center motion (UPCM)
scheme [6], and it can perfectly cope with coherent signals.
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Te numerical results show that the proposed method has
better estimation accuracy and efciency compared with the
MUSIC, L1-SVD, and W-L1-SVD methods.

Notations, vectors, and matrices are denoted with lowercase
and capital letters in bold, respectively.Te operators (·)T, (·)H,
and (·)− 1 represent transpose,Hermitian transpose, and inverse,
respectively. ⊗ denotes the Kronecker product. Ia is an a × a

identity matrix and 0a×b is an a × b zeromatrix. di ag ·{ } denotes
the diagonalization operation. Re ·{ } and Im ·{ } return the real
and the imaginary parts of a variable, respectively.

2. Model of the TMLA with UPCM Scheme

Consider an isotropic TMLA consisting of N-element
equidistant and narrowband far-feld signals with the same
carrier frequency f0. Array elements are numbered 1 to N

from left to right. First, the leftmost M(M<N) elements
open a time step τ, which is controlled as follows [6]:

τ �
Tp

(N − M + 1)
, (1)

where Tp is the time modulation period. Te array factor of
TMLAs is expressed as follows:

y(t) � 􏽘
M

n�1
Un(t) · 􏽘

K

k�1
sk(t) · e

j(n− 1)βd sin θk + ηn(t), (2)

where sk(t) is the kth narrowband far-feld signal, d is the array
element spacing, β � 2πf0/c, ηn(t) is the additive Gaussian
white noise, and Un(t) is the switching function of the of time
of the nth element. Due to the fact that high-speed RF switches
periodically switch on and of according to a specifc time se-
quence to realize the time modulation in TMAs, the received
signals in some channels are forced to be zero during a certain
time interval within one modulation period, which will dete-
riorate or invalidate conventional DoA estimation algorithms.
Several strategies have been proposed to solve this problem,
M. Pesavento, A. Gershman, and M. Haardt proposed the
unitary root-MUSIC approach. M. Haardt and J. A. Nossek
proposed a unitary ESPRIT approach. A novel approach for
estimating DoAs in TMLAs with a unidirectional phase center
motion (UPCM) scheme is proposed in this paper. With the
UPCM scheme, the beams at diferent sidebands in TMLAs are
capable of pointing in diferent directions [13], and the corre-
sponding received signals can be used to compose a received
data space [14].Terefore, the UPCM scheme has been adopted
in this article. According to the UPCM scheme,Un(t) is defned
as follows [6]:

Un(t) �
1, μ1τ ≤ t≤ μ2τ,

0, otherwise,
􏼨 (3)

where

μ1 �
0, n≤M,

n − M, otherwise,
􏼨

μ2 �
n, n≤N − M + 1,

N − M + 1, otherwise.
􏼨

(4)

To explain in detail, an example of a TMLA with N � 24
and M � 2 is shown in Figure 1. Since Un(t) is a periodic
function of time, the spatial and frequency responses of (1)
can be obtained by decomposing it into Fourier series, and
each frequency component has a frequency of
f0 + q/Tp(q � 0, ± 1, ± 2, ... ± ∞). Te Fourier compo-
nent of qth order can be written as follows:

yq(t) � 􏽘
N

n�1
􏽘

K

k�1
bq,n · sk(t) · e

j(n− 1)βd sin θk + ηn
′(t), (5)

where ηn
′(t) is the additive noise of the qth sideband and bq,n

is the complex excitation of the qth-order sideband of the
nth element and is expressed as follows [6]:

bq,n �
1

Tp

􏽚
μ2τ

μ1τ
Un(t) · e

− j2πqfptdt

� fp μ2 − μ1( 􏼁τ · sin c πqfp μ2 − μ1( 􏼁τ􏽨 􏽩 · e
− jπqfp μ2+μ1( )τ ,

(6)

where fp � 1/Tp, sin cx � sinx/x. Assuming the number of
maximum orders sidebands is Q. Ten, the received signal
can be expressed as follows:

Y � y− Q(t)y− Q+1(t) . . .  yQ(t)􏽨 􏽩
Τ

� ΒΦ(θ)S + Θ(t), (7)

where Β � bq,n􏽮 􏽯 ∈ CN×(2Q+1), Φ(θ) � [ϕ1(θ)ϕ2(θ) . . .  
ϕK(θ)] is the array fow matrix, ϕk(t) �

[1  ejβdsinθk . . . ej(N− 1)βdsinθk ]Τ, S � [s1(t)s2(t)...  sK(t)]Τ are
the incident signals andΘ(t) � [η1′(t)η2′(t) . . . ηN

′(t)]Τ is the
noise vector. Based on the above analysis, Section 3 intro-
duces the DoA estimation method in TMLAs with the
UPCM scheme.

3. DoA Estimation Based on MT-BCS

3.1. CS Model in TMLA. Assuming the entire space can be
evenly divided into (θ1, θ2, . . . , θI), and there are potential
signals in each possible direction θi(i � 1, 2, . . . , I, I≫K),
an overcomplete basis matrix A(θ) � [ϕ1(θ)ϕ2(θ) . . . ϕI(θ)]

and a sparse signal vector S � [S1(t)S2(t) . . . SI(t)]Τ can be
constructed accordingly. Considering that the signal vector S

is K-sparse, (7) can be written as follows:

Y � BA(θ)S + Θ(t), (8)

where A(θ) is the array fow pattern matrix and BA(θ) is the
(2Q+ 1)× I measurement matrix in compressed sensing,
where I≫ 2Q+ 1.

Using the received data Y, a sparse reconstruction model
of DoA estimation based on CS is defned as follows:

s
∧

� min ‖ s ‖0   s.t.  ‖Y − BA(θ)S‖≤ ε, (9)

where ε is the noise level parameter and ‖∗ ‖p is lp-norm.

3.2. MT-BCS Model. Te MT-BCS model is expressed as
follows:

Yl � BA(θ)Sl +Θl(t), l � 1, 2, . . . L, (10)
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where L is the number of snapshots. Te sparse signal vector
is determined as follows:

s
∧
MT−BCS �

1
L

􏽘

L

l�1
arg max  

Sl

− pr
∧ Sl, c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Yl􏼐 􏼑􏼔 􏼕􏼚 􏼛, (11)

where Sl

∧
, l � 1, 2, . . . L associates the hyperparameter vectors

of diferent snapshots through appropriate “sharing.” pr is
the prior probability function. Te best values of the signal
hyperparameter vector c are computed through the fol-
lowing RVM formula [11]:

L
MT− BCS

(c) � −
1
2

􏽘

L

l�1
log CMT−BCS

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + I + 2ψ1( 􏼁 · log YΤl CMT−BCS( 􏼁Yl + 2ψ2􏽨 􏽩􏽮 􏽯. (12)

With

CMT−BCS �
∆

I + A
∧

(θ)di ag(c)
− 1

A
∧

(θ)
Τ
,

A
∧

(θ) �
Re A(θ){ } −Im A(θ){ }

Im A(θ){ } Re A(θ){ }
􏼢 􏼣,

(13)

where ψ1,ψ2 are the user-defned parameters, while Re ∗{ }

and Im ∗{ } are the real and the imaginary parts, respectively.
Finally, the solution estimated by the MT-BCS is equal to

s
∧
MT−BCS

�
1
L

􏽘

L

l�1
A(θ)
ΤA
∧

(θ) + di ag cMT−BCS( 􏼁􏼢 􏼣

− 1

A
∧

(θ)
ΤYl

⎧⎨

⎩
⎛⎝ ⎞⎠.

(14)

4. Numerical Results

In this section, the proposed MT-BCS algorithm is used for
DoA estimation in TMLA with 24 elements UPCM timing
sequence and compared with the MUSIC and SVD algo-
rithms. Te following experiments are conducted to de-
termine the appropriate value of Q. Te root-mean-square

error (RMSE) is used to assess diferent DoA estimation
methods. Te RMSE is defned as follows:

RMSE �
1
K

􏽘

K

k�1

�����������������

1
T

􏽘

T

t�1
θk

∧
(t) − θk􏼠 􏼡

2
􏽶
􏽴

, (15)

where θk

∧
(t) is the estimate of θk in the t−th experiment and

t is the number of Monte Carlo runs.Te statistical results of
RMSE are obtained through an average of T�100
simulations.

Suppose that there are three uncorrelated signals with
random codes and equal power, arriving from θ1 � −80, θ2 �

00 and θ3 � 140. To select the appropriate value of Q, Fig-
ure 2 shows the RMSE of diferent methods versus the Q
with 15 dB SNR and 50 snapshots. It can be seen that Q has
no signifcant impact on the RMSEs of the three algorithms,
and the proposed MT-BCS is stable after Q≥ 5. In the
MUSIC algorithm, the RMSE decreases with the increase in
Q and stabilizes after Q≥ 8. Tus, Q� 8 is adopted in the
following study.

For the uncorrelated sources, the RMSEs in diferent
SNRs and snapshots are shown in Figures 3 and 4, re-
spectively. Figure 5 shows the corresponding spatial spec-
trums at L� 50 and SNR� 15 dB.

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

τ

Tp

Figure 1: Time sequences of a 24-element TMLA with M� 2.
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Te results indicate that the proposed method has
superior performance, especially under the circumstance
of the low SNR, as well as the small number of snapshots.
According to the results shown in Figure 3, the proposed
method can estimate DoA accurately with a very small
error when the SNR is greater than 10 dB. It can be seen
from Figure 5 that the MUSIC algorithm has sharper
spectral peaks while having large false peaks, and if the
parameters are inappropriate, the estimation results turn
inaccurate, according to the results shown in Figures 3
and 4. Te false peaks of the W-L1-SVD algorithm are
signifcantly suppressed, and the spectral peaks of the
W-L1-SVD algorithm are sharper than those of the L1-
SVD algorithm. Te proposed algorithm does not need to
consider false peaks because it mainly estimates the

amplitude of the angle with strong signal energy, such as
shown in Figure 5(d). Te uninterested estimated mag-
nitude of DoA is smaller.

Figure 6 shows the RMSEs of diferent algorithms for
correlated sources. Te results show that the proposed
method has better estimation results than the other three
algorithms even in the correlated source.

Table 1 compares the computational times of four
diferent algorithms in the same scenario. Te time
consumption of the two SVD algorithms is close.Te time
consumption of the proposed method is longer than that
of the MUSIC method but less than that of the two SVD
methods. It shows that the proposed MT-BCS method has
better efciency than the SVD-based algorithms.
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Figure 3: RMSEs for uncorrelated sources versus diferent SNR
with L� 50 for diferent methods.
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Figure 4: RMSEs for uncorrelated sources versus diferent snap-
shots with SNR� 15 dB for diferent methods.
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Figure 2: RMSEs versus Q at L� 50, SNR� 15 dB for diferent methods.

4 International Journal of Antennas and Propagation



0

-4

-6

-8

-10

-2

-12

-14

-16
-100 100-80 80-60 60-40 40-20 200

DoAs

Po
w

er
 (d

B)

(a)

0

-2

-4

-6

-8

-10

-12

-14

-16
-100 100-80 80-60 60-40 40-20 200

DoAs

Po
w

er
 (d

B)

(b)

0

-2

-4

-6

-8

-10

-12

-14

-16
-100 10050-50 0

DoAs

Po
w

er
 (d

B)

(c)

1.2

0
-30 30

Actual
Estimated

-10 0 10 20-20
DoAs

0.2

0.4

0.6

0.8

1

Si
gn

al
 E

ne
rg

y

(d)

Figure 5: Spatial spectrums of the uncorrelated sources for diferent methods. (a) MUSIC. (b) L1-SVD. (c) W-L1-SVD. (d) MT-BCS.
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5. Conclusion

Tis paper proposes a novel and efective method calledMT-
BCS to deal with the direction-of-arrival estimation problem
in time-modulated linear arrays. Te simulation results
show that the proposed method can obtain a more accurate
DoA estimation compared with the MUSIC and SVD al-
gorithms, even in the case of low SNR, small snapshots, and
signal coherence. Moreover, the computational time of the
proposed algorithm is also less than the SVD-based
algorithms.

Data Availability

Te data are available upon request from the corresponding
authors.
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